JP2004213928A - Alloy for thermal fuse - Google Patents

Alloy for thermal fuse Download PDF

Info

Publication number
JP2004213928A
JP2004213928A JP2002379324A JP2002379324A JP2004213928A JP 2004213928 A JP2004213928 A JP 2004213928A JP 2002379324 A JP2002379324 A JP 2002379324A JP 2002379324 A JP2002379324 A JP 2002379324A JP 2004213928 A JP2004213928 A JP 2004213928A
Authority
JP
Japan
Prior art keywords
alloy
thermal fuse
temperature
fusible alloy
around
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002379324A
Other languages
Japanese (ja)
Inventor
Osamu Munakata
修 宗形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senju Metal Industry Co Ltd
Original Assignee
Senju Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senju Metal Industry Co Ltd filed Critical Senju Metal Industry Co Ltd
Priority to JP2002379324A priority Critical patent/JP2004213928A/en
Publication of JP2004213928A publication Critical patent/JP2004213928A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alloy which melts, needless to say, at around 65 °C, and does not contain harmful components such as Cd and Pb. <P>SOLUTION: This alloy for thermal fuse which gives a melting temperature around 65°C even though it does not contain Cd and Pb, and operates accurately at a prescribed temperature since it has a narrow melting temperature range. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子機器に設置する可溶合金型の温度ヒューズ、特に65℃付近で溶融する合金に関する。
【0002】
【従来の技術】
電子機器の内部温度が異常に上昇すると、電子機器を熱損傷させるばかりでなく、火災が発生して建物にも多大な損害を与えることになってしまう。そこで従来より電子機器には異常温度による事故を防ぐため温度ヒューズが設置されている。温度ヒューズとは、周囲温度が所定の作動温度以上に上昇すると、可溶合金が溶融して電気回路を切断し、それ以上に温度上昇をさせないものである。
【0003】
一般に、温度ヒューズは図1に示すように、可溶合金1の両端に一対のリード線2、2が溶着されており、可溶合金1の表面にはフラックス3が塗布されている。可溶合金1は絶縁ケース4内に収納されていて、該絶縁ケースの両端は樹脂5で封止されている。
【0004】
上記構造の温度ヒューズは、周囲温度が可溶合金の溶融温度以上に昇温すると、可溶合金が溶融してリード線2、2間の導通を遮断する。このときフラックスが可溶合金表面の酸化物を還元除去するため、可溶合金は表面張力で丸くなり、リード線間を完全に遮断するようになる。
【0005】
このような可溶型温度ヒューズの作動温度は、可溶合金の融点に依存しており、合金の融点は組成により決定されるものである。従って、温度ヒューズ用合金の選定組成は自ずとその構成組成に制限を受けることになる。特に温度ヒューズとしての作動性を考えた場合、使用される可溶合金は理想的には溶融温度域を有していない共晶合金が最適である。しかしながら共晶合金は限定されているため、任意に選定することは不可能である。そこで溶融温度域の非常に狭い合金が選定されることになる。
【0006】
ところで、現行の温度ヒューズの作動温度には、60℃付近から180℃付近に至るまで、各種のタイプが用意されており、さらにレパートリーを増やしていく傾向にある。例えば、90℃以下の低温域の合金としては以下に示すような成分系が挙げられる。Sn12-Bi-49-In21-Pb18(融点58℃)、Bi30.8-Cd7.5-In61.7(融点62℃)、Bi-In系合金(Bi34-In66:融点72℃)、Bi-Cd-In系合金(Bi48-Cd-10-In42:融点76℃)、Bi-In-Sn系合金(Bi54-In30-Sn16:融点81℃)、などの公知合金を基に、それぞれ60℃、70℃、80℃付近にて溶融する合金を調整し、作製されている。
【0007】
従って、作動温度が約65℃の温度ヒューズを考えた場合、自ずとその組成が限定され、上述のBi49-In-21-Pb18-Sn21(融点58℃)、Bi30.8-Cd7.5-In61.7(融点62℃)などの合金を基にしたものが対象となる。
【0008】
【発明が解決しようとする課題】
ところが、温度ヒューズは、一般の電子機器類において他の電子部品と共にプリント基板上にアセンブリされるものであり、電子機器類の廃棄の際には、当然のことながら法規に則った処理が必要となる。特に近年においては地球環境保護の動きが活発になっており、電子機器類に使用される部品から有害成分を排除しようとする傾向にある。特にCdやPb成分は人体に悪影響を及ぼすため、規制の対象になっている。本発明は、従来の65℃付近の可溶合金の欠点に鑑みなされたもので、65℃付近にて溶融することはもちろんであるが、有害成分であるCdやPbを含有しない合金を提供することにある。
【0009】
【課題を解決するための手段】
本発明者は、従来の65℃付近にて溶融する合金の欠点について鋭意検討を重ねた結果、Bi-In-Sn系合金において、ある限定された組成域の合金が約65℃にて溶融し、その温度域も非常に狭く、温度ヒューズに適していることを見い出し、本発明を完成させた。しかも該合金は有害成分であるCdやPbを一切含有していない。
【0010】
本発明は、Sn9〜11質量%、Bi29〜31質量%、残部Inからなることを特徴とする温度ヒューズ用合金である。
【0011】
前述したように、温度ヒューズとしての作動温度は、可溶合金の溶融する温度に依存しているのであるが、より詳細には合金の示差熱分析を行った際の吸熱ピーク最下点の温度が約65℃を満たすことが前提となる。また温度ヒューズとしての作動性を考えた場合、使用される可溶合金は理想的には溶融温度域を有していない共晶合金が最適であるが、共晶合金は限定されているため、任意に選定することは不可能であり、溶融温度域の非常に狭い合金が選定されることになる。
【0012】
本発明のBi-In-Sn系合金の基本構成成分であるSn、Biは上述の組成から外れた場合、溶融温度域が広くなってしまい、温度ヒューズとしての作動安定性が損なわれてしまう。
【0013】
【実施例】
実施例および比較例を表1に示す。
【0014】
【表1】

Figure 2004213928
【0015】
表の説明
※1:質量%
※2:示差熱分析
※3:示差熱分析の加熱曲線の吸熱ピークの開始点
※4:示差熱分析の加熱曲線の吸熱ピークの最下点
※5:示差熱分析の加熱曲線の吸熱ピークの終了点
【0016】
実施例の可溶合金を直径0.6mmの細線に加工し、それを長さ4mmに切断後、両端に0.6mmの銅のリード線を溶着した。可溶合金の表面にフラックスを塗布後、可溶合金と溶着部が収まるようにして、外径2.5mmの円筒状絶縁ケース内に設置し、絶縁ケースの両端を樹脂で封止した。このようにして作製した温度ヒューズ10個について作動試験を行った。温度ヒューズの作動試験は、ヒーターが設置された水槽内に温度ヒューズを浸漬しておく。該温度ヒューズに0.1Aの電流を流しておき、水槽内の水温を50℃から1℃/分で加熱する。そして可溶合金が溶断したときの温度、即ち通電が遮断したときの温度を測定する。10個の温度ヒューズの作動温度は、全て65℃±2℃であった。
【0017】
なお、本発明の温度ヒューズ用合金は、細線にして用いられるのが一般的であるが、温度ヒューズパッケージのタイプによっては、プリフォーム(リボン状、ペレット状)にして用いることもできる。
【0018】
【発明の効果】
以上説明したように、本発明の温度ヒューズ用合金は約65℃にて溶融し、その温度域も非常に狭く、温度ヒューズとしての作動安定性に優れている。しかも人体に有害なCdやPbを含有していないため、近年重要視されている環境問題に適合したものであり、従来の温度ヒューズ用合金にない優れた効果を奏するものである。
【図面の簡単な説明】
【図1】温度ヒューズの正面断面図
【符号の説明】
1 可溶合金
2 リード線
3 フラックス
4 絶縁ケース
5 封止用樹脂[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fusible alloy-type thermal fuse installed in an electronic device, and particularly to an alloy that melts at around 65 ° C.
[0002]
[Prior art]
If the internal temperature of the electronic device rises abnormally, not only will the electronic device be thermally damaged, but also a fire will occur, causing great damage to the building. Therefore, a thermal fuse is conventionally installed in an electronic device in order to prevent an accident due to an abnormal temperature. When the ambient temperature rises above a predetermined operating temperature, the fusible alloy melts and cuts the electric circuit, and the temperature fuse does not rise any more.
[0003]
In general, as shown in FIG. 1, a pair of lead wires 2 and 2 are welded to both ends of a fusible alloy 1 and a flux 3 is applied to the surface of the fusible alloy 1. The fusible alloy 1 is housed in an insulating case 4, and both ends of the insulating case are sealed with a resin 5.
[0004]
When the ambient temperature rises to a temperature higher than the melting temperature of the fusible alloy, the fusible alloy melts the thermal fuse of the above-described structure, thereby interrupting conduction between the lead wires 2. At this time, the flux reduces and removes oxides on the surface of the fusible alloy, so that the fusible alloy is rounded due to surface tension and completely cuts off between the lead wires.
[0005]
The operating temperature of such a fusible thermal fuse depends on the melting point of the fusible alloy, and the melting point of the alloy is determined by the composition. Therefore, the selection composition of the alloy for the thermal fuse is naturally limited by its constituent composition. In particular, when considering the operability as a thermal fuse, the fusible alloy used is ideally an eutectic alloy having no melting temperature range. However, eutectic alloys are limited and cannot be arbitrarily selected. Therefore, an alloy having a very narrow melting temperature range is selected.
[0006]
By the way, various types of operating temperatures of the current thermal fuse are prepared from around 60 ° C. to around 180 ° C., and the repertoire tends to be further increased. For example, alloys in the low temperature range of 90 ° C. or lower include the following component systems. Sn12-Bi-49-In21-Pb18 (melting point 58 ° C), Bi30.8-Cd7.5-In61.7 (melting point 62 ° C), Bi-In alloy (Bi34-In66: melting point 72 ° C), Bi-Cd Based on known alloys such as -In-based alloys (Bi48-Cd-10-In42: melting point 76 ° C) and Bi-In-Sn-based alloys (Bi54-In30-Sn16: melting point 81 ° C), respectively, at 60 ° C and 70 ° C, respectively. It is manufactured by adjusting alloys that melt at around 80 ℃ and 80 ℃.
[0007]
Therefore, when considering a temperature fuse with an operating temperature of about 65 ° C., its composition is naturally limited, and the above-mentioned Bi49-In-21-Pb18-Sn21 (melting point 58 ° C.), Bi30.8-Cd7.5-In61. Those based on alloys such as 7 (melting point 62 ° C) are targeted.
[0008]
[Problems to be solved by the invention]
However, thermal fuses are assembled on printed circuit boards together with other electronic components in general electronic equipment, and when electronic equipment is disposed of, it is naturally necessary to treat it in accordance with laws and regulations. Become. Particularly in recent years, the movement for protecting the global environment has become active, and there is a tendency to eliminate harmful components from components used in electronic devices. In particular, Cd and Pb components are subject to regulation because they have an adverse effect on the human body. The present invention has been made in view of the drawbacks of the conventional fusible alloy at around 65 ° C., and provides an alloy that does not contain harmful components such as Cd and Pb, which, of course, melts at around 65 ° C. It is in.
[0009]
[Means for Solving the Problems]
The present inventor has conducted intensive studies on the drawbacks of the conventional alloy which melts at around 65 ° C. The temperature range was very narrow, and it was found that the temperature range was suitable for a thermal fuse, and the present invention was completed. Moreover, the alloy does not contain any harmful components such as Cd and Pb.
[0010]
The present invention is an alloy for a thermal fuse, comprising 9 to 11% by mass of Sn, 29 to 31% by mass of Bi, and the balance In.
[0011]
As described above, the operating temperature of the thermal fuse depends on the melting temperature of the fusible alloy, but more specifically, the temperature at the lowest point of the endothermic peak when performing differential thermal analysis of the alloy. Satisfies about 65 ° C. Considering the operability as a thermal fuse, the fusible alloy used is ideally ideally a eutectic alloy that does not have a melting temperature range, but since the eutectic alloy is limited, It is impossible to arbitrarily select an alloy, and an alloy having a very narrow melting temperature range will be selected.
[0012]
When Sn and Bi, which are the basic components of the Bi-In-Sn-based alloy of the present invention, deviate from the above-mentioned composition, the melting temperature range becomes wide, and the operational stability as a thermal fuse is impaired.
[0013]
【Example】
Table 1 shows Examples and Comparative Examples.
[0014]
[Table 1]
Figure 2004213928
[0015]
Explanation of table * 1: Mass%
* 2: Differential thermal analysis * 3: Starting point of endothermic peak of heating curve of differential thermal analysis * 4: Lowest point of endothermic peak of heating curve of differential thermal analysis * 5: Endothermic peak of heating curve of differential thermal analysis End point [0016]
The fusible alloy of the example was processed into a thin wire having a diameter of 0.6 mm, cut into a length of 4 mm, and then 0.6 mm copper lead wires were welded to both ends. After the flux was applied to the surface of the fusible alloy, it was placed in a cylindrical insulating case having an outer diameter of 2.5 mm so that the fusible alloy and the welded portion could be accommodated, and both ends of the insulating case were sealed with resin. An operation test was performed on the ten thermal fuses thus manufactured. In the operation test of the thermal fuse, the thermal fuse is immersed in a water tank provided with a heater. A current of 0.1 A is passed through the thermal fuse, and the water temperature in the water tank is heated from 50 ° C. to 1 ° C./min. Then, the temperature at which the fusible alloy melts, that is, the temperature at which the energization is cut off, is measured. The operating temperatures of all ten thermal fuses were 65 ° C. ± 2 ° C.
[0017]
The alloy for a thermal fuse of the present invention is generally used in the form of a thin wire. However, depending on the type of thermal fuse package, it can be used in the form of a preform (ribbon, pellet).
[0018]
【The invention's effect】
As described above, the thermal fuse alloy of the present invention melts at about 65 ° C., has a very narrow temperature range, and has excellent operational stability as a thermal fuse. Moreover, since it does not contain Cd or Pb, which is harmful to the human body, it is suitable for environmental issues that have recently been regarded as important, and has excellent effects not found in conventional thermal fuse alloys.
[Brief description of the drawings]
FIG. 1 is a front sectional view of a thermal fuse.
Reference Signs List 1 fusible alloy 2 lead wire 3 flux 4 insulating case 5 sealing resin

Claims (1)

Sn9〜11質量%、Bi29〜31質量%、残部Inからなることを特徴とする温度ヒューズ用合金。An alloy for a thermal fuse, comprising 9-11% by mass of Sn, 29-31% by mass of Bi, and the balance In.
JP2002379324A 2002-12-27 2002-12-27 Alloy for thermal fuse Pending JP2004213928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002379324A JP2004213928A (en) 2002-12-27 2002-12-27 Alloy for thermal fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002379324A JP2004213928A (en) 2002-12-27 2002-12-27 Alloy for thermal fuse

Publications (1)

Publication Number Publication Date
JP2004213928A true JP2004213928A (en) 2004-07-29

Family

ID=32815855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002379324A Pending JP2004213928A (en) 2002-12-27 2002-12-27 Alloy for thermal fuse

Country Status (1)

Country Link
JP (1) JP2004213928A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8126336B2 (en) 2006-03-31 2012-02-28 Furukawa Electric Co., Ltd. Optical transmission system and optical repeater
CN114872391A (en) * 2022-06-01 2022-08-09 雷湘湘 Graphite and liquid metal composite soaking film and preparation method thereof
CN115584422A (en) * 2022-05-30 2023-01-10 雷湘湘 Liquid metal and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8126336B2 (en) 2006-03-31 2012-02-28 Furukawa Electric Co., Ltd. Optical transmission system and optical repeater
CN115584422A (en) * 2022-05-30 2023-01-10 雷湘湘 Liquid metal and preparation method and application thereof
CN114872391A (en) * 2022-06-01 2022-08-09 雷湘湘 Graphite and liquid metal composite soaking film and preparation method thereof

Similar Documents

Publication Publication Date Title
EP1343188B1 (en) Alloy type thermal fuse and fuse element thereof
JP2003257296A (en) Alloy type thermal fuse
JP2819408B2 (en) Alloy type temperature fuse
JP2004213928A (en) Alloy for thermal fuse
JP2007207558A (en) Fusible alloy type thermal fuse and circuit protection element
JP4222055B2 (en) Alloy for thermal fuse
JP4692822B2 (en) Alloy for thermal fuse
JP2004256888A (en) Alloy for thermal fuse
JP4409747B2 (en) Alloy type thermal fuse
JP4387229B2 (en) Method of using alloy-type thermal fuse and alloy-type thermal fuse
JP4946419B2 (en) Thermal fuse and manufacturing method thereof
JP2004363630A (en) Packaging method of protective element
JP2006299289A (en) Alloy type temperature-sensitive element material, and temperature fuse using the same
JP2002110010A (en) Protective element
JP2003213361A (en) Alloy for fuse
JP2004247269A (en) Tubular casing type alloyed thermal fuse
JP2007031775A (en) Lead-free fusible alloy type thermal fuse
JP2003317591A (en) Alloy for thermal fuse
EP1343186B1 (en) Alloy type thermal fuse and fuse element thereof
JP2022065619A (en) Fuse having arc extinguishing silicone composition
JP4230313B2 (en) Cylindrical case type alloy type thermal fuse
JPH1173869A (en) Temperature fuse
JPH1012111A (en) Thermal alloy fuse and its manufacture
JPH086354Y2 (en) Alloy type thermal fuse
JPS593016B2 (en) temperature fuse

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051025

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20080409

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080731