JPH0343568Y2 - - Google Patents

Info

Publication number
JPH0343568Y2
JPH0343568Y2 JP1985058145U JP5814585U JPH0343568Y2 JP H0343568 Y2 JPH0343568 Y2 JP H0343568Y2 JP 1985058145 U JP1985058145 U JP 1985058145U JP 5814585 U JP5814585 U JP 5814585U JP H0343568 Y2 JPH0343568 Y2 JP H0343568Y2
Authority
JP
Japan
Prior art keywords
pressure
pipe
expansion valve
hot gas
expansion valves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985058145U
Other languages
Japanese (ja)
Other versions
JPS61172971U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985058145U priority Critical patent/JPH0343568Y2/ja
Publication of JPS61172971U publication Critical patent/JPS61172971U/ja
Application granted granted Critical
Publication of JPH0343568Y2 publication Critical patent/JPH0343568Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は運転範囲を拡大するためにホツトガス
バイパス管路を冷凍回路中に設けてなる冷凍装置
の構造に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to the structure of a refrigeration system in which a hot gas bypass line is provided in a refrigeration circuit in order to expand the operating range.

(従来の技術) 蒸発器における負荷の大小に関係なく、圧縮機
を継続的に運転できるだけの最底吸入圧力を保持
するためにホツトガスバイパス管路を冷凍回路中
に設けてなる冷凍装置は公知であり、新版冷凍空
調便らん、第4版、基礎編、社団法人日本冷凍協
会、昭和56年5月30日発行、第508509頁にも記載
されている。
(Prior Art) A refrigeration system is known in which a hot gas bypass pipe is provided in a refrigeration circuit in order to maintain a bottom suction pressure sufficient to continuously operate a compressor regardless of the magnitude of the load on the evaporator. This is also described in the New Refrigeration and Air Conditioning Handbook, 4th edition, basic edition, Japan Refrigeration Association, published May 30, 1980, page 508509.

上述の公知技術に関して、特に簡易な構造とし
て定圧自動膨張弁5′を有するホツトガスバイパ
ス管路6′を設けたものが同様に記載されており、
これを例えばスポツトクーラなどの冷凍装置に適
用すると第3図に示す通りであるが、これは定圧
自動膨張弁5′を1個使用して制御する構造であ
る。
Regarding the above-mentioned known technology, one in which a hot gas bypass line 6' having a constant pressure automatic expansion valve 5' is provided as a particularly simple structure is also described.
When this is applied to a refrigeration device such as a spot cooler, as shown in FIG. 3, this is a structure in which control is performed using one constant pressure automatic expansion valve 5'.

(考案が解決しようとする問題点) 上記第3図々示装置は例えば設置環境の温度変
動が激しい条件下で使用するスポツトクーラなど
に適用した場合、第2図に蒸発器4の吸込空気温
度と吹出空気温度との関係を冷媒にフロンR−22
を使用したときの例で示しているように、吸込空
気温度が25℃〜10℃の範囲では点線示の状態を呈
して、冷却能力、すなわち、蒸発器前後の空気温
度差(△T)=x−y(たゞしxは吸込空気温度、
yは吹出空気温度)から明らかである(便宜上、
潜熱変化は無視している)が、○イ点では25−16=
9(℃)であるのが○ハ′点では10−6=4(℃)と
能力の低下が可成り大きいのに加えて、○イ点と
○ハ′点との間では略々直線的に変化するので、中
間点の○ロ′点でも18−11=7(℃)となつて能力の
低下が○イ点に対して77.8%と大きくなり、能力低
下の割合が大きいのが難点である。
(Problems to be Solved by the Invention) When the device shown in Figure 3 is applied to a spot cooler used in an installation environment where the temperature fluctuates rapidly, Figure 2 shows the temperature of the intake air of the evaporator 4. The relationship with the temperature of the blown air using Freon R-22 as a refrigerant
As shown in the example when using the evaporator, when the suction air temperature is in the range of 25℃ to 10℃, the state shown by the dotted line occurs, and the cooling capacity, that is, the air temperature difference before and after the evaporator (△T) = x-y (x is the intake air temperature,
y is the blowing air temperature) (for convenience,
(Latent heat change is ignored), but at point A, 25−16=
9 (℃), but at point ○C', the decrease in performance is quite large, 10-6=4 (℃), and in addition, the decrease in performance is almost linear between point ○A and point ○C'. Therefore, even at the intermediate point ○B' point, 18-11=7 (℃), and the decrease in ability is 77.8% compared to point ○A, and the problem is that the rate of decrease in ability is large. be.

このような問題点に対処して本考案は従来の欠
点を解消し得る装置を提供すべく成されたもので
あつて、定圧自動膨張弁を利用した簡易構造のホ
ツトガスバイパス方式の利点を活かしながらホツ
トガスバイパス量をきめ細かく制御するように成
すことによつて、冷却能力の低下度合を小さく抑
えようとする点を目的とする。
In order to address these problems, the present invention has been developed to provide a device that can eliminate the drawbacks of the conventional method, and takes advantage of the simple structure of the hot gas bypass system using a constant pressure automatic expansion valve. However, by finely controlling the amount of hot gas bypass, the purpose is to suppress the degree of decrease in cooling capacity to a small level.

(問題点を解決するための手段) 本考案は実施例に対応する第1図を用いて説明
すると、圧縮機1、凝縮器2、減圧器3及び蒸発
器4を備えた冷凍装置において、前記圧縮機1の
吐出ガス配管Aと低圧配管Eとの間をホツトガス
バイパス配管6で連結し、該ホツトガスバイパス
配管6途中に、低圧配管E側の圧力が設定圧力以
下になると開弁を始め、圧力の低下と共に開度が
増す定圧自動膨張弁5A,5Bを2個以上並列に
接続配置すると共に、前記各定圧自動膨張弁5
A,5Bの前記設定圧力を各定圧自動膨張弁5
A,5Bごとに互いに異なつたものとしたことを
特徴とする。
(Means for Solving the Problems) The present invention will be explained using FIG. 1 corresponding to an embodiment. The discharge gas pipe A of the compressor 1 and the low pressure pipe E are connected by a hot gas bypass pipe 6, and a valve is installed in the middle of the hot gas bypass pipe 6 to start opening when the pressure on the low pressure pipe E side becomes lower than the set pressure. , two or more constant pressure automatic expansion valves 5A, 5B whose opening degree increases as the pressure decreases are connected and arranged in parallel, and each of the constant pressure automatic expansion valves 5
The set pressures of A and 5B are adjusted to each constant pressure automatic expansion valve 5.
It is characterized in that each of A and 5B is different from the other.

(作用) 定圧自動膨張弁5A,5Bが例えば2個並列接
続されている場合を考えると、1個のみのものと
全開時の流量を等しくなるように小形の膨張弁を
2個用いるのが普通であるから、第1段の膨張弁
5Aが開度を増してゆく過程で、第2段の膨張弁
5Bが開き始めるときは1個の場合に比してバイ
パス流量は絞られる結果となり、従つて第2図の
○ロ点から明らかなように温度差(△T)は大きく
なつて冷却能力が増大する。
(Function) Considering the case where, for example, two constant pressure automatic expansion valves 5A and 5B are connected in parallel, it is common to use two small expansion valves so that the flow rate when fully open is equal to that of only one expansion valve. Therefore, when the second stage expansion valve 5B begins to open while the first stage expansion valve 5A increases its opening degree, the bypass flow rate is reduced compared to the case where only one valve is used. As is clear from the points ○ and ○ in FIG. 2, the temperature difference (ΔT) increases and the cooling capacity increases.

このように、第2図において斜線を施した領域
で吹出空気温度が1個の場合よりも低くなり、能
力増が果される。
In this way, the temperature of the blown air becomes lower in the shaded area in FIG. 2 than in the case of one blower, and the capacity is increased.

(実施例) 次に本考案の1実施例を添付図面にもとづいて
説明する。
(Example) Next, an example of the present invention will be described based on the accompanying drawings.

第1図は本考案の1実施例に係るスポツトクー
ラを示し、ケーシング12は内部を左右の2室に
区分して、一室は背面板の上部に設けた第1空気
吸込口13と頂面板に設けた排気口14とに臨ま
せていて、該室内に凝縮器2、減圧器3例えばキ
ヤピラリチユーブ(なお、過熱度制御用の温度自
動膨張弁でもよい)、凝縮器用フアン8、フイル
タ10、前記フアン8に軸結した2軸モータ11
を収納している。
FIG. 1 shows a spot cooler according to an embodiment of the present invention, in which the inside of the casing 12 is divided into two chambers, left and right, and one chamber is connected to a first air suction port 13 provided at the upper part of the back plate and a top plate. A condenser 2, a pressure reducer 3 such as a capillary tube (an automatic temperature expansion valve for superheat control may also be used), a condenser fan 8, a filter 10, a two-shaft motor 11 connected to the fan 8;
is stored.

一方、他室は背面板の下部に設けた第2空気吸
込口15と前面板の上部に設けた冷風吹出口16
とに臨ませていて、該室内に圧縮機1、蒸発器
4、2個の第1、第2の定圧自動膨張弁5A,5
Bを有するホツトガスバイパス管路6、2個のア
キユムレータ7,7及び前記2軸モータ11に軸
結した蒸発器用フアン9を収設している。
On the other hand, the other rooms have a second air intake port 15 provided at the bottom of the back panel and a cold air outlet 16 provided at the top of the front panel.
A compressor 1, an evaporator 4, and two first and second constant pressure automatic expansion valves 5A, 5 are installed in the room.
A hot gas bypass pipe line 6 having a diameter B, two accumulators 7, and an evaporator fan 9 connected to the two-shaft motor 11 are housed therein.

そして、圧縮機1、凝縮器2のコイル、減圧器
3、分流器17、蒸発器4のコイル、アキユムレ
ータ7,7を吐出管ガス管A、高圧液管B、低圧
液管C、吸入ガス管D等の配管で接続して公知の
冷凍サイクルを形成している。
Then, the compressor 1, the coil of the condenser 2, the pressure reducer 3, the flow divider 17, the coil of the evaporator 4, the accumulators 7 and 7 are connected to the discharge pipe gas pipe A, the high pressure liquid pipe B, the low pressure liquid pipe C, and the suction gas pipe. A well-known refrigeration cycle is formed by connecting with pipes such as D.

なお、Eは、低圧液管C、蒸発器4、吸入ガス
管Dを総称する低圧配管である。
Note that E is a low-pressure pipe that collectively refers to the low-pressure liquid pipe C, the evaporator 4, and the suction gas pipe D.

前記第1、第2の定圧自動膨張弁(以下第1、
第2膨張弁と略称する)5A,5Bは例えば同形
同性能のものを並設して互いに並列となるよう配
管で接続し、この接続した配管の流入側になる端
部を圧縮機1の吐出口に接続してなる吐出ガス管
Aに接続し、また前記配管の流出側になる端部を
圧縮機1の吸入口に接続してなる吸入ガス管Dに
接続せしめてホツトガスバイパス管路6を形成し
ている。
The first and second constant pressure automatic expansion valves (hereinafter referred to as the first and second constant pressure automatic expansion valves)
5A and 5B (abbreviated as second expansion valves) are, for example, those of the same shape and performance that are installed side by side and connected by piping so that they are parallel to each other, and the end of the connected piping that becomes the inflow side is connected to the compressor 1. The hot gas bypass pipe is connected to a discharge gas pipe A connected to the discharge port, and connected to an intake gas pipe D formed by connecting the outflow side end of the pipe to the suction port of the compressor 1. 6 is formed.

上記第1、第2膨張弁5A,5Bは、蒸発器4
の圧力が所定以下となると霜付が生じて正常な運
転が不能となるのを防止するため、その出口側圧
力が設定圧力以下に下ると自動的に弁が開いて、
圧力を設定圧力に保持するように弁開度を増すよ
う作動するものであり、そして両膨張弁5A,5
Bの間では前記設定圧力を異ならしめて第1膨張
弁5Aの方が第2膨張弁5Bに比し設定圧力を高
くさせている。
The first and second expansion valves 5A and 5B are connected to the evaporator 4.
In order to prevent normal operation from occurring due to frost formation if the pressure drops below a specified level, the valve automatically opens when the outlet side pressure falls below the set pressure.
It operates to increase the valve opening to maintain the pressure at the set pressure, and both expansion valves 5A, 5
B, the set pressure is made different, and the set pressure of the first expansion valve 5A is made higher than that of the second expansion valve 5B.

すなわち、前記設定圧力は、蒸発器4の霜付を
防止する観点から決定され、例えば、R−22の冷
媒の場合、第1膨張弁5Aの設定圧力は5Kg/cm2
(絶対圧力)とし、第2膨張弁5Bの設定圧力は
4.5Kg/cm2(絶対圧力)とするのである。
That is, the set pressure is determined from the viewpoint of preventing frost formation on the evaporator 4. For example, in the case of R-22 refrigerant, the set pressure of the first expansion valve 5A is 5 kg/cm 2
(absolute pressure), and the set pressure of the second expansion valve 5B is
The pressure is set at 4.5Kg/cm 2 (absolute pressure).

なお、設定圧力を設定する方法としては、第2
膨張弁5Bの圧力を霜付防止のための所定圧力に
設定する方がより好ましい。
Note that the second method for setting the set pressure is
It is more preferable to set the pressure of the expansion valve 5B to a predetermined pressure for preventing frost formation.

叙上の構造を有するスポツトクーラは、圧縮機
1及び2軸モータ11を駆動させて冷房運転に入
らせると、第1空気吸込口13から導入した室内
の空気によつて凝縮器2は冷却され、一方、温度
上昇した空気は排気口14から室内の上方に向け
て排出される。
In the spot cooler having the structure described above, when the compressor 1 and the two-shaft motor 11 are driven to enter cooling operation, the condenser 2 is cooled by the indoor air introduced from the first air suction port 13. On the other hand, the air whose temperature has increased is discharged upward from the exhaust port 14 into the room.

また、第2空気吸込口15から導入した室内の
空気は蒸発器4により冷却され、冷風となつて冷
風吹出口16から送出され、人あるいは高温の物
すなわち作業者あるいは発熱機器(工場内では、
春、秋の中間期あるいは冬期でも高温の物を冷却
する必要がある場合がある)等を局部的に冷やす
冷房が行われる。
In addition, the indoor air introduced from the second air suction port 15 is cooled by the evaporator 4 and sent out from the cold air outlet 16 as cold air.
There are times when it is necessary to cool down high-temperature objects during the spring, fall, and winter seasons.

この冷房運転中に室内空気温度が下つてきて、
低圧々力が低下し、第1膨張弁5Aの設定圧力以
下に下ると、該膨張弁5Aが開き始める。
During this cooling operation, the indoor air temperature drops,
When the low pressure force decreases to below the set pressure of the first expansion valve 5A, the expansion valve 5A begins to open.

この弁開始点(第2図の○イ点)では、空気温度
差△T1は△T1=25−16=9℃であり、この状態
よりもさらに吸込吹出空気温度がともに低下して
くると第1膨張弁5Aは弁開度が増してくるが、
全開に至ると低圧圧力が低下しはじめるので第2
膨張弁5Bが該設定圧力以下になるのを検知して
○ロ点で開弁し始める。
At this valve starting point (point ○ in Figure 2), the air temperature difference △T 1 is △T 1 = 25-16 = 9°C, and both the intake and blowout air temperatures further decrease from this state. The opening degree of the first expansion valve 5A increases,
When fully opened, the low pressure starts to drop, so the second
The expansion valve 5B detects that the pressure becomes lower than the set pressure and starts opening at point ○.

このときの空気温度差△T2は△T2=18−10=
8℃であり、さらに吸込吹出空気温度がともに下
つてくると第2膨張弁5Bは開度を増してきて○ハ
点で共に全開となり、このときの空気温度差△
T3は△T3=10−5.5=4.5℃となる。
At this time, the air temperature difference △T 2 is △T 2 = 18−10 =
8°C, and as the temperature of the suction and blowing air further decreases, the opening degree of the second expansion valve 5B increases and becomes fully open at point ○C, and the air temperature difference at this time is △
T 3 is △T 3 = 10−5.5 = 4.5°C.

以上の結果から明らかなように、○ロ点での冷房
能力は○イ点に比して88.9%となり、また、従来の
膨張弁5′1個のものにおける○ロ′点と較べると14
%程度の能力増加が果される。
As is clear from the above results, the cooling capacity at point ○B is 88.9% compared to point ○B, and is 14% compared to point ○B' in the conventional expansion valve with one expansion valve 5'.
A capacity increase of about % is achieved.

なお、第2図で斜線を施した部分は従来方式に
比して吹出空気温度の低下が見られる領域であつ
て、使用温度範囲内を通じて能力の増加が見られ
る。
Note that the shaded area in FIG. 2 is a region where the temperature of the blown air decreases compared to the conventional system, and the capacity increases throughout the operating temperature range.

また、比較的能力が大きいスポツトクーラであ
つてホツトガスバイパス管路6の配管径が大きい
場合は、1個の膨張弁の場合は大口径のものが必
要で大型化するが、2個の膨張弁5A,5Bを使
用することにより格段に小形のものを利用でき
る。
In addition, if the spot cooler has a relatively large capacity and the diameter of the hot gas bypass line 6 is large, one expansion valve will require a large diameter and become larger, but two expansion valves will be required. By using 5A and 5B, a much smaller size can be used.

また、2個以上の膨張弁は、それぞれ同じ口径
のもの、開度特性が同じものを使用する方がコス
ト製作面から有利であるが、それぞれ、ちがうも
のを使用してもよい。例えば、2つの膨張弁の場
合、口径は同じであつても、全閉から全開までの
弁リフトの長さに長短のあるものを用い、弁リフ
トの長い方を高設定圧力用とし短かいものを低設
定圧力用とする場合や、口径のことなる2つの膨
張弁を口径の小さい方又は大きい方を高設定圧力
用とし、大きい方又は小さい方を低設定圧力用と
して使用する場合などでもよい。
Furthermore, it is advantageous in terms of manufacturing cost to use two or more expansion valves with the same diameter and the same opening characteristics, but different expansion valves may be used. For example, in the case of two expansion valves, even if the diameter is the same, the valve lift length from fully closed to fully open is different, and the one with the longer valve lift is used for high set pressure, and the shorter one is used. may be used for low set pressure, or when using two expansion valves with different diameters, the smaller or larger one is used for high set pressure, and the larger or smaller one is used for low set pressure. .

なお、ホツトガスバイパス管6の出口側接続位
置は前記吸入ガス管Dの他に、蒸発器4でもよい
し、低圧液管Cでよいし、分流器17でもよい。
In addition to the suction gas pipe D, the hot gas bypass pipe 6 may be connected to the evaporator 4, the low pressure liquid pipe C, or the flow divider 17.

(考案の効果) 本考案は以上詳述した如く、低圧配管E側の圧
力が設定圧力以下になると開弁を始め、圧力の低
下と共に開度が増す定圧自動膨張弁5A,5Bを
2個以上並列に接続配置すると共に、前記各定圧
自動膨張弁5A,5Bの前記設定圧力を各定圧自
動膨張弁5A,5Bごとに互いに異なつたものと
することによつて、ホツトガスバイパス量をきめ
細かく制御することが可能であり、吸込空気温度
と吹出空気温度との差を可成り大きくとつて、冷
却能力を従来の膨張弁単基方式に比し増大させて
能力の低下を少くすることができる。
(Effects of the invention) As detailed above, the present invention includes two or more constant pressure automatic expansion valves 5A and 5B that begin to open when the pressure on the low pressure pipe E side falls below the set pressure, and whose opening degree increases as the pressure decreases. By connecting and arranging them in parallel and making the set pressures of the constant pressure automatic expansion valves 5A and 5B different from each other, the hot gas bypass amount is finely controlled. It is possible to make the difference between the intake air temperature and the outlet air temperature considerably large, thereby increasing the cooling capacity compared to the conventional single expansion valve system, thereby minimizing the decrease in capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の1実施例に係る装置回路図、
第2図は本考案の例に係る冷却能力と従来の冷凍
装置の冷却能力との比較線図、第3図は従来の冷
凍装置の装置回路図である。 1……圧縮機、2……凝縮器、3……減圧器、
4……蒸発器、5A,5B……定圧自動膨張弁、
6……ホツトガスバイパス管路、A……吐出ガス
管、E……低圧配管。
FIG. 1 is a device circuit diagram according to an embodiment of the present invention;
FIG. 2 is a comparison diagram of the cooling capacity according to the example of the present invention and the cooling capacity of a conventional refrigeration system, and FIG. 3 is a device circuit diagram of the conventional refrigeration system. 1...Compressor, 2...Condenser, 3...Compressor,
4... Evaporator, 5A, 5B... Constant pressure automatic expansion valve,
6... Hot gas bypass pipe line, A... Discharge gas pipe, E... Low pressure pipe.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機1、凝縮器2、減圧器3及び蒸発器4を
備え、かつ前記圧縮機1の吐出ガス配管Aと低圧
配管Eとの間をホツトガスバイパス配管6で連結
し、該ホツトガスバイパス配管6途中に、低圧配
管E側の圧力が設定圧力以下になると開弁を始
め、圧力の低下と共に開度が増す定圧自動膨張弁
5A,5Bを2個以上並列に接続配置すると共
に、前記各定圧自動膨張弁5A,5Bの前記設定
圧力を各定圧自動膨張弁5A,5Bごとに互いに
異なつたものとしたことを特徴とする冷凍装置。
It is equipped with a compressor 1, a condenser 2, a pressure reducer 3, and an evaporator 4, and the discharge gas pipe A of the compressor 1 and the low pressure pipe E are connected by a hot gas bypass pipe 6, and the hot gas bypass pipe 6. On the way, two or more constant-pressure automatic expansion valves 5A and 5B, which start opening when the pressure on the low-pressure pipe E side becomes lower than the set pressure and whose opening degree increases as the pressure decreases, are connected and arranged in parallel, and each of the above-mentioned constant pressure A refrigeration system characterized in that the set pressures of the automatic expansion valves 5A and 5B are different for each constant pressure automatic expansion valve 5A and 5B.
JP1985058145U 1985-04-17 1985-04-17 Expired JPH0343568Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985058145U JPH0343568Y2 (en) 1985-04-17 1985-04-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985058145U JPH0343568Y2 (en) 1985-04-17 1985-04-17

Publications (2)

Publication Number Publication Date
JPS61172971U JPS61172971U (en) 1986-10-27
JPH0343568Y2 true JPH0343568Y2 (en) 1991-09-12

Family

ID=30583371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985058145U Expired JPH0343568Y2 (en) 1985-04-17 1985-04-17

Country Status (1)

Country Link
JP (1) JPH0343568Y2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52157552U (en) * 1976-05-26 1977-11-30
JPS52165355U (en) * 1976-06-08 1977-12-14

Also Published As

Publication number Publication date
JPS61172971U (en) 1986-10-27

Similar Documents

Publication Publication Date Title
US4760707A (en) Thermo-charger for multiplex air conditioning system
CN1766446B (en) System for detecting mis-connected state between communication lines for multi-type air conditioner and method thereof
CN100381771C (en) Refrigerator
US4620423A (en) Expansion devices for a multizone heat pump system
JP2508860B2 (en) Operation control device for air conditioner
US4643002A (en) Continuous metered flow multizone air conditioning system
US4017286A (en) Heat pump suction line vent
JP3843331B2 (en) Heat pump type air conditioner and outdoor unit
JPH0343568Y2 (en)
JPH1073328A (en) Cooler
JP2695288B2 (en) Multi-room air conditioner
JPH08226721A (en) Operation controller for air conditioning equipment for multiple room
JPH04103968A (en) Freezing cycle control system for multi-air conditioner
JPH1038422A (en) Air conditioner
JPH01155153A (en) Air conditioner
KR100389640B1 (en) System for controlling air conditioner and method thereof
JPH0752031B2 (en) Heat pump type air conditioner
CN100523668C (en) Method for controlling air conditioner having multi-compressor
JPS63290368A (en) Heat pump type air conditioner
JP2689025B2 (en) Multi-room air conditioner
JPH0665940B2 (en) Refrigerant control method for heat pump type air conditioner
JPH04320763A (en) Freezer
JP2998872B2 (en) Multi-room air conditioner
JPH06201199A (en) Controlling method for room air-conditioner
JPH03286945A (en) Engine driven type air-conditioner