JPH0343503B2 - - Google Patents

Info

Publication number
JPH0343503B2
JPH0343503B2 JP56183477A JP18347781A JPH0343503B2 JP H0343503 B2 JPH0343503 B2 JP H0343503B2 JP 56183477 A JP56183477 A JP 56183477A JP 18347781 A JP18347781 A JP 18347781A JP H0343503 B2 JPH0343503 B2 JP H0343503B2
Authority
JP
Japan
Prior art keywords
gear
fiber
strength
fibers
potassium titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56183477A
Other languages
Japanese (ja)
Other versions
JPS5884258A (en
Inventor
Yutaka Araya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP18347781A priority Critical patent/JPS5884258A/en
Publication of JPS5884258A publication Critical patent/JPS5884258A/en
Publication of JPH0343503B2 publication Critical patent/JPH0343503B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Gears, Cams (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は複合プラスチツクを用いて射出成形加
工からなる歯車に係わり、特に微細強化繊維と比
較的大きなサイズの強化繊維の2種類により強化
された高強度複合プラスチツクを用いた小型精密
計測器用歯車の製造方法に関する。 最近、プラスチツクは工業材料として負荷のか
かる機能部品、構造部品等に多く用いられてきて
いる。このような方面に用いられるプラスチツク
は一般にエンジニアリングプラスチツクと称され
比較的負荷のかからない用途に使用されているプ
ラスチツクいわゆる汎用プラスチツクとは区別さ
れる。しかしエンジニアリングプラスチツクとい
えども単体では機械的強度、熱的特性、寸法精度
などにおいて金属材料に比べはるかに劣り、その
ため比較的大きな寸法を有する部品でしかも負荷
の小さい部品に適用されているにすぎなかつた。
そこでエンジニアリングプラスチツクの特性を向
上させる目的で、補強材とくに短繊維による複合
化技術が検討された。この様な材料サイドでの進
歩によりプラスチツクが有する製品設計の自由度
が大きい、容易に成形加工が出来る、後仕上げ加
工がほとんど不要である、組立部品の一体化が出
来るなどの特徴を生かしながら従来使用が困難で
あつた高負荷精密機構部品分野に複合プラスチツ
クが応用拡大されつつある。 そこで本発明は、その目的とするところは、例
えば携帯時計等に使用される高寸法精度、機会適
強度および長期耐久性の優れた小型精密計測器用
歯車を可能にする小型精密計測器用歯車の製造方
法を提供するところにある。 本発明の小型精密計測器用歯車の製造方法は歯
厚0.1〜1.0mm、歯幅0.05〜0.4mm、ピツチ円径0.4〜
5mm、モジユール0.05〜0.5mm、歯車軸径0.1〜0.5
mmの歯車を、熱可塑性樹脂にチタン酸カリウム単
結晶繊維と、平均繊維長が該チタン酸カリウム単
結晶繊維の平均繊維長よりも長いカーボン繊維と
の2種類の強化繊維を添加した複合プラスチツク
材料により射出成形法で成形したことを特徴とす
る。以下腕時計用歯車を例にあげ本発明を説明す
る。腕時計用歯車は寸法精度面、機械的強度面、
長期耐久性においても最も要求の厳しい分野の1
つである。寸法精度については、公差は1/100mm
台が少なくとも要求され、しかも歯車寸法は歯厚
0.1mm〜1.0mm、歯巾0.05mm〜0.4mm、ピツチ円径0.4
mm〜5mm、モジユール0.05〜0.5、歯車軸径0.1mm
〜0.5mmで非常に小さい。この様な微小歯車をプ
ラスチツクで射出成形により加工することは高度
な射出成形技術と超精密金型加工技術の開発によ
つて可能なものとなつている。一方、機械的強度
面についてみた場合、腕時計用歯車は低トルクで
駆動するが、その絶対寸法が小さいことから単位
面積に受ける応力は非常に大きいものとなる。と
りわけ針修正時における負荷は大きく、曲げ強度
15Kg/mm3以上が必要となる。 本発明者は上記した腕時計用歯車として第1図
に示す形状の三番車を用い、各種複合プラスチツ
クの成形性と強度測定を行なつた。その結果、強
化繊維のサイズが腕時計用歯車のような小型精密
歯車の成形性及び強度の強化効率を大きく左右す
ることが判明した。このことから、本発明者は先
に、複合プラスチツクを小型精密歯車に適用する
際に、最適な強化用繊維のサイズを見い出すにい
たり特許出願をしているが、本研究をさらに進め
たところ、2種類の繊維サイズの異なる強化用繊
維の組合せ使用によりさらに成形精度および強度
の向上と、長期間における耐摩耗性の向上が得ら
れ本発明を完成した。本発明を詳述すれば、材料
評価に用いた第1図の三番車の大きさは歯車2の
厚み0.12mm、ピツチ円径3.5mm、モジユール0.058,
カナ3の厚み0.4mm、ピツチ円径0.50mm、モジユ
ール0.63、歯車軸1および4の軸径0.2mm、軸長
2.5mmである。この三番車を射出成形で成形する
際のゲート5はピンポイントゲートで0.25mm〓で
ある。この様なサイズの三番車を各種複合プラス
チツクで成形した後の強度測定は、第2図に示す
方法で行なつた。すなわち、三番車のカナ3の歯
6の破壊曲げ強度をカナ3を固定しておき、金属
製歯車7を回転していき、カナ3の歯6が破壊し
たときの回転トルクをU−ゲージで測定すること
により計算により求めた。また、歯の曲げ強度の
他に第1図の歯車軸1および4の曲げ強度につい
ては、第3図に示す方法で行なつた。すなわち固
定台8に三番車を設置し荷重Pを一定速度で増加
させながら三番車に加えてゆき、歯車軸1もしく
は4の破壊時の荷重Pから曲げ強度を求めた。強
化用繊維の種類と、歯6の相対破壊曲げ強度の関
係を第4図に示す。ここで使用した材料はプラス
チツクとしてポリアセタール(コポリマータイ
プ)、強化繊維として平均繊維径0.2μm、平均繊
維長30μmのチタン酸カリウム単結晶繊維Aおよ
び、平均繊維径8μm、平均繊維長400μmのカー
ボン繊維Bおよび平均繊維径10μm、平均繊維長
400μmのガラス繊維Cを各々30Wt%配合したも
のである。第4図に示される様に、ASTM法に
よる曲げ強度との相対強度でみると、繊維サイズ
が大きくなるにしたがつて曲げ強度は低下してい
る。一方、第5図に同様の材料を用い歯車1およ
び4の相対曲げ強度を示す。この試験での曲げ破
壊はいづれも歯車軸1と歯車2の根元付近であつ
た。第5図に示される様に、歯車軸に関しては歯
ほどには繊維サイズによる強度の相違はなく、む
しろカーボン繊維が最も効率は高い。曲げ強度測
定の方法からすれば、歯6の曲げ応力の方向は強
化用繊維の配向方向に平行であり、歯車軸1およ
び4の曲げ応力の方向は繊維配向方向に直角とみ
られる。このことから、第4図、第5図の結果
は、チタン酸カリウム単結晶繊維は比較的一様に
分散し、しかも配向性が強くないことを示してい
る。これは精密小型部品の成形上好ましい特性で
ある。また、カーボン繊維は歯6のような細かな
部分への分散性は不充分であるが、歯車軸に対す
る補強効果は優れている。一方ガラス繊維はその
繊維サイズの大きさから充填性、分散性は悪く精
密小型部品には適さない。また耐摩耗性、潤滑性
についてはカーボン繊維が最も良い特性を示し、
歯車軸のような摺動部に適している。 以上の結果から、本発明者は小型精密歯車用の
複合プラスチツクの強化用繊維としてチタン酸カ
リウム繊維とカーボン繊維の併用使用が適切であ
るとの結論を得るにいたつた。使用されるプラス
チツクとしてはポリアセタール以外に、ナイロン
6、6ナイロン6、ナイロン6、12、ナイロンメ
タキシレンジアミン6、ナイロン11、、ナイロン
12などのポリアミド、ポリカーボネート、ポリエ
チレンテレフタレート、ポリブチレンテレフタレ
ート、変性ポリフエニレンオキサイドポリアリレ
ート、ポリサルフオン、ポリエーテルサルフオ
ン、ポリフエニレンサルフアイド、ポリオキシベ
ンジレンなどのエンジニアリングプラスチツク、
ポリエチレン、ポリプロピレン、ポリ塩化ビニ
ル、ポリスチレン、ABS、アクリル樹脂などの
汎用プラスチツクなどの単体もしくは混合体があ
る。 以下に実施例を述べさらに本発明を詳述する。 実施例1〜5、比較例1〜5 第1図に示す腕時計用歯車である三番車を各種
複合プラスチツクで成形し、成形性と強度を測定
した。また同時にASTM、D790−66に規定され
ている曲げ強度試験用の試験片を成形し強度測定
した。 実施例1〜5、比較例1〜5の各試験片のプラ
スチツク材料、チタン酸カリウム単結晶繊維、カ
ーボン繊維およびガラス繊維の強化剤のwt%と
各実施例および各比較例の歯曲げ強度、歯車軸曲
げ強度およびASTM曲げ強度の測定結果を第1
表に示す。 強化剤であるチタン酸カリウム単結晶繊維とカ
ーボン繊維とが各々20wt%以上含まれる実施例
1、5は歯、歯車軸及びASTM各曲げ強度が20
Kg/m3以上となり優れた機械強度が確保されてい
る。また前述の強化剤がチタン酸カリウム単結晶
繊維およびカーボン繊維のどちらか一方ので構成
される比較例1〜3は前記曲げ強度のうちいづれ
かが劣ると共にガラス繊維を強化剤として使用す
る比較例4、5は射出成形時における充填性、分
散性が悪く成形不可となる。 以上の如く、本発明の小型精密計測器用歯車の
製造方法は、歯厚0.1〜1.0mm、歯幅0.05〜0.4mm、
ピツチ円径0.4〜5mm、モジユール0.05〜0.5mm、
歯車軸径0.1〜0.5mmの歯車を、熱可塑性樹脂にチ
タン酸カリウム単結晶繊維と、平均繊維長が該チ
タン酸カリウム単結晶繊維の平均繊維長よりも長
いカーボン繊維との2種類の強化繊維を添加した
複合プラスチツク材料により射出成形法で成形し
たことにより、金属製歯車に匹敵する高強度で寸
法精度の優れた小型精密計測器用歯車の製造をプ
ラスチツク製で実現可能にしたものである。 すなわち、本発明の小型歯車の製造方法は、2
つの強化材の一方に用いているチタン酸カリウム
単結晶繊維は、平均繊維長が30μmと短いので、
歯幅が0.05〜0.4mm、ピツチ円径が0.4〜5mm、モ
ジユールが0.05〜0.5mmである寸法形状を有する
超小型の歯車の成形に適し、高強度を維持しなが
ら寸法精度の優れた小型歯車の製造が可能とな
り、更に、2つの強化材の他方に用いているカー
ボン繊維は、平均繊維長が該チタン酸カリウム単
結晶繊維の平均繊維長よりも長いものを用いたの
で、より高強度の小型歯車の提供を可能にし、こ
の2つの相乗効果により、金属製歯車に匹敵する
高強度で寸法精度の優れた小型精密計測器用歯車
をプラスチツク製で実現したものである。実施例
で腕時計用歯車についてのみ述べたが、カメラ、
VTR、マイクロプリンターなど他の小型精密計
測器用歯車のプラスチツク化に対しても本発明の
寄与するところは大きいと考える。
The present invention relates to gears manufactured by injection molding using composite plastics, and in particular to manufacturing gears for small precision measuring instruments using high-strength composite plastics reinforced with two types of reinforcing fibers: fine reinforcing fibers and relatively large-sized reinforcing fibers. Regarding the method. Recently, plastics have been widely used as industrial materials for functional parts, structural parts, etc. that are subject to loads. Plastics used in such areas are generally referred to as engineering plastics, and are distinguished from plastics used in relatively light-duty applications, so-called general-purpose plastics. However, even engineering plastics alone are far inferior to metal materials in terms of mechanical strength, thermal properties, dimensional accuracy, etc., and for this reason, they are only used for parts with relatively large dimensions and small loads. Ta.
Therefore, in order to improve the properties of engineering plastics, composite technology using reinforcing materials, especially short fibers, was investigated. Due to these advances in materials, plastics have a greater degree of freedom in product design, can be easily molded, almost no post-finishing is required, and can be assembled into one piece, while still taking advantage of the advantages of plastics. Composite plastics are being used increasingly in the field of high-load precision mechanical parts, which have been difficult to use. Therefore, the object of the present invention is to manufacture a gear for a small precision measuring instrument that enables a gear for a small precision measuring instrument to be used in, for example, a portable watch, etc., which has high dimensional accuracy, strength suitable for occasions, and excellent long-term durability. It's about providing a method. The manufacturing method of the gear for small precision measuring instruments of the present invention has a tooth thickness of 0.1 to 1.0 mm, a tooth width of 0.05 to 0.4 mm, and a pitch circle diameter of 0.4 to 0.4 mm.
5mm, module 0.05~0.5mm, gear shaft diameter 0.1~0.5
mm gear is made of a composite plastic material made of a thermoplastic resin with two types of reinforcing fibers: potassium titanate single crystal fibers and carbon fibers whose average fiber length is longer than the average fiber length of the potassium titanate single crystal fibers. It is characterized by being molded using an injection molding method. The present invention will be explained below using a wristwatch gear as an example. Watch gears have dimensional accuracy, mechanical strength,
One of the most demanding fields in terms of long-term durability
It is one. Regarding dimensional accuracy, the tolerance is 1/100mm
At least the base is required, and the gear dimension is the tooth thickness.
0.1mm to 1.0mm, tooth width 0.05mm to 0.4mm, pitch circle diameter 0.4
mm~5mm, module 0.05~0.5, gear shaft diameter 0.1mm
Very small at ~0.5mm. Processing such minute gears using plastic injection molding has become possible through the development of advanced injection molding technology and ultra-precision mold processing technology. On the other hand, in terms of mechanical strength, wristwatch gears are driven with low torque, but because their absolute dimensions are small, the stress per unit area is extremely large. In particular, the load when adjusting the needle is large, and the bending strength
15Kg/mm3 or more is required. The present inventor used the third wheel having the shape shown in FIG. 1 as the above-mentioned wristwatch gear to measure the moldability and strength of various composite plastics. As a result, it was found that the size of the reinforcing fibers greatly influences the formability and strength reinforcement efficiency of small precision gears such as gears for wristwatches. Based on this, the present inventor had previously applied for a patent to discover the optimal size of reinforcing fibers when applying composite plastic to small precision gears, but upon further progressing this research, By using a combination of two types of reinforcing fibers with different fiber sizes, the present invention was completed by further improving molding accuracy and strength, and improving long-term wear resistance. To explain the present invention in detail, the size of the third wheel in Fig. 1 used for material evaluation is that the thickness of the gear 2 is 0.12 mm, the pitch circle diameter is 3.5 mm, the module is 0.058,
Thickness of pinion 3 0.4mm, pitch circle diameter 0.50mm, module 0.63, shaft diameter of gear shafts 1 and 4 0.2mm, shaft length
It is 2.5mm. Gate 5 when molding this third wheel by injection molding is a pinpoint gate with a diameter of 0.25 mm. After forming a third wheel of such a size from various composite plastics, the strength was measured using the method shown in FIG. That is, the destructive bending strength of the teeth 6 of the pinion 3 of the third wheel is determined by fixing the pinion 3, rotating the metal gear 7, and measuring the rotational torque when the tooth 6 of the pinion 3 breaks using a U-gauge. It was calculated by measuring. In addition to the bending strength of the teeth, the bending strength of the gear shafts 1 and 4 shown in FIG. 1 was tested using the method shown in FIG. 3. That is, the third wheel was installed on the fixed base 8, and the load P was applied to the third wheel while increasing at a constant speed, and the bending strength was determined from the load P when the gear shaft 1 or 4 broke. The relationship between the type of reinforcing fiber and the relative fracture bending strength of the teeth 6 is shown in FIG. The materials used here are polyacetal (copolymer type) as plastic, potassium titanate single crystal fiber A with an average fiber diameter of 0.2 μm and average fiber length of 30 μm as reinforcing fibers, and carbon fiber B with an average fiber diameter of 8 μm and average fiber length of 400 μm. and average fiber diameter 10μm, average fiber length
Each contains 30wt% of 400μm glass fiber C. As shown in FIG. 4, when looking at the relative strength to the bending strength determined by the ASTM method, the bending strength decreases as the fiber size increases. On the other hand, FIG. 5 shows the relative bending strength of gears 1 and 4 using similar materials. The bending fractures in this test were all near the roots of gear shaft 1 and gear 2. As shown in FIG. 5, with respect to gear shafts, there is not as much difference in strength depending on fiber size as there is with teeth, and carbon fibers have the highest efficiency. According to the bending strength measurement method, the direction of the bending stress on the teeth 6 is parallel to the orientation direction of the reinforcing fibers, and the direction of the bending stress on the gear shafts 1 and 4 appears to be perpendicular to the fiber orientation direction. From this, the results shown in FIGS. 4 and 5 indicate that the potassium titanate single crystal fibers are relatively uniformly dispersed and are not strongly oriented. This is a desirable characteristic for molding small precision parts. Further, although carbon fibers have insufficient dispersibility into small parts such as the teeth 6, they have an excellent reinforcing effect on gear shafts. On the other hand, glass fiber has poor filling and dispersion properties due to its large fiber size, making it unsuitable for small precision parts. Carbon fiber also shows the best properties in terms of wear resistance and lubricity.
Suitable for sliding parts such as gear shafts. From the above results, the present inventor has come to the conclusion that the combined use of potassium titanate fibers and carbon fibers is appropriate as reinforcing fibers for composite plastics for small precision gears. In addition to polyacetal, the plastics used include nylon 6, 6, nylon 6, 12, nylon metaxylene diamine 6, nylon 11, and nylon.
12 Engineering plastics such as polyamide, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, modified polyphenylene oxide polyarylate, polysulfon, polyether sulfon, polyphenylene sulfide, polyoxybenzylene, etc.
It can be used singly or as a mixture of general-purpose plastics such as polyethylene, polypropylene, polyvinyl chloride, polystyrene, ABS, and acrylic resin. EXAMPLES The present invention will be explained in detail with reference to Examples below. Examples 1 to 5, Comparative Examples 1 to 5 The third wheel, which is a wristwatch gear shown in FIG. 1, was molded from various composite plastics, and its moldability and strength were measured. At the same time, a test piece for bending strength test specified in ASTM D790-66 was molded and the strength was measured. Wt% of reinforcing agent of plastic material, potassium titanate single crystal fiber, carbon fiber and glass fiber of each test piece of Examples 1 to 5 and Comparative Examples 1 to 5 and tooth bending strength of each example and each comparative example, The first measurement result of gear shaft bending strength and ASTM bending strength
Shown in the table. In Examples 1 and 5, each of which contains potassium titanate single crystal fiber and carbon fiber as reinforcing agents at 20 wt% or more, each of the teeth, gear shaft, and ASTM bending strength is 20.
Kg/m 3 or more, ensuring excellent mechanical strength. Furthermore, Comparative Examples 1 to 3, in which the reinforcing agent is either potassium titanate single crystal fiber or carbon fiber, are inferior in either of the bending strengths, and Comparative Example 4, in which glass fiber is used as the reinforcing agent, No. 5 has poor filling properties and dispersibility during injection molding and cannot be molded. As described above, the method for manufacturing a gear for a small precision measuring instrument according to the present invention has a tooth thickness of 0.1 to 1.0 mm, a tooth width of 0.05 to 0.4 mm,
Pitch circle diameter 0.4~5mm, module 0.05~0.5mm,
A gear with a gear shaft diameter of 0.1 to 0.5 mm is made of thermoplastic resin with two types of reinforcing fibers: potassium titanate single crystal fiber and carbon fiber whose average fiber length is longer than the average fiber length of the potassium titanate single crystal fiber. By injection-molding a composite plastic material with added carbon dioxide, it has become possible to manufacture gears for small precision measuring instruments made of plastic with high strength and excellent dimensional accuracy comparable to metal gears. That is, the method for manufacturing a small gear of the present invention includes 2
The potassium titanate single crystal fiber used as one of the two reinforcing materials has a short average fiber length of 30 μm, so
Small gears with excellent dimensional accuracy while maintaining high strength, suitable for forming ultra-small gears with face widths of 0.05 to 0.4 mm, pitch diameters of 0.4 to 5 mm, and modules of 0.05 to 0.5 mm. Furthermore, since the carbon fiber used for the other of the two reinforcing materials had a longer average fiber length than the average fiber length of the potassium titanate single crystal fiber, it was possible to produce a carbon fiber with higher strength. This makes it possible to provide small gears, and the synergistic effect of these two results in a small precision measuring instrument gear made of plastic that has high strength and excellent dimensional accuracy comparable to metal gears. Although only the gears for watches were described in the examples, cameras,
We believe that the present invention will also make a significant contribution to the use of plastic gears for other small precision measuring instruments such as VTRs and micro printers.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は腕時計用歯車である三番車の平面図で
1,4は歯車軸、2は歯車、3はカナ、5はピン
ポイントゲートである。第2図は三番車のカナ3
の一部の拡大図と、それにかみ合う金属製歯車7
の一部の拡大図である。6はカナ3の歯を示す。
第3図は、三番車の歯車軸1,4の曲げ強度測定
を示す図で、8は固定台でPは連続的に変化する
荷重である。第4図は、強化用繊維の種類と成形
後の三番車のカナ3の歯6の相対破壊曲げ強度の
関係を示す。Aはチタン酸カリウム繊維、Bはカ
ーボン繊維、Cはガラス繊維である。第5図は、
強化用繊維の種類と成形後の三番車の歯車軸1,
4の相対破壊曲げ強度の関係を示す。
FIG. 1 is a plan view of the third wheel, which is a gear for a wristwatch, and 1 and 4 are gear shafts, 2 is a gear, 3 is a pinion, and 5 is a pinpoint gate. Figure 2 shows the third wheel in kana 3.
Enlarged view of a part of and the metal gear 7 that meshes with it
It is an enlarged view of a part of. 6 indicates the tooth of Kana 3.
FIG. 3 is a diagram showing measurement of the bending strength of the gear shafts 1 and 4 of the third wheel, where 8 is a fixed base and P is a continuously changing load. FIG. 4 shows the relationship between the type of reinforcing fiber and the relative fracture bending strength of the tooth 6 of the third wheel pinion 3 after molding. A is potassium titanate fiber, B is carbon fiber, and C is glass fiber. Figure 5 shows
Type of reinforcing fiber and third wheel gear shaft 1 after molding
The relationship between the relative fracture bending strength of No. 4 is shown.

Claims (1)

【特許請求の範囲】[Claims] 1 歯厚0.1〜1.0mm、歯幅0.05〜0.4mm、ピツチ円
径0.4〜5mm、モジユール0.05〜0.5mm、歯車軸径
0.1〜0.5mmの歯車を、熱可塑性樹脂にチタン酸カ
リウム単結晶繊維と、平均繊維長が該チタン酸カ
リウム単結晶繊維の平均繊維長よりも長いカーボ
ン繊維との2種類の強化繊維を添加した複合プラ
スチツク材料により射出成形法で成形したことを
特徴とする小型精密計測器用歯車の製造方法。
1 Tooth thickness 0.1~1.0mm, tooth width 0.05~0.4mm, pitch circle diameter 0.4~5mm, module 0.05~0.5mm, gear shaft diameter
A gear of 0.1 to 0.5 mm was prepared by adding two types of reinforcing fibers to a thermoplastic resin: potassium titanate single crystal fibers and carbon fibers whose average fiber length was longer than the average fiber length of the potassium titanate single crystal fibers. A method for manufacturing a gear for a small precision measuring instrument, characterized in that the gear is molded from a composite plastic material using an injection molding method.
JP18347781A 1981-11-16 1981-11-16 Gear for compact precision measuring instrument Granted JPS5884258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18347781A JPS5884258A (en) 1981-11-16 1981-11-16 Gear for compact precision measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18347781A JPS5884258A (en) 1981-11-16 1981-11-16 Gear for compact precision measuring instrument

Publications (2)

Publication Number Publication Date
JPS5884258A JPS5884258A (en) 1983-05-20
JPH0343503B2 true JPH0343503B2 (en) 1991-07-02

Family

ID=16136480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18347781A Granted JPS5884258A (en) 1981-11-16 1981-11-16 Gear for compact precision measuring instrument

Country Status (1)

Country Link
JP (1) JPS5884258A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182842A (en) * 1983-04-01 1984-10-17 Sumitomo Chem Co Ltd Reinforced polyether ketone composition
JPS62852U (en) * 1985-06-20 1987-01-07
JPS62184272A (en) * 1986-02-10 1987-08-12 Polyplastics Co Rotary parts
JPH0720630Y2 (en) * 1986-04-03 1995-05-15 カシオ計算機株式会社 Wheel support structure for pointer-type wristwatch
JPH0645278Y2 (en) * 1986-11-19 1994-11-16 カシオ計算機株式会社 Synthetic resin fourth wheel of pointer type wristwatch
JP2500571B2 (en) * 1992-07-15 1996-05-29 カシオ計算機株式会社 Synthetic resin fourth wheel of pointer type wristwatch
JPH0823388B2 (en) * 1993-07-21 1996-03-06 カシオ計算機株式会社 Synthetic resin watch gear
JP2759109B2 (en) * 1995-06-05 1998-05-28 カシオ計算機株式会社 The second wheel for watches made of synthetic resin
CN1266225C (en) 2001-11-02 2006-07-26 北川工业株式会社 Slide part and precision part, and timepiece and electronic device using them
CH696712A5 (en) * 2001-12-21 2007-10-15 Kitagawa Ind Co Ltd Watch with plastic substrate and train wheel apparatus.
US7170827B2 (en) 2001-12-21 2007-01-30 Kitagawa Industries Co., Ltd Timepiece, having bearing portion formed of resin and wheel train

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787860U (en) * 1980-11-20 1982-05-31

Also Published As

Publication number Publication date
JPS5884258A (en) 1983-05-20

Similar Documents

Publication Publication Date Title
JPH0343503B2 (en)
Galiotis et al. The study of model polydiacetylene/epoxy composites: Part 1 The axial strain in the fibre
JPH0357347B2 (en)
JPH078541B2 (en) Pipe-like structure
JPS59135385A (en) Wheel slide mechanism of dial display type clock
JP2603862B2 (en) Tooth wheel
Daska Liquid-crystal Polymers: How They Process and Why
JPS6197356A (en) Resin composition
JPS61254662A (en) Resin composition
JPS6191254A (en) Wrist watch case
JPS62184272A (en) Rotary parts
JP2008189891A (en) Polyacetal resin composite material, flat cam made from polyacetal resin composite material, and method for producing flat cam
JPS564434A (en) Manufacturing method of reinforced film tube
JPS61254661A (en) Surface part composition for clock
JPH03129147A (en) Transmission belt of thermoplastic elastomer
JPH10220560A (en) Gear
JPH0230829B2 (en)
GREGR et al. Adhesions in carbon compositions
JP2003321555A (en) Long fiber-reinforced resin molded article
JPS63288715A (en) Molding material of plastic
JP2500571B2 (en) Synthetic resin fourth wheel of pointer type wristwatch
JPH01283197A (en) Pen point made of fiber
JPS62190256A (en) Magnetic plastic composition
JP5406173B2 (en) Method for producing thermoplastic resin composition
JPS6229449B2 (en)