JPH0357347B2 - - Google Patents

Info

Publication number
JPH0357347B2
JPH0357347B2 JP56174093A JP17409381A JPH0357347B2 JP H0357347 B2 JPH0357347 B2 JP H0357347B2 JP 56174093 A JP56174093 A JP 56174093A JP 17409381 A JP17409381 A JP 17409381A JP H0357347 B2 JPH0357347 B2 JP H0357347B2
Authority
JP
Japan
Prior art keywords
gear
fiber
diameter
gears
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56174093A
Other languages
Japanese (ja)
Other versions
JPS5877964A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17409381A priority Critical patent/JPS5877964A/en
Publication of JPS5877964A publication Critical patent/JPS5877964A/en
Publication of JPH0357347B2 publication Critical patent/JPH0357347B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Gears, Cams (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、複合高分子材料を用いて射出成形加
工からなる歯車に係わり、特に極微細繊維により
強化された高強度複合高分子材料を用いた小型精
密計測器用歯車に関する。 本発明の目的は、高寸法精度が要求される小型
精密歯車、とりわけ携帯用等の時計用歯車を、高
強度複合高分子材料の射出成形加工により低コス
トに提供することにある。 最近、高分子材料は工業材料として負荷のかか
る機能部品、構造部品等に多く用いられてきてい
る。このような方面に用いられる高分子材料は一
般にエンジニアリングプラスチツクと称され、比
較的負荷のかからない用途に使用されている高分
子材料いわゆる汎用プラスチツクとは区別され
る。しかしエンジニアリングプラスチツクといえ
ども単体では機械的強度、熱的特性、寸法精度な
どにおいて金属材料に比べてはるかに劣り、その
ため比較的大きな寸法を有する部品でしかも負荷
の小さい部品に適用されているにすぎなかつた。
そこで、エンジニアリングプラスチツクの特性を
向上させる目的で、補強材による複合化技術が検
討された。この様な材料サイドでの進歩により、
高分子材料が有する製品設計の自由度が大きい、
容易に成形加工が出来る、後仕上げ加工がほとん
ど不要である、組立部品の一体化ができるなどの
特徴を生かしながら、従来使用が困難であつた高
負荷精密機構部品分野に複合高分子材料が応用拡
大されつつある。 この様な中で、本発明者は複合高分子材料を小
型精密計測器用歯車、とりわけ携帯用等の時計用
歯車への応用検討を行つてきた。 本発明の小型精密計測器用歯車は、繊維径0.2μ
〜2μ、繊維長30μ〜100μである強化繊維が20〜30
重量%充填された複合高分子材料で射出成形され
た、歯厚0.1mm〜1.0mm、歯巾0.05mm〜0.4mm、ピツ
チ内径0.4mm〜5mm、モジユール0.05〜0.5、歯車
軸径0.1mm〜0.5mmであることを特徴とする。 以下腕時計用歯車を例に上げ本発明を説明す
る。腕時計用歯車は寸法精度面、機械的強度面、
長期耐久性において最も要求の厳しい分野の1つ
である。寸法精度については、公差は1/100mm台
が少なくとも要求され、しかも歯車寸法は歯厚
0.1mm〜1.0mm、歯巾0.05mm〜0.4mm、ピツチ円径0.4
mm〜5mm、モジユール0.05〜0.5、歯車軸径0.1mm
〜0.5mmで非常に小さい。この様な極微少歯車を
高分子材料を用いて射出成形により加工すること
は、高度な射出成形技術と超精密金型加工技術の
開発によつて可能なものとなつている。一方、機
械的強度面についてみた場合、腕時計用歯車は低
トルクで駆動するが、その絶対寸法が小さいこと
から単位面積に受ける応力は非常に大きいものと
なる。とりわけ、針修正時における負荷は大き
く、曲げ強度15Kg/mm2以上か必要となり、これに
耐え得る複合高分子材料を見出したものである。 すなわち本発明者は上記した腕時計用歯車とし
て第1図に示す形状の三番車を用い、各種複合高
分子材料の成形性と強度測定を行つた。その結
果、強化用繊維のサイズが腕時計用歯車のような
小型精密歯車の成形性及び強度の強化効率を大き
く左右することが判明した。このことから、本発
明者は複合高分子材料を小型精密歯車に適用する
際に、最適な強化用繊維のサイズを見い出すにい
たつた。本発明を詳述すれば、材料評価に用いた
第1図の三番車の大きさは、歯車2の厚み0.12
mm、ピツチ円径3.5mm、モジユール0.058、カナ3
の厚み0.4mm、ピツチ円径0.50mm、モジユール
0.063、歯車軸1.4の軸径0.2mm、軸長2.5mmである。
この三番車を射出成形で成形する際のゲート5は
ピンポイントゲートで0.2mmφである。この様な
サイズの三番車を各種複合高分子材料で成形した
後の強度測定は、第2図に示す方法で行つた。す
なわち、三番車のカナ3の歯6の破壊曲げ強度
を、歯車3を固定しておき、金属製歯車7を回転
していきカナ3の歯6が破壊したときの回転トル
クから換算して求めた。強化用繊維径と歯6の相
対破壊曲げ強度の関係を第3図に示す。ここで使
用した材料は高分子材料としてポリアセタール
(コポリマータイプ)、強化繊維としてグラスフア
イバーで繊維径平均1μ、平均2μ、平均5μ、平均
10μ、平均15μ、アスペクト比は各々約50であり、
シランカツプリング処理したものである。第3図
に示される様に、繊維径10μ以上では成形は不可
能である。又、繊維径5μでは繊維の成形品内部
での分散性が不均一であり、歯6には充分に分散
されてなく、結果として余り強度は強くない。一
方、繊維径2μ以下では、均一分散がなされ0.2μ以
上では繊維の強化が不充分である。この範囲では
歯6の歯先にまで充分な繊維の充填がされてお
り、強度も向上している。繊維径10μ以上で成形
不可の原因はピンポイントゲート部で繊維の詰ま
りによるもので、小型精密歯車を成形する場合に
ゲートサイズを大きくとれないことと考え合わせ
れば、繊維長は100μ以下が良い。また繊維長が
30μ未満では強度を充分出すことができない。 以上の結果から、本発明者は小型精密歯車用の
複合高分子材料として強化繊維のサイズが繊維径
0.2μ〜2μ、繊維長30μ〜100μであることが適切で
あるとの結論を得るに至つた。適用される材料と
しては高分子材料としてポリアセタール以外に、
ポリアミド、ポリカーボネート、ポリエチレンテ
レフタレート、ポリブチレンテレフタレート、変
性ポリフエニレンオキサイド、ポリアリレート、
ポリサルフオン、ポリエーテルサルフオン、ポリ
フエニレンサルフアイド、ポリオキシベンジレン
などのエンジニアリングプラスチツク、ポリエチ
レン、ポリプロピレン、ポリ塩化ビニル、ポリス
チレン、ABS、アクリル樹脂などの汎用プラス
チツクなどの単体もしくは混合体があり、強化用
繊維としては、グラスフアイバーの他、カーボン
フアイバー、BN繊維、SiC繊維、アルミナ繊維、
チタン酸カリウム繊維、ポリアミド繊維、ポリア
セタール繊維などが使用可能である。 また、強化繊維が20重量%未満に充填された複
合高分子材料では、歯車の強度が充分得られず、
30重量%をこえると射出成形によつて、精密な部
品を形成させることが困難となる。 以下に実施例を述べさらに本発明を詳述する。 実施例 1〜4 第1図に示す腕時計用歯車である三番車を各種
複合高分子材料に成形し、成形性と強度を測定し
た。また同時にASTM D790−66に規定されて
いる曲げ強度試験用の試験片を成形し強度を測定
した。
The present invention relates to a gear made by injection molding using a composite polymer material, and more particularly to a gear for a small precision measuring instrument using a high-strength composite polymer material reinforced with ultrafine fibers. An object of the present invention is to provide a small precision gear that requires high dimensional accuracy, especially a gear for a watch such as a portable watch, at a low cost by injection molding of a high-strength composite polymer material. Recently, polymer materials have been widely used as industrial materials for functional parts, structural parts, etc. that are subject to loads. The polymeric materials used in such areas are generally referred to as engineering plastics, and are distinguished from the polymeric materials used in relatively light-duty applications, so-called general-purpose plastics. However, even engineering plastics alone are far inferior to metal materials in terms of mechanical strength, thermal properties, dimensional accuracy, etc., and for this reason, they are only used for parts with relatively large dimensions and small loads. Nakatsuta.
Therefore, in order to improve the properties of engineering plastics, composite technology using reinforcing materials was investigated. With such advances in materials,
Polymer materials offer a high degree of freedom in product design.
Composite polymer materials are being applied to the field of high-load precision mechanical parts, which have traditionally been difficult to use, while taking advantage of features such as easy molding, almost no post-finishing required, and the ability to integrate assembled parts. It is being expanded. Under these circumstances, the present inventor has been studying the application of composite polymer materials to gears for small precision measuring instruments, particularly gears for watches such as portable ones. The gear for small precision measuring instruments of the present invention has a fiber diameter of 0.2μ.
20~30 reinforcing fibers with ~2μ and fiber length 30μ~100μ
Injection molded with weight% filled composite polymer material, tooth thickness 0.1mm~1.0mm, tooth width 0.05mm~0.4mm, pitch inner diameter 0.4mm~5mm, module 0.05~0.5, gear shaft diameter 0.1mm~0.5 mm. The present invention will be explained below using a wristwatch gear as an example. Watch gears have dimensional accuracy, mechanical strength,
It is one of the most demanding fields in terms of long-term durability. Regarding dimensional accuracy, a tolerance of at least 1/100 mm is required, and the gear dimensions are determined by the tooth thickness.
0.1mm to 1.0mm, tooth width 0.05mm to 0.4mm, pitch circle diameter 0.4
mm~5mm, module 0.05~0.5, gear shaft diameter 0.1mm
Very small at ~0.5mm. Processing such microscopic gears by injection molding using polymeric materials has become possible due to the development of advanced injection molding technology and ultra-precision mold processing technology. On the other hand, in terms of mechanical strength, wristwatch gears are driven with low torque, but because their absolute dimensions are small, the stress per unit area is extremely large. In particular, the load during needle correction is large, requiring a bending strength of 15 kg/mm 2 or more, and we have found a composite polymer material that can withstand this. That is, the present inventor measured the formability and strength of various composite polymer materials using the third wheel having the shape shown in FIG. 1 as the above-mentioned wristwatch gear. As a result, it was found that the size of the reinforcing fibers greatly influences the formability and strength reinforcement efficiency of small precision gears such as gears for wristwatches. Based on this, the present inventors have found the optimal size of reinforcing fibers when applying the composite polymer material to small precision gears. To explain the present invention in detail, the size of the third wheel in Fig. 1 used for material evaluation is 0.12
mm, pitch circle diameter 3.5mm, module 0.058, kana 3
Thickness 0.4mm, pitch circle diameter 0.50mm, module
0.063, the shaft diameter of the gear shaft 1.4 is 0.2 mm, and the shaft length is 2.5 mm.
The gate 5 when molding this third wheel by injection molding is a pinpoint gate with a diameter of 0.2 mm. After forming a third wheel of such a size from various composite polymer materials, the strength was measured by the method shown in FIG. That is, the destructive bending strength of the teeth 6 of the pinion 3 of the third wheel is calculated from the rotational torque when the teeth 6 of the pinion 3 break when the metal gear 7 is rotated with the gear 3 fixed. I asked for it. The relationship between the reinforcing fiber diameter and the relative fracture bending strength of the teeth 6 is shown in FIG. The materials used here are polyacetal (copolymer type) as the polymer material, and glass fiber as the reinforcing fiber, with fiber diameters on average of 1 μ, average of 2 μ, average of 5 μ, and
10μ, average 15μ, aspect ratio is about 50 each,
It is treated with silane coupling. As shown in FIG. 3, it is impossible to mold fibers with a diameter of 10 μm or more. Further, when the fiber diameter is 5 μm, the dispersibility of the fibers inside the molded product is non-uniform, and the fibers are not sufficiently dispersed in the teeth 6, and as a result, the strength is not very strong. On the other hand, if the fiber diameter is 2μ or less, uniform dispersion is achieved, and if it is 0.2μ or more, the fiber reinforcement is insufficient. In this range, the tips of the teeth 6 are sufficiently filled with fibers, and the strength is also improved. The reason why fibers cannot be formed with a diameter of 10μ or more is due to the fibers clogging at the pinpoint gate.If you consider that the gate size cannot be made large when molding small precision gears, the fiber length should be 100μ or less. Also, the fiber length
If it is less than 30μ, sufficient strength cannot be achieved. Based on the above results, the inventor determined that the size of the reinforcing fibers should be adjusted to the fiber diameter as a composite polymer material for small precision gears.
It was concluded that a fiber length of 0.2μ to 2μ and a fiber length of 30μ to 100μ are appropriate. In addition to polyacetal as a polymer material, applicable materials include
Polyamide, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, modified polyphenylene oxide, polyarylate,
Engineering plastics such as polysulfon, polyethersulfon, polyphenylene sulfide, and polyoxybenzylene, general-purpose plastics such as polyethylene, polypropylene, polyvinyl chloride, polystyrene, ABS, and acrylic resin can be used singly or in combination, and are reinforced. In addition to glass fiber, the fibers used include carbon fiber, BN fiber, SiC fiber, alumina fiber,
Potassium titanate fibers, polyamide fibers, polyacetal fibers, etc. can be used. In addition, with composite polymer materials filled with less than 20% by weight of reinforcing fibers, sufficient strength of gears cannot be obtained.
If it exceeds 30% by weight, it becomes difficult to form precise parts by injection molding. EXAMPLES The present invention will be explained in detail with reference to Examples below. Examples 1 to 4 The third wheel, which is a wristwatch gear shown in FIG. 1, was molded from various composite polymer materials, and its moldability and strength were measured. At the same time, a test piece for bending strength test specified in ASTM D790-66 was formed and the strength was measured.

【表】 以上の様に、本発明によれば、 強化用繊維サイズを限定した寸法範囲(繊維径
0.2μ〜2μ、繊維長30μ〜100μ)の短繊維を20〜30
重量%充填された複合高分子材料を用いることに
より、請求範囲に示すような微細歯車等の小型精
密計測器用部品の射出成形が可能となり、また射
出成形の加工性をも低下させることが殆どなく、
前記歯車等の精密部品の歯先などの微細部分の補
強効果を最大限得ることができる。 実施例では腕時計用歯車に限定して述べたが、
他の小型精密計測器用歯車のプラスチツク化に対
しても本発明の寄与するところは大きいと考え
る。
[Table] As described above, according to the present invention, the dimensional range (fiber diameter
20 to 30 short fibers (0.2μ to 2μ, fiber length 30μ to 100μ)
By using a composite polymer material filled with % by weight, it is possible to injection mold parts for small precision measuring instruments such as minute gears as shown in the claims, and there is almost no deterioration in the processability of injection molding. ,
It is possible to maximize the reinforcing effect of minute parts such as tooth tips of precision parts such as gears. In the example, the description was limited to gears for wristwatches, but
We believe that the present invention will greatly contribute to the use of plastic gears for other small precision measuring instruments.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は腕時計用歯車である三番車の平面図で
1,4は歯車軸、2は歯車、1,3は歯車、2,
5はピンポイントゲートである。第2図は、三番
車のカナ3の一部の拡大図と、それにかみ合う金
属製歯車7の一部の拡大図である。6はカナ3の
歯を示す。第3図は、強化用繊維径と成形後の三
番車のカナ3の歯6の相対破壊曲げ強度の関係を
示すグラフである。
Figure 1 is a plan view of the third wheel, which is a wristwatch gear. 1 and 4 are gear shafts, 2 is a gear, 1 and 3 are gears, 2,
5 is a pinpoint gate. FIG. 2 is an enlarged view of a part of the pinion 3 of the third wheel and a part of the metal gear 7 that meshes with it. 6 indicates the tooth of Kana 3. FIG. 3 is a graph showing the relationship between the reinforcing fiber diameter and the relative fracture bending strength of the tooth 6 of the third wheel pinion 3 after molding.

Claims (1)

【特許請求の範囲】[Claims] 1 繊維径0.2μ〜2μ、繊維長30μ〜100μである強
化繊維が20〜30重量%充填された複合高分子材料
で射出成形された、歯厚0.1mm〜1.0mm、歯巾0.05
mm〜0.4mm、ピツチ内径0.4mm〜5mm、モジユール
0.05〜0.5、歯車軸径0.1mm〜0.5mmであることを特
徴とする小型精密計測器用歯車。
1 Injection molded with a composite polymer material filled with 20 to 30% by weight of reinforcing fibers with a fiber diameter of 0.2μ to 2μ and a fiber length of 30μ to 100μ, tooth thickness 0.1mm to 1.0mm, tooth width 0.05
mm~0.4mm, pitch inner diameter 0.4mm~5mm, module
A gear for small precision measuring instruments characterized by a gear shaft diameter of 0.05 to 0.5 mm and a gear shaft diameter of 0.1 mm to 0.5 mm.
JP17409381A 1981-10-30 1981-10-30 Gear for small precision measuring apparatus Granted JPS5877964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17409381A JPS5877964A (en) 1981-10-30 1981-10-30 Gear for small precision measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17409381A JPS5877964A (en) 1981-10-30 1981-10-30 Gear for small precision measuring apparatus

Publications (2)

Publication Number Publication Date
JPS5877964A JPS5877964A (en) 1983-05-11
JPH0357347B2 true JPH0357347B2 (en) 1991-08-30

Family

ID=15972525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17409381A Granted JPS5877964A (en) 1981-10-30 1981-10-30 Gear for small precision measuring apparatus

Country Status (1)

Country Link
JP (1) JPS5877964A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184456U (en) * 1984-05-18 1985-12-06 三菱電機株式会社 gear
JP2759109B2 (en) * 1995-06-05 1998-05-28 カシオ計算機株式会社 The second wheel for watches made of synthetic resin
WO2004083015A1 (en) * 2003-03-19 2004-09-30 Nsk Ltd. Electric power steering device and resin gear used for the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332255A (en) * 1976-09-08 1978-03-27 Hitachi Ltd Gears made of fiber strengthening complex material
JPS5333271A (en) * 1976-09-08 1978-03-29 Hitachi Ltd Method of manufacture of gear consisted of resin compound reinforced with fibfr

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332255A (en) * 1976-09-08 1978-03-27 Hitachi Ltd Gears made of fiber strengthening complex material
JPS5333271A (en) * 1976-09-08 1978-03-29 Hitachi Ltd Method of manufacture of gear consisted of resin compound reinforced with fibfr

Also Published As

Publication number Publication date
JPS5877964A (en) 1983-05-11

Similar Documents

Publication Publication Date Title
JPH0343503B2 (en)
WO2007037164A1 (en) Synthetic resin needles and synthetic resin composition for needles
JPH0357347B2 (en)
JP2004279083A (en) Bending test method of frp
Radzuan et al. Layup sequence and interfacial bonding of additively manufactured polymeric composite: A brief review
JPS642413B2 (en)
Zhou et al. Fatigue performance of an injection molded talc‐filled polypropylene
JP2013170295A (en) Method for producing gear, the gear, reduction gear, and robot
JP3013465B2 (en) Synthetic resin products with bearings
JPS6197356A (en) Resin composition
Daska Liquid-crystal Polymers: How They Process and Why
JPS62184272A (en) Rotary parts
EP0411000B1 (en) A method for manufacturing screw rotors
JPS642412B2 (en)
Zhang et al. Cumulative creep damage for polycarbonate and polysulfone
JPH10220560A (en) Gear
JPH02120028A (en) Gear
Peiter et al. The Tensile sigma-- epsilon Curve of Heat-Treated Steel Ck 45 and Its Mathematical Description
DE4036869A1 (en) Karman vortex counter having non-metallic bluff body with protective coating - pref. of plastics or ceramic and integrated vortex frequency detector
Conley et al. Liquid Crystal Polymers Versatility, Performance and Productivity
JPS61254661A (en) Surface part composition for clock
JP2003321555A (en) Long fiber-reinforced resin molded article
Sheridan et al. Plastic Gear Standards: A Balancing Act
GREGR et al. Adhesions in carbon compositions
Bjørnø Piezolectric Resonators and their Applications: By Jir̆i Zelenka, published by Elsevier Science Publishers, Amsterdam, 1986, 302 pp., Dfl. 220.00, ISB 0-444-99516-2.