JPH0342831A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0342831A
JPH0342831A JP17850289A JP17850289A JPH0342831A JP H0342831 A JPH0342831 A JP H0342831A JP 17850289 A JP17850289 A JP 17850289A JP 17850289 A JP17850289 A JP 17850289A JP H0342831 A JPH0342831 A JP H0342831A
Authority
JP
Japan
Prior art keywords
silicon
oxide film
silicon oxide
polycrystalline silicon
onto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17850289A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Hirakawa
一喜 平河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP17850289A priority Critical patent/JPH0342831A/en
Publication of JPH0342831A publication Critical patent/JPH0342831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To prevent the variation of a resistance value due to external applied voltage by forming a silicon insulating film layer having unpaired electrons formed through ion implantation onto high-resistance polycrystalline silicon shaped onto a semiconductor substrate and shaping a plasma silicon nitride film layer onto the silicon insulating film layer. CONSTITUTION:A silicon oxide film 102 is formed onto a silicon substrate 101, polycrystalline silicon is evaporated through a CVD method, phosphorus is implanted to desired positions, high-resistance polycrystalline silicon 103 and N-type polycrystalline silicon 104 are shaped respectively, a silicon oxide film containing phosphorus is deposited onto the silicon, 103, 104, and an inter-layer insulating film 105 is shaped, and annealed. A contact hole is formed, aluminum is deposited, and an aluminum wiring layer 106 is manufactured, and sintered. A silicon oxide film is deposited through the CVD method, argon ions are implanted, a silicon oxide film 107 and a silicon oxide film 108 having unpaired electrons are manufactured, and a nitride film 109 is shaped by using a plasma CVD method. Accordingly, even when a plasma silicon nitride film is laminated, the generation of the variation of the resistance value of the high-resistance polycrystalline silicon due to external applied voltage by hydrogen can be prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体装置の保護膜の構造に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to the structure of a protective film for a semiconductor device.

〔従来の技術] 従来の半導体装置の保護膜の構造は、シリコン酸化膜、
燐を含んだシリコン酸化膜、プラズマシリコン窒化膜、
あるいは、それ等の積層膜を有する構造であった。特に
、半導体装置の1li4湿性向上のため、プラズマシリ
コン窒化膜が用いられていた。
[Prior art] The structure of the protective film of a conventional semiconductor device is a silicon oxide film,
Silicon oxide film containing phosphorus, plasma silicon nitride film,
Alternatively, it was a structure having such laminated films. In particular, plasma silicon nitride films have been used to improve the 1li4 humidity of semiconductor devices.

[発明が解決しようとする課題] しかし、前述の従来技術では、IEDM  86の” 
1 、0 a m  CuO2PROC:ESS FO
RHIGHLY STABLETERA−OHM PO
LYSILICON LOAD IMb SRAM ”
に記載されているように、より高抵抗を得るために薄い
多結晶シリコンを用いると、プラズマシリコン窒化膜中
の水素が多結晶シリコンに入り、わずかな外部印加電圧
により、抵抗値が大きく変動するという問題点を有する
[Problem to be solved by the invention] However, in the above-mentioned prior art, the “IEDM 86”
1,0 am CuO2PROC:ESS FO
RHIGHLY STABLETERA-OHM PO
LYSILICON LOAD IMb SRAM”
As described in , when thin polycrystalline silicon is used to obtain higher resistance, hydrogen in the plasma silicon nitride film enters the polycrystalline silicon, causing the resistance value to fluctuate greatly with a small externally applied voltage. There is a problem.

そこで本発明はこのような問題点を解決するちので、そ
の目的とするところは、半導体装置の到湿性向上のため
プラズマシリコン窒化膜を用いても、高抵抗多結晶シリ
コンの抵抗値が外部印加電圧により、変動しない半導体
装置を提供するところにある。
Therefore, the present invention aims to solve these problems, and its purpose is that even if a plasma silicon nitride film is used to improve the wettability of semiconductor devices, the resistance value of high-resistance polycrystalline silicon will not change when applied externally. The purpose is to provide a semiconductor device that does not vary depending on voltage.

〔課題を解決するための手段1 本発明の半導体装置は、半導体基板上に形成された高抵
抗多結晶シリコン上に、イオン打ち込みにより生成され
た不対電子をちつシリコン絶縁膜層があり、その上にプ
ラズマシリコン窒化膜層があることを特徴とする。
[Means for Solving the Problems 1] The semiconductor device of the present invention has a silicon insulating film layer on high-resistance polycrystalline silicon formed on a semiconductor substrate, which removes unpaired electrons generated by ion implantation. It is characterized by having a plasma silicon nitride film layer thereon.

[作 用1 本発明の上記の構成によれば、不活性元素をシリコン酸
化膜にイオン打ち込みを行うことにより、5i−3i、
5i−0、及び5i−0−Hの結合を切り、前記シリコ
ン酸化膜中の不対電子密度を増加させることによって、
プラズマシリコン窒化膜生成時の水素、及びプラズマシ
リコン窒化膜中より拡散する水素を前記シリコン酸化膜
中に捕獲することができる。従って、プラズマシリコン
窒化膜を半導体装置の保護膜として用いても、外部印加
電圧による高抵抗多結晶シリコンの抵抗値の変動は生じ
ない。
[Function 1] According to the above configuration of the present invention, by ion implanting an inert element into the silicon oxide film, 5i-3i,
By cutting the bonds of 5i-0 and 5i-0-H and increasing the unpaired electron density in the silicon oxide film,
Hydrogen during the formation of the plasma silicon nitride film and hydrogen diffused from within the plasma silicon nitride film can be captured in the silicon oxide film. Therefore, even if a plasma silicon nitride film is used as a protective film of a semiconductor device, the resistance value of high-resistance polycrystalline silicon does not vary due to externally applied voltage.

[実 施 例] 第1図は、本発明の実施例における半導体装置の断面図
を示す、101は、シリコン基板、102はシリコン酸
化膜、103は高抵抗多結晶シリコン、104はN型多
結晶シリコン、105は層間絶縁膜、106はアルミニ
ウム配線層、】07はシリコン酸化膜、108は不対電
子を6つシリコン酸化膜、109はプラズマシリコン窒
化膜である0本実施例のように、高抵抗多結晶シリコン
を覆うように不対電子をもつシリコン酸化膜108があ
る為に、プラズマシリコン窒化膜109がらの水素は、
捕獲され、高抵抗多結晶シリコン103まで拡散しない
[Embodiment] FIG. 1 shows a cross-sectional view of a semiconductor device according to an embodiment of the present invention. 101 is a silicon substrate, 102 is a silicon oxide film, 103 is a high-resistance polycrystalline silicon, and 104 is an N-type polycrystalline silicon. 07 is a silicon oxide film, 108 is a silicon oxide film with six unpaired electrons, and 109 is a plasma silicon nitride film. Since there is a silicon oxide film 108 with unpaired electrons covering the resistor polycrystalline silicon, hydrogen from the plasma silicon nitride film 109 is
It is captured and does not diffuse to the high resistance polycrystalline silicon 103.

次に、本発明の製造方法について説明する。まず、シリ
コン基板l○】に、シリコン酸化膜102を形成した後
に、CVD法により多結晶シリコンを1000^蒸着し
、所望の箇所にイオン打ち込みにより、燐を4 X 1
0 ”cm−”打ち込み、高抵抗多結晶シリコン103
、N型多結晶シリコン104をそれぞれ作り、所望の形
状に加工したのち、その上に、CVD法により燐を含む
シリコン酸化膜を堆積し、層間絶縁膜105を形成した
後、拡散炉を用いてアニールを行い、不純物を活性化す
る0次に、所望の箇所に、コンタクトホールを形成した
後に、スパッター法によりアルミニウムを堆積し、所望
の形状に加工し、アルミニウム配線層106を作り、水
素雰囲気中で、シンターを行う0以上で半導体素子およ
び相互配線が作られる。最後に、保護膜として、まず、
CVD法によりシリコン酸化膜を4000人堆積した後
、アルゴンイオンを150Keyで、lXl0”cm−
”打ち込み、シリコン酸化膜107と不対電子をもつシ
リコン酸化膜108を作り、次に、プラズマCVD法を
用いて、プラズマシリコン窒化膜109を、5ooo^
形成する0以上の工程を経て、本発明の半導体装置が完
成する。上記実流例の方法によれば、イオン打ち込みに
よりシリコン酸化膜の上部の約0.2μmに、約5X1
0”cm−”の不活性ガスが存在し、不対電子も、同等
存在する。一般に、装置やガス流量などにもよるが、4
00℃前後で堆積されるプラズマシリコン窒化膜から、
通常約10 ”c m’−”の水素が拡散する。しかし
、イオン打ち込みにより生成された不対電子濃度が高い
ために、その水素の多くは捕獲される。
Next, the manufacturing method of the present invention will be explained. First, a silicon oxide film 102 is formed on a silicon substrate l○], then 1000^ of polycrystalline silicon is deposited by CVD method, and 4×1 phosphorus is deposited at desired locations by ion implantation.
0 "cm-" implant, high resistance polycrystalline silicon 103
, N-type polycrystalline silicon 104 is made and processed into a desired shape, and then a silicon oxide film containing phosphorus is deposited thereon by the CVD method, an interlayer insulating film 105 is formed, and then a diffusion furnace is used to form an interlayer insulating film 105. Annealing is performed to activate the impurities. Next, after forming contact holes at desired locations, aluminum is deposited by sputtering and processed into the desired shape to form an aluminum wiring layer 106, which is placed in a hydrogen atmosphere. Semiconductor elements and interconnections are created by sintering. Finally, as a protective film,
After depositing 4,000 silicon oxide films using the CVD method, argon ions were deposited with a key of 150 to lXl0"cm-
``By implantation, a silicon oxide film 107 and a silicon oxide film 108 having unpaired electrons are formed, and then a plasma silicon nitride film 109 is formed using a plasma CVD method.
The semiconductor device of the present invention is completed through zero or more forming steps. According to the method of the above-mentioned actual flow example, approximately 5×1
There is 0"cm-" of inert gas and an equal amount of unpaired electrons. In general, it depends on the equipment, gas flow rate, etc., but
From plasma silicon nitride film deposited at around 00℃,
Typically about 10 "cm'-" of hydrogen diffuses. However, due to the high concentration of unpaired electrons generated by ion implantation, much of the hydrogen is captured.

上記実施例では、アルミニウム配線上に、シリコン酸化
膜を用いたが、可動イオンによる汚染を防止するために
、燐を含んだシリコン酸化膜を用いても、同等の効果が
得られる。さらには、アルゴンイオンを打ち込んだが、
他の不活性元素、あるいは、耐湿性に影響を与えない砒
素や硼素を用いても同等の効果が得られる1本発明の趣
旨を逸脱しない範囲において、種々変更可能な事は言う
までもない。
In the above embodiment, a silicon oxide film is used on the aluminum wiring, but the same effect can be obtained by using a silicon oxide film containing phosphorus to prevent contamination by mobile ions. Furthermore, although argon ions were implanted,
The same effect can be obtained by using other inert elements or arsenic or boron which do not affect the moisture resistance.It goes without saying that various changes can be made without departing from the spirit of the present invention.

[発明の効果1 以上述べたように本発明によれば、保護膜としてイオン
打ち込みにより生成された不対電子をもつシリコン酸化
膜を用いることにより、プラズマシリコン窒化膜を積層
しても、水素による外部印加電圧による高抵抗多結晶シ
リコンの抵抗値の変動が生じないという効果を有する。
[Effect of the invention 1 As described above, according to the present invention, by using a silicon oxide film with unpaired electrons generated by ion implantation as a protective film, even if a plasma silicon nitride film is stacked, hydrogen-induced This has the effect that the resistance value of high-resistance polycrystalline silicon does not vary due to externally applied voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の半導体装置の一実施例を示す主要断
面図。 101  ・ 02 103 ・ l ○ 4 ・ 105  ・ 106 ・ 07 08 109  ・ シリコン基板 シリコン酸化膜 高抵抗多結晶シリコン N型多結晶シリコン 層間絶縁膜 アルミニウム配線層 シリコン酸化膜 不対電子をもつシリコン酸化膜 プラズマシリコン窒化膜 /D/ 俤 田
FIG. 1 is a main sectional view showing an embodiment of a semiconductor device of the present invention. 101 ・ 02 103 ・ l ○ 4 ・ 105 ・ 106 ・ 07 08 109 ・ Silicon substrate Silicon oxide film High resistance polycrystalline silicon N-type polycrystalline silicon Interlayer insulation film Aluminum wiring layer Silicon oxide film Silicon oxide film with unpaired electrons Plasma Silicon nitride film/D/ Toda

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板上に形成された高抵抗多結晶シリコン
上に、イオン打ち込みにより生成された不対電子をもつ
シリコン絶縁膜層があり、その上にプラズマシリコン窒
化膜層があることを特徴とする半導体装置。
(1) A silicon insulating film layer with unpaired electrons generated by ion implantation is provided on high-resistance polycrystalline silicon formed on a semiconductor substrate, and a plasma silicon nitride film layer is provided on top of the silicon insulating film layer. semiconductor devices.
(2)前記シリコン絶縁膜層は、シリコン酸化膜層ある
いは燐を含んだシリコン酸化膜層からなることを特徴と
する請求項1記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the silicon insulating film layer is a silicon oxide film layer or a silicon oxide film layer containing phosphorus.
(3)前記イオン打ち込みにより注入される不純物は、
不活性元素、硼素、あるいは、砒素であることを特徴と
する請求項1記載の半導体装置。
(3) The impurity implanted by the ion implantation is
2. The semiconductor device according to claim 1, wherein the semiconductor element is an inert element, boron, or arsenic.
JP17850289A 1989-07-11 1989-07-11 Semiconductor device Pending JPH0342831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17850289A JPH0342831A (en) 1989-07-11 1989-07-11 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17850289A JPH0342831A (en) 1989-07-11 1989-07-11 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0342831A true JPH0342831A (en) 1991-02-25

Family

ID=16049587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17850289A Pending JPH0342831A (en) 1989-07-11 1989-07-11 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0342831A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5500553A (en) * 1992-08-12 1996-03-19 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having polysilicon resistors with a specific resistance ratio resistant to manufacturing processes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5500553A (en) * 1992-08-12 1996-03-19 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having polysilicon resistors with a specific resistance ratio resistant to manufacturing processes
US5956592A (en) * 1992-08-12 1999-09-21 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device having polysilicon resistors with a specific resistance ratio resistant to manufacturing processes

Similar Documents

Publication Publication Date Title
US5064775A (en) Method of fabricating an improved polycrystalline silicon thin film transistor
US6133094A (en) Semiconductor device and process of producing the same
US5278099A (en) Method for manufacturing a semiconductor device having wiring electrodes
US4916507A (en) Polysilicon resistor implanted with rare gas
US4575923A (en) Method of manufacturing a high resistance layer having a low temperature coefficient of resistance and semiconductor device having such high resistance layer
EP0187475A2 (en) Method of manufacturing semiconductor devices having an oxygen-containing polycristalline silicon layer
JPH01147829A (en) Manufacture of semiconductor device
JPH0794731A (en) Semiconductor device and its manufacturing method
JPH0342831A (en) Semiconductor device
EP0613180A2 (en) Semiconductor device having wiring electrodes
JPS61164241A (en) Semiconductor device
JPS60193333A (en) Manufacture of semiconductor device
JPS63281424A (en) Formation of polycide electrode
JPH0342833A (en) Semiconductor device
JPH02288361A (en) Semiconductor device
JPS61228661A (en) Semiconductor device and manufacture thereof
JP2668380B2 (en) Method for manufacturing semiconductor device
JPH04103121A (en) Manufacture of semiconductor device
JPH07130757A (en) Manufacture of bipolar transistor
JPH0115137B2 (en)
JPS625657A (en) Semiconductor integrated circuit device
JPH05283353A (en) Diffusion method of high concentration arsenic
JPH07106279A (en) Manufacture of semiconductor device
JPH06314770A (en) Semiconductor resistor and forming method thereof
JPH03166728A (en) Semiconductor device