JPH0342529B2 - - Google Patents

Info

Publication number
JPH0342529B2
JPH0342529B2 JP57090623A JP9062382A JPH0342529B2 JP H0342529 B2 JPH0342529 B2 JP H0342529B2 JP 57090623 A JP57090623 A JP 57090623A JP 9062382 A JP9062382 A JP 9062382A JP H0342529 B2 JPH0342529 B2 JP H0342529B2
Authority
JP
Japan
Prior art keywords
mosfet
connection point
output
parallel connection
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57090623A
Other languages
Japanese (ja)
Other versions
JPS58207713A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9062382A priority Critical patent/JPS58207713A/en
Publication of JPS58207713A publication Critical patent/JPS58207713A/en
Publication of JPH0342529B2 publication Critical patent/JPH0342529B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/80Simultaneous conversion using weighted impedances

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Description

【発明の詳細な説明】 本発明は双方向電流出力型デジタル−アナログ
(D−A)変換器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a bidirectional current output type digital-to-analog (DA) converter.

重み電流源としてMOSFETの飽和領域の特性
を利用している従来の双方向電流出力型デジタル
−アナログ(D−A)変換器は、特に2.5V程度
の低電圧で200mW程度の出力でスピーカーを直
接駆動するためには、重み電流源用MOSFET及
び電流極性切換用MOSFETのチヤンネル幅を5V
駆動時より4倍以上にしなければならず、このD
−A変換器をLSIに組み込む場合、D−A変換器
のLSIの中に占める割合が大きくなりコストが5V
電源使用のD−A変換器を組み込む場合に比べ大
幅に上昇する欠点があつた。また直線性歪みも
5V動作時に較べ大幅に悪くなる欠点があつた。
Conventional bidirectional current output type digital-to-analog (D-A) converters, which utilize the characteristics of the MOSFET's saturation region as a weighted current source, can directly connect speakers with an output of about 200 mW at a low voltage of about 2.5 V. To drive, set the channel width of the weight current source MOSFET and current polarity switching MOSFET to 5V.
It must be at least 4 times as large as when driving, and this D
-When incorporating an A converter into an LSI, the D-A converter occupies a large proportion of the LSI, resulting in a cost of 5V.
There was a drawback that the cost was significantly increased compared to the case where a D-A converter using a power supply was incorporated. Also, linearity distortion
There was a drawback that it was much worse than when operating at 5V.

本発明の目的は上記の欠点を排除するもので、
低電圧にてスピーカーを直接駆動し小さい歪率で
大きな出力を得ることができるD−A変換器を提
供することにある。
The aim of the invention is to eliminate the above-mentioned drawbacks and to
It is an object of the present invention to provide a D-A converter that can directly drive a speaker at low voltage and obtain a large output with a small distortion factor.

本発明は重み電流源として重み入力信号によつ
てON又はOFFし、各々並列に接続されている
MOSFET群、前記MOSFET群のドレイン出力
及び互いに逆相の極性切換信号が入力されている
第1及び第2のインバータ(反転)特性をもつゲ
ート手段、前記MOSFET群のドレインとD−A
変換器の第1及び第2の出力端子の間にそれぞれ
並列に接続されている第1及び第2の
MOSFET、前記第1及び第2のMOSFETのゲ
ート電極はそれぞれ前記第1及び第2のゲート手
段の出力が接続され、前記第1のゲート手段と第
1のMOSFETは、第2のゲート手段と第2の
MOSFETにより前記MOSFET群のドレイン・
イソース間電圧を安定に保つ事により前記重み電
流源MOSFETに対し、負荷変動に対しても安定
に電流を流させ、前記、互いに逆相の極性切換信
号がゲート電極に入力されている第3及び第4の
MOSFET、前記第3及び第4のMOSFETのド
レイン及びソースを各々電流の一端及びD−A変
換器の第1及び第2の出力端子に接続されている
事を特徴とする。
The present invention is a weight current source that is turned ON or OFF by a weight input signal, and each is connected in parallel.
a MOSFET group, gate means having first and second inverter (inversion) characteristics to which the drain outputs of the MOSFET group and polarity switching signals of mutually opposite phases are input; the drains of the MOSFET group and D-A;
first and second terminals connected in parallel between the first and second output terminals of the converter, respectively;
MOSFET, the gate electrodes of the first and second MOSFETs are connected to the outputs of the first and second gate means, respectively, and the first gate means and the first MOSFET are connected to the outputs of the second gate means and the second MOSFET. 2 of
The drain of the MOSFET group is
By keeping the voltage between the source and source stable, the weighted current source MOSFET allows a current to flow stably even in the face of load fluctuations, and the third and fourth
The MOSFET is characterized in that the drains and sources of the third and fourth MOSFETs are connected to one end of the current and to the first and second output terminals of the DA converter, respectively.

第1図は本発明の一実施例で、Q1,Q2,Q3
Q4,Q5,Q6,Q7,Q8はエンハンスメント型
MOSFETでQ1,Q2,Q3,Q4にはそれぞれD−
A変換器の重みデータ入力D1,D2,D3,D4がゲ
ート電極に入力されており、各々のソースは電源
の一端に接続されており、ドレインは並列に接続
されている。Q1,Q2,Q3,Q4はそれぞれD1
D2,D3,D4が“1”でON、“0”でOFFする。
1はQ1,Q2,Q3,Q4で構成されるMOSFET群、
Sは符号入力、2及び3はNORゲート、4はイ
ンバータ、6は電源の他端、7,8はそれぞれD
−A変換器の出力端子、5はスピーカーで代表さ
れる負荷、9はQ1,Q2,Q3,Q4で構成される
MOSFET群1のドレイン出力である。Q2,Q3
Q4はQ1に対しチヤンネル幅/チヤンネル長を2
倍、4倍、8倍と重みをつけてある。MOSFET
群1のドレイン出力1がNORゲート2及び3の
入力に接続され、電流極性を決定する符号入力S
がQ8のゲート電極、インバータ4、NORBゲー
ト3の入力に接続され、NORゲート2の出力は
Q5のゲート電極に、NORゲート3の出力はQ6
ゲート電極に、インバータ4の出力がQ7のゲー
ト電極に接続されている。Q5のソース電極は9
に、ドレイン電極は8に接続されている。Q6
ソースは9に、ドレインは7に接続されている。
Q7のドレインは電源の他端6に、ソースは8に
接続されている。Q8のドレインは電源の他端6
に、ソースは7に接続されている。
FIG. 1 shows an embodiment of the present invention, in which Q 1 , Q 2 , Q 3 ,
Q 4 , Q 5 , Q 6 , Q 7 , Q 8 are enhancement types
Q 1 , Q 2 , Q 3 , Q 4 each have D-
Weight data inputs D 1 , D 2 , D 3 , D 4 of the A converter are input to the gate electrodes, each source is connected to one end of the power supply, and the drains are connected in parallel. Q 1 , Q 2 , Q 3 , Q 4 are D 1 , respectively
When D 2 , D 3 , and D 4 are "1", they are turned on, and when they are "0", they are turned off.
1 is a MOSFET group consisting of Q 1 , Q 2 , Q 3 , Q 4 ,
S is the sign input, 2 and 3 are NOR gates, 4 is the inverter, 6 is the other end of the power supply, 7 and 8 are each D
- The output terminal of the A converter, 5 is the load represented by the speaker, and 9 is composed of Q 1 , Q 2 , Q 3 , and Q 4
This is the drain output of MOSFET group 1. Q 2 , Q 3 ,
Q 4 has channel width/channel length of 2 compared to Q 1 .
The weights are given as 2x, 4x, and 8x. MOSFET
The drain output 1 of group 1 is connected to the inputs of NOR gates 2 and 3, and the sign input S determines the current polarity.
is connected to the gate electrode of Q8 , inverter 4, and the input of NORB gate 3, and the output of NOR gate 2 is
The output of NOR gate 3 is connected to the gate electrode of Q 5 , the output of NOR gate 3 is connected to the gate electrode of Q 6 , and the output of inverter 4 is connected to the gate electrode of Q 7 . The source electrode of Q 5 is 9
The drain electrode is connected to 8. The source of Q 6 is connected to 9 and the drain to 7.
The drain of Q 7 is connected to the other end 6 of the power supply, and the source is connected to 8. The drain of Q 8 is the other end of the power supply 6
, the source is connected to 7.

S信号が“1”の時はQ8はON、インバータ4
は“0”になるので、Q7はOFF、NOR3は
“0”になるのでQ6はOFFになる。
When the S signal is “1”, Q8 is ON and inverter 4
becomes "0", so Q 7 is OFF, and NOR3 becomes "0", so Q 6 becomes OFF.

第2図のaに示される10はNOR2または
NOR3の入力電圧に対する出力電圧を示す特性
図である。インバータ4からの出力は“0”であ
るので、NORP2の出力電圧は9からの入力電
圧に依存し、第2図aの10の特性を示す。
NOR2とQ5で負帰還ルーブを形成する。D1
D2,D3,D4がそれぞれ“1”,“0”,“0”,“0”
の時はQ1がON,Q2,Q3,Q4はOFFし、第2図
bで示される11の特性上のI1の電流が流れQB1
のドレイン・接地間電圧はVI1になり、NOR2の
出力電圧は第2図のaで示されるVO1になる。Q5
のゲート電圧はVO1になるのでQ5の特性は第2図
b′の14に示される特徴となる。11と14の交
点において平衡状態となり、I1が6よりQ8,5,
Q5を通してQ1に流れる。つまりスピーカー5に
は端子7から端子8の方向に電流I1が流れる。S
信号が“0”の時はQ8はOFF、インバータ4の
出力は“1”になるのでQ7はON、NOR2の出
力は“0”になりQ5はOFFする。NOR3の特性
は第2図aの10に示される特性であり、S信号
“1”の時のNOR2と同様の動作をし、NOR3
とQ6で負帰還ループを形成し、電源の他端6よ
り、Q7,5,Q6を通してQ1にI1の電流が流れる。
つまりスピーカー5には端子8から端子7の方向
に電流I1が流れる。
10 shown in Figure 2 a is NOR2 or
FIG. 3 is a characteristic diagram showing the output voltage with respect to the input voltage of NOR3. Since the output from inverter 4 is "0", the output voltage of NORP 2 depends on the input voltage from 9 and exhibits the characteristic of 10 in FIG. 2a.
NOR2 and Q5 form a negative feedback loop. D1 ,
D 2 , D 3 , D 4 are “1”, “0”, “0”, “0” respectively
When , Q 1 is ON, Q 2 , Q 3 , and Q 4 are OFF, and a current of I 1 on the 11 characteristics shown in Figure 2b flows, and QB 1
The drain-to-ground voltage of NOR2 becomes V I1 , and the output voltage of NOR2 becomes V O1 as shown by a in FIG. Q5
Since the gate voltage of is V O1 , the characteristics of Q 5 are shown in Figure 2.
This is the feature shown in 14 of b'. An equilibrium state occurs at the intersection of 11 and 14, and since I 1 is 6, Q 8 , 5,
Flows through Q5 to Q1 . In other words, current I 1 flows through the speaker 5 in the direction from the terminal 7 to the terminal 8 . S
When the signal is "0", Q8 is OFF, the output of inverter 4 is "1", so Q7 is ON, the output of NOR2 is "0", and Q5 is OFF. The characteristics of NOR3 are shown in 10 in Figure 2a, and it operates in the same way as NOR2 when the S signal is “1”.
and Q6 form a negative feedback loop, and a current of I1 flows from the other end 6 of the power supply to Q1 through Q7 , 5, and Q6 .
In other words, current I 1 flows through the speaker 5 from the terminal 8 to the terminal 7 .

第2図bの12はD4が“1”の時のQ4に流れ
る電流特性で、特性11の8倍の電流を示してい
るものとする。特性13はD1,D2,D3,D4が全
て“1”と時にQ1,Q2,Q3,Q4が全部ONして
いる時に流れる電流を合計した特性で9から接地
に対して流れる電流を示し、特性11の15倍の電
流となつているものとする。特性15はS信号が
“1”の時にQ5に流れる電流特性を示し、S信号
が“0”の時にQ6に流れる電流特性を示してい
る。S信号が“1”の時Q1がON、Q2,Q3,Q4
が共にONの状態に変化する時、9から接地への
インピーダンスが下がり、ドレイン接地間電圧が
V11からVI2の方向へ下降するので、NOR2の出
力電圧はVO1からVO2の方向に上昇し、Q5のゲー
ト電圧はVO1からVO2へと上昇するので、Q5の電
流特性は第2図bの14から15へ変化する。そ
して13と15の交点の電流I2が電源の他端6か
らQ5,5,Q5を通して流れる。その時の9の電
圧はVI2であり、VI1より少し下つた電圧となつて
おり、NORゲート2とQ5により定電圧回路とし
て動作している。従つて、I2は15I1より少し小さ
い電流になつているがほぼ15I2である。従つて
重み入力信号によつてデジタル−アナログ変換さ
れた電流がスピーカーで代表されるD/Aコンバ
ータの負荷5に流れる。S信号が“1”の時も同
様にNORゲート3とQ6で定電圧回路として動作
し、13と15の交点の電流I2な電源の他端6か
らQ7,5,Q6を通して流れる。従来の電流出力
型D/Aコンバータは第1図のQ1,Q2,Q3,Q4
に相当するMOSFETを飽和領域の特性を利用し
て使用するものである。いこのため、重みづけト
ランジスタQ1〜Q4のゲート電圧VGは並列接続
点9のドレイン電圧VDよりも小さく(VG≦VD
+VT)しておかなければならない。さもなく
ば、トランジスタQ1〜Q4が非飽和領域動作に移
つてしまうため、正確な出力が得られず歪率が大
きくなつてしまう。しかながら、歪率を小さくし
ようとしてゲート電圧VGをドレイン電圧VDよ
り低くすると、各トランジスタQ1〜Q4を流れる
ドレイン電流が小さくなつてしまいスピーカー5
を十分にドライブするとができなくなつてしま
う。このため、従来はトランジスタのサイズを大
きくしてドライブ能力を確保するようにしていた
が、その分トランジスタ面積が増加してLSI化に
不利であつた。
Reference numeral 12 in FIG. 2b is the current characteristic flowing through Q4 when D4 is "1", and it is assumed that the current is 8 times that of characteristic 11. Characteristic 13 is the sum of the currents that flow when Q 1 , Q 2 , Q 3 , and Q 4 are all ON when D 1 , D 2 , D 3 , and D 4 are all “1,” and the current flows from 9 to ground. It is assumed that the current that flows is 15 times that of characteristic 11. Characteristic 15 shows the characteristics of the current flowing through Q5 when the S signal is " 1 ", and the characteristics of the current flowing through Q6 when the S signal is "0". When the S signal is “1”, Q 1 is ON, Q 2 , Q 3 , Q 4
When both change to the ON state, the impedance from 9 to ground decreases, and the drain-to-ground voltage increases.
Since the output voltage of NOR2 decreases from V 11 to V I2 , the output voltage of NOR2 increases from V O1 to V O2 , and the gate voltage of Q 5 increases from V O1 to V O2 , so the current characteristics of Q 5 changes from 14 to 15 in FIG. 2b. A current I 2 at the intersection of 13 and 15 flows from the other end 6 of the power supply through Q 5 , 5 and Q 5 . At that time, the voltage at 9 is V I2 , which is slightly lower than V I1 , and operates as a constant voltage circuit with NOR gate 2 and Q5 . Therefore, I2 is approximately 15I2 , although the current is slightly smaller than 15I1 . Therefore, the current converted from digital to analog based on the weighted input signal flows to the load 5 of the D/A converter represented by the speaker. When the S signal is "1", the NOR gate 3 and Q6 similarly operate as a constant voltage circuit, and the current I2 at the intersection of 13 and 15 flows from the other end 6 of the power supply through Q7 , 5, and Q6 . . The conventional current output type D/A converter is Q 1 , Q 2 , Q 3 , Q 4 in Figure 1.
This method uses a MOSFET equivalent to , taking advantage of its characteristics in the saturation region. Therefore, the gate voltage VG of the weighting transistors Q1 to Q4 is smaller than the drain voltage VD of the parallel connection point 9 (VG≦VD
+VT). Otherwise, the transistors Q1 to Q4 will shift to non-saturation region operation, which will prevent accurate output from being obtained and increase the distortion rate. However, if the gate voltage VG is made lower than the drain voltage VD in an attempt to reduce the distortion factor, the drain current flowing through each transistor Q1 to Q4 becomes small, and the speaker 5
If you drive it enough, you will not be able to do it. For this reason, the conventional approach was to increase the size of the transistor to ensure drive capability, but this increased the area of the transistor, which was disadvantageous for LSI implementation.

これに対して、本発明はトランジスタQ1〜Q4
を非飽和領域で動作せしめ、小さなトランジスタ
サイズで大きなドレイン電流を得、ドライブ能力
の向上を図つている。しかし、ここでトランジス
タQ1〜Q4を非飽和領域で動作させているので、
並列接続点9のドレイン電圧を定電圧化しておか
なければ、トランジスタQ1〜Q4の切りかえ時に
生じるインピダンースの変動の影響をうける。従
つて、本発明では並列接続点9の電位を定電圧化
するめに、これをゲート回路2,3を介してトラ
ンジスタQ5,Q6のゲートに負帰還している。こ
の結果、本発明によれば、小さなトランジスタサ
イズで大きな出力電流を得ることができるととも
に、歪率の小さいD−Aコンバータが得られる。
In contrast, the present invention provides transistors Q1 to Q4
The device operates in the non-saturation region, obtains a large drain current with a small transistor size, and improves drive capability. However, since transistors Q1 to Q4 are operated in the non-saturation region,
Unless the drain voltage at the parallel connection point 9 is made constant, it will be affected by impedance fluctuations that occur when transistors Q1 to Q4 are switched. Therefore, in the present invention, in order to make the potential at the parallel connection point 9 a constant voltage, this is negatively fed back to the gates of the transistors Q5 and Q6 via the gate circuits 2 and 3. As a result, according to the present invention, a large output current can be obtained with a small transistor size, and a D-A converter with a low distortion factor can be obtained.

さらに、本発明によれば並列接続点を定電圧化
するための手段(NORゲート2,3,Q5,Q6)
のうちトランジスタQ5、Q6については出力切換
用トランジスタの一部を兼用し、少ない素子数で
定電圧化を実現しているとともに余分な素子が不
要なため電圧ドロツプが小さく低電圧でのスピー
カー駆動が可能である。また同じ出力電力の場合
MOSFETのチヤンネル幅を小さくできるのでチ
ツプに占める面積が小さくなり、低コストになる
大きな効果がある。特に低電圧で動作させる時に
その効果は大きい。またQ5,Q6,Q7,Q8はスレ
ツシユホールド電圧が0V近辺のノンドーブ型
IGFETでもよい。
Furthermore, according to the present invention, means for making the parallel connection point constant voltage (NOR gates 2, 3, Q5, Q6)
Of these, transistors Q5 and Q6 also serve as part of the output switching transistors, achieving constant voltage with a small number of elements, and since no extra elements are required, the voltage drop is small and the speaker can be driven at low voltage. It is possible. Also, for the same output power
Since the channel width of the MOSFET can be reduced, the area occupied on the chip is reduced, which has the great effect of lowering costs. This effect is particularly great when operating at low voltage. Also, Q 5 , Q 6 , Q 7 , and Q 8 are non-dove type with threshold voltage near 0V.
An IGFET may also be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例、第2図aはインバ
ータ特性を示す図、第2図bはMOSFETの電流
特性図である。 Q1,Q2,Q3,Q4……エンハンスメント型
IGFET、Q5,Q6,Q7,Q8……IGFET、4……
インバータ、2,3……NORゲート、1……
MOSFET群、5……外部負荷(スピーカー)、
D1,D2,D3,D4……重み信号入力、S……符号
入力、6…電源の他端、7,8……D/Aコンバ
ータ出力端子、9……MOSFET群のドレイン電
極、10……NORゲート2と3のインバータ特
性、11,12,13,14,15……
MOSFETの電流特性。
FIG. 1 is an embodiment of the present invention, FIG. 2a is a diagram showing inverter characteristics, and FIG. 2b is a MOSFET current characteristic diagram. Q 1 , Q 2 , Q 3 , Q 4 ...Enhancement type
IGFET, Q 5 , Q 6 , Q 7 , Q 8 ...IGFET, 4...
Inverter, 2, 3...NOR gate, 1...
MOSFET group, 5...external load (speaker),
D 1 , D 2 , D 3 , D 4 ... Weight signal input, S ... Sign input, 6 ... Other end of power supply, 7, 8 ... D/A converter output terminal, 9 ... Drain electrode of MOSFET group , 10... Inverter characteristics of NOR gates 2 and 3, 11, 12, 13, 14, 15...
MOSFET current characteristics.

Claims (1)

【特許請求の範囲】[Claims] 1 チヤンネル長/チヤンネル幅が重み付けさ
れ、並列に接続された複数のMOSFETと、各
MOSFETのゲートの重み付けされたデジタル信
号を印加する手段と、前記MOSFETの並列接続
点と第1の出力端子との間に接続された第1の
MOSFETと、電源と第2の出力端子との間に接
続されたスイツチング用の第2のMOSFETと、
前記電源と前記第1の出力端子との間に接続され
たスイツチング用の第3のMOSFETと、前記第
2の出力端子と前記並列接続点との間に接続され
た第4のMOSFETと、符号信号の入力端子と、
前記符号信号の値に応じて前記第2のMOSFET
と前記第3のMOSFETとを排他的に開閉制御す
る手段と、第1の入力端に前記符号信号が供給さ
れるとともに第2の入力端が前記並列接続点に接
続され、出力端が前記第4のMOSFETのゲート
端子に接続されるものであつて、符号信号が一方
のレベルの時は前記並列接続点の電位が定電圧と
なるように、また符号信号が他方のレベルの時は
前記第4のMOSFETがオフされるように第4の
MOSFETのゲート電位を制御する第1のゲート
回路と、第1の入力端に前記符号信号の反転出力
が供給されるとともに第2の入力端が前記並列接
続点に接続され、出力端が前記第1のMOSFET
のゲート端子に接続されるものであつて、符号信
号が一方のレベルの時は前記第1のMOSFETが
オフされるように、また符号信号が他方のレベル
の時は前記並列接続点の電位が定電圧となるよう
に第1のMOSFETのゲート電位を制御する第2
のゲート回路とを具備し、前記デジタル信号のデ
ジタア入力値に応じたアナログ出力が前記第1の
出力端子と第2の出力端子に生じるようにしたこ
とを特徴とする電流出力型D−Aコンバータ。
1 Channel length/channel width is weighted, multiple MOSFETs connected in parallel, and each
means for applying a weighted digital signal to the gates of the MOSFETs; and a first means connected between the parallel connection point of the MOSFETs and the first output terminal
a second MOSFET for switching connected between the MOSFET and the power supply and the second output terminal;
a third MOSFET for switching connected between the power supply and the first output terminal; a fourth MOSFET connected between the second output terminal and the parallel connection point; a signal input terminal,
the second MOSFET depending on the value of the code signal;
means for exclusively controlling opening and closing of the MOSFET and the third MOSFET; a first input terminal is supplied with the code signal, a second input terminal is connected to the parallel connection point, and an output terminal is connected to the It is connected to the gate terminal of MOSFET No. 4 so that when the code signal is at one level, the potential at the parallel connection point becomes a constant voltage, and when the code signal is at the other level, the potential at the parallel connection point becomes a constant voltage. The fourth MOSFET is turned off so that the fourth MOSFET is turned off.
a first gate circuit that controls the gate potential of the MOSFET; a first input terminal is supplied with an inverted output of the code signal; a second input terminal is connected to the parallel connection point; and an output terminal is connected to the parallel connection point; 1 MOSFET
is connected to the gate terminal of the first MOSFET, so that when the code signal is at one level, the first MOSFET is turned off, and when the code signal is at the other level, the potential at the parallel connection point is A second MOSFET that controls the gate potential of the first MOSFET to maintain a constant voltage.
A current output type D-A converter, comprising a gate circuit, and an analog output corresponding to a digital input value of the digital signal is generated at the first output terminal and the second output terminal. .
JP9062382A 1982-05-28 1982-05-28 Current output type digital-analog converter Granted JPS58207713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9062382A JPS58207713A (en) 1982-05-28 1982-05-28 Current output type digital-analog converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9062382A JPS58207713A (en) 1982-05-28 1982-05-28 Current output type digital-analog converter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4077710A Division JPH07118650B2 (en) 1992-03-31 1992-03-31 Field effect transistor circuit

Publications (2)

Publication Number Publication Date
JPS58207713A JPS58207713A (en) 1983-12-03
JPH0342529B2 true JPH0342529B2 (en) 1991-06-27

Family

ID=14003606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9062382A Granted JPS58207713A (en) 1982-05-28 1982-05-28 Current output type digital-analog converter

Country Status (1)

Country Link
JP (1) JPS58207713A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3332115B2 (en) * 1994-04-08 2002-10-07 株式会社東芝 Multi-input transistor and multi-input transconductor circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5762625A (en) * 1980-10-03 1982-04-15 Nec Corp Integrated circuit device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5762625A (en) * 1980-10-03 1982-04-15 Nec Corp Integrated circuit device

Also Published As

Publication number Publication date
JPS58207713A (en) 1983-12-03

Similar Documents

Publication Publication Date Title
JPS635553A (en) Buffer circuit
US7049890B2 (en) Operational amplifier with self control circuit for realizing high slew rate throughout full operating range
US5218364A (en) D/a converter with variable biasing resistor
JPH04181817A (en) Constant current source circuit for switching
US5126603A (en) Circuit utilizes N-channel mos transistors having reduced area dimension for effectively detecting output current of a H-bridge circuit
JP2705317B2 (en) Operational amplifier
US6084467A (en) Analog amplifier clipping circuit
US6278322B1 (en) Transconductance amplifier and automatic gain control device using it
JPH0342529B2 (en)
WO1983004352A1 (en) Current-driven enfet logic circuits
JP2679495B2 (en) Semiconductor circuit
JPH06152341A (en) Buffering circuit
JP2001127615A (en) Division level logic circuit
JPH0677804A (en) Output circuit
JP3174027B2 (en) Signal level conversion circuit
JPS6366083B2 (en)
JPH07118650B2 (en) Field effect transistor circuit
JPH07105709B2 (en) Voltage conversion circuit
JPH09266692A (en) Driving device
JPS5936423A (en) Current switching circuit
JP2797499B2 (en) Current switch circuit
JPH06104732A (en) Ic output circuit
JP3038891B2 (en) Semiconductor integrated circuit device
JPH04156008A (en) Logic circuit
JPH0263219A (en) Charge pump circuit