JPH0342224A - Method for extrusion molding of polyimide and polyimide pellet used therein - Google Patents

Method for extrusion molding of polyimide and polyimide pellet used therein

Info

Publication number
JPH0342224A
JPH0342224A JP2075452A JP7545290A JPH0342224A JP H0342224 A JPH0342224 A JP H0342224A JP 2075452 A JP2075452 A JP 2075452A JP 7545290 A JP7545290 A JP 7545290A JP H0342224 A JPH0342224 A JP H0342224A
Authority
JP
Japan
Prior art keywords
polyimide
crystallization
extrusion
pellets
pref
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2075452A
Other languages
Japanese (ja)
Other versions
JPH0798348B2 (en
Inventor
Masumi Saruwatari
益巳 猿渡
Jiyuuichi Tsuji
従一 辻
Yasuhiro Fujii
康弘 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP2075452A priority Critical patent/JPH0798348B2/en
Publication of JPH0342224A publication Critical patent/JPH0342224A/en
Publication of JPH0798348B2 publication Critical patent/JPH0798348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE:To stably mold a product reduced in thickness fluctuation and excellent in mechanical strength and electric insulating properties by melting polyimide having a specific repeating structural unit under heating to process the same into a pellet form and heat-treating the pellets to set a degree of crystallization to specific % or more before supplying the same to an extrusion molding machine to perform molding. CONSTITUTION:Polyimide having a repeating structural unit represented by formula [I] (wherein x is a single bond or a hexafluoroisopropylidene group) is heat-treated to form polyimide pellets usually having a degree of crystallization of 5% or more. In this case, the heat treatment temp. is pref. 250 - 370 deg.C. When said temp. is below 250 deg.C, crystallization is very slow and, even when the temp. exceeds 370 deg.C, crystallization is slow and said temp. is not pref. because the resin begins to melt. When the degree of crystallization is below 5%, it is not pref. because the extrusion amount at the time of extrusion varies and extrusion becomes impossible according to circumstances and foaming or die refuse is generated. The upper limit of a degree of crystallization is not especially prescribed but a pref. range of a degree of crystallization is 5 - 50%. Further, stirring is pref. performed during heat treatment in order to prevent the partial fusion of the resin.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱可塑性ポリイミドの押出成形法およびこの
方法に用いるポリイミドペレットに関する。さらに詳し
くは、ポリイミドの押出成形において、安定した押出量
、気泡やダイ粕等のない製品を安定して製造し得る方法
であって、特定構造のポリイミドを、予め特定範囲の結
晶化度に結晶化させたポリイミドを押出機に供給して成
形する方法、およびこの方法に適用するポリイミドペレ
ットに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a thermoplastic polyimide extrusion molding method and polyimide pellets used in this method. More specifically, in extrusion molding of polyimide, it is a method that can stably produce products with a stable extrusion rate and without bubbles or die scum, in which polyimide with a specific structure is pre-crystallized to a crystallinity within a specific range. The present invention relates to a method of supplying converted polyimide to an extruder and molding it, and polyimide pellets applied to this method.

〔従来の技術〕[Conventional technology]

芳香族ポリイミドは、有機ポリマーの中で最高の耐熱性
に加え、優れた機械的性質、耐薬品性、電気絶縁性を有
しており、電気、電子工業分野、機械産業、原子力、自
動車工業等の分野で広く使われている。
Aromatic polyimide has the highest heat resistance among organic polymers, as well as excellent mechanical properties, chemical resistance, and electrical insulation properties, and is used in the electrical and electronic industry, machinery industry, nuclear power, automobile industry, etc. It is widely used in the field of

近年、熱可塑性ポリイミドやその成形方法が報告されて
いる。
In recent years, thermoplastic polyimides and methods for molding them have been reported.

この種のポリイミドの中に、押出成形性の良好なポリイ
ミドとして一般式(I) (式中、Xは単結合またはヘキサフルオロイソプロピリ
デン基を示す)で表される繰り返し構造単位を有するポ
リイミドか開発されている(例えば、特開昭62−20
5124号公報、特開昭62−241923号公報)。
Among these types of polyimides, polyimides having repeating structural units represented by the general formula (I) (wherein, X represents a single bond or a hexafluoroisopropylidene group) were developed as polyimides with good extrusion moldability. (For example, Japanese Patent Application Laid-Open No. 62-20
5124, JP-A-62-241923).

これらのポリイミドは、熱可塑性を有し周知の押出成形
法により繊維、フィルム、シート、電線、棒、板または
管材等の製品を製造することができる。しかし、これら
のポリイミドやその成形方法の中で押出成形法への適用
については、これらのポリイミドに適した十分に満足で
きる成形方法が未だ提案されていない。
These polyimides have thermoplastic properties and can be used to produce products such as fibers, films, sheets, electric wires, rods, plates, or tube materials by the well-known extrusion method. However, among these polyimides and their molding methods, no fully satisfactory molding method suitable for these polyimides has yet been proposed for application to extrusion molding.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記一般式CI)で表される繰り返し構造単位を有する
ポリイミドは、成形困難な他のポリイミドに比べ、押出
成形加工への適用性は良好であり、通常、ペレットに加
工した後、押出成形機に供給し成形されている。
Polyimide having a repeating structural unit represented by the general formula CI) has good applicability to extrusion molding compared to other polyimides that are difficult to mold, and is usually processed into pellets and then put into an extrusion molding machine. supplied and molded.

しかしながら、このようなポリイミドであっても、製造
したポリイミド粉末をペレット状に加工し、これをその
ま\押出成形機に供給すると、押出成形が円滑にできず
、また成形品か得られても製品中に、気泡やグイ粕が発
生し、安定した品質の製品を得ることが困難である。
However, even with such polyimide, if the manufactured polyimide powder is processed into pellets and fed as is to an extrusion molding machine, extrusion molding cannot be performed smoothly, and even if a molded product is obtained, Air bubbles and goo dregs occur in the product, making it difficult to obtain a product of stable quality.

このような現象は、押出成形機に供給された樹脂がスク
リューの供給部分および/または圧縮部分て受ける温度
と圧力によって急激な可塑化を受けるためであり、スク
リューの回転数によっては、スクリューに樹脂が巻きつ
き、全く押し出されなくなってしまうこともある。また
、閉塞を起こさない場合でも、急激に可塑化した樹脂と
ともに輸送される気体、例えば空気が本来排除されるべ
きスクリューの圧縮部分で排除されず、ダイまで輸送さ
れ気泡を発生させることが判った。
This phenomenon occurs because the resin supplied to the extrusion molding machine undergoes rapid plasticization due to the temperature and pressure received by the supply and/or compression parts of the screw, and depending on the rotation speed of the screw, the resin may In some cases, the material gets wrapped around the material and cannot be pushed out at all. In addition, even when no blockage occurs, it has been found that gases such as air, which are transported together with rapidly plasticized resin, are not removed at the compression part of the screw, which should be removed, and are transported to the die, generating bubbles. .

このような現象か生じると、例えば、繊維加工において
は、押出量変動に伴うデニール変動、気泡の発生による
糸切れか起こり易いという問題があり、またフィルム、
シート加工においては、押出量変動に伴う厚さ変動、気
泡またはダイ粕等の発生による外観不良や機械的強度の
低下か起こり易いという問題があり、さらに棒、パイプ
加工においては、押出量変動に伴う直径の変動、内部気
泡の発生による強度低下、ダイ粕による外観不良が起こ
り易いという問題かあり、その上、電線加工においては
気泡またはダイ粕発生による電気絶縁性の低下か起こり
易いという問題か発生する。
When such a phenomenon occurs, for example, in fiber processing, there are problems such as denier fluctuations due to fluctuations in extrusion amount, yarn breakage due to the generation of air bubbles, etc.
In sheet processing, there are problems such as thickness fluctuations due to changes in the extrusion rate, appearance defects and mechanical strength decreases due to the generation of air bubbles or die scum, etc. Furthermore, in rod and pipe processing, problems occur due to changes in the extrusion rate. There are problems such as variations in the diameter, a decrease in strength due to the generation of internal air bubbles, and poor appearance due to die dregs.Furthermore, in wire processing, there is a problem that electrical insulation is likely to deteriorate due to the generation of air bubbles or die dregs. Occur.

これらの問題の解決策として、樹脂の可塑化か急激に進
行しない温度、即ち250℃以下に押出機のシリンダー
温度を下げる等の押出機の温度条件を変える方法が考え
られるが、この方法では、溶融樹脂の粘度が異常に高く
な・って押出不能となるか、または多量の剪断発熱を伴
い樹脂の劣化を起こし好ましくなかった。また、押出機
のスクリュー形状を変えることも考えられるか、押出量
の変動(いわゆるサージング現象)か起こり、場合によ
っては押出成形かできなくなる現象が起こり問題を解決
することが困難である。
As a solution to these problems, it is possible to change the temperature conditions of the extruder, such as lowering the extruder cylinder temperature to a temperature at which plasticization of the resin does not proceed rapidly, that is, 250°C or less, but with this method, The viscosity of the molten resin becomes abnormally high, making it impossible to extrude, or the resin deteriorates due to a large amount of shear heat generation, which is undesirable. In addition, it may be possible to change the screw shape of the extruder, or the extrusion rate may fluctuate (so-called surging phenomenon), and in some cases, extrusion molding may become impossible, making it difficult to solve the problem.

このように前記ポリイミドでも、押出成形法においては
、解決すべき点があり、これを解決しないかぎり、要求
した性能を有する成形品を得ることが難しい状況にあっ
た。
As described above, even with the above-mentioned polyimide, there are problems to be solved in the extrusion molding method, and unless these problems are solved, it will be difficult to obtain molded products with the required performance.

したがって、本発明の目的は、優れた機械的性質、耐薬
品性、電気絶縁性を有するポリイミドの押出成形法につ
いて、−段と改善された方法を提供することである。
It is therefore an object of the present invention to provide a significantly improved method for extruding polyimides having excellent mechanical properties, chemical resistance and electrical insulation properties.

他の目的は、特定構造のポリイミドの適用性を拡大する
ために、そのポリイミドに適用可能でかつ品質の安定し
た成形品を与える改善された押出成形方法を提供するこ
とである。
Another object is to provide an improved extrusion method that can be applied to polyimides and provides molded articles of stable quality in order to expand the applicability of polyimides of specific structures.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、この目的を達成すへく鋭意検討した。そ
の結果、重合して製造された前記一般式(I)で表され
る繰り返し構造単位のポリイミドは、通常、半結晶状態
の粉状であるが、押出成形に適用するに際して、供給形
態として好ましいペレット状に加工すると、意外なこと
に結晶性のポリイミドであっても、このペレット製造時
に結晶化度か著しく低下し非晶状態となってしまい、こ
の非晶状態のペレットをそのま\押出成形機に供給する
と前記の各種の問題か発生することがわかった。さらに
、ペレット状に加工した非晶状態のポリイミドを特定の
温度条件で加熱処理することにより半結晶状態のポリイ
ミドにすることが可能てあり、これを押出成形機に供給
して成形すると前記の各種問題を解決できることを見出
し、本発明を達成するに至った。
The present inventors have made extensive studies to achieve this objective. As a result, the polyimide having the repeating structural unit represented by the general formula (I) produced by polymerization is usually in the form of a semi-crystalline powder, but when applied to extrusion molding, pellets are preferable as a supply form. Surprisingly, even though the polyimide is crystalline, the crystallinity of the polyimide decreases significantly during pellet production, resulting in an amorphous state. It has been found that the various problems mentioned above occur when the water is supplied to the water. Furthermore, it is possible to make semi-crystalline polyimide by heating amorphous polyimide processed into pellets under specific temperature conditions, and when this is fed to an extrusion molding machine and molded, various types of The inventors have discovered that the problem can be solved and have achieved the present invention.

すなわち、本発明の方法は、一般式CI)(式中、Xは
単結合またはヘキサフルオロイソプロピリデン基を示す
)で表される繰り返し構造単位を有するポリイミドを溶
融押出機に供給するに際して、重合して得られたポリイ
ミドを、あらかしめ、加熱溶融してペレット状に加工し
、これを加熱処理して結晶化度を596以上としたポリ
イミドペレット、およびこのポリイミドを押出成形機に
供給し成形することを特徴とするポリイミドの押出成形
方法である。
That is, in the method of the present invention, when a polyimide having a repeating structural unit represented by the general formula CI) (wherein X represents a single bond or a hexafluoroisopropylidene group) is supplied to a melt extruder, polymerization is performed. Processing the obtained polyimide into pellets by heat-melting and heat-treating the resulting polyimide pellets, which have a crystallinity of 596 or more, and supplying this polyimide to an extrusion molding machine to mold it. This is a polyimide extrusion molding method characterized by the following.

本発明は、前記のポリイミドの押出成形上の問題点を改
善したちのてあり、一般式〔I〕で表される繰り返し構
造単位を有するポリイミドを実用的に満足な状態で、即
ち、押出量の変動、気泡、ダイ粕等の発生を防止し、肉
厚変動か少なく、機械的強度や電気絶縁性に優れた製品
を安定して成形する方法を提供するものである。
The present invention aims to improve the above-mentioned problems in extrusion molding of polyimide, and can produce polyimide having repeating structural units represented by general formula [I] in a practically satisfactory state, that is, in terms of extrusion amount. The purpose of the present invention is to provide a method for stably molding a product that prevents fluctuations in thickness, bubbles, die residue, etc., has little wall thickness fluctuation, and has excellent mechanical strength and electrical insulation.

本発明におけるポリイミドは、一般式(1)(式中、X
は単結合またはヘキサフルオロイソプロピリデン基を示
す)で表される繰り返し構造単位を有するポリイミドで
ある。
The polyimide in the present invention has the general formula (1) (wherein,
is a polyimide having a repeating structural unit represented by a single bond or a hexafluoroisopropylidene group).

これらのポリイミドは、ピロメリット酸二無水物と4,
4゛−ビス(3−アミノフェノキシ)ビフェニルまたは
2.2−ビス(3−アミンフェノキシフェニル)−1,
1,1,3,3,3−ヘキサフルオプロパンとの脱水縮
合反応による下記式〔■〕 (式中、Xは前記と同じ意味である)で表されるポリア
ミド酸を経由し、これを熱的または化学的にイミド化す
ることによって得ることかできる。
These polyimides are composed of pyromellitic dianhydride and 4,
4′-bis(3-aminophenoxy)biphenyl or 2,2-bis(3-aminophenoxyphenyl)-1,
The polyamic acid represented by the following formula [■] (wherein, X has the same meaning as above) is heated through a dehydration condensation reaction with 1,1,3,3,3-hexafluoropropane. It can be obtained by imidization either physically or chemically.

本発明における押出成形機に供給するポリイミドは、前
記の方法で製造されたポリイミド粉末、またはポリイミ
ド粉末を予め加熱処理したものを加熱溶融することによ
りペレット状に加工し、このペレットを加熱処理して得
られる結晶化したポリイミドペレットである。すなわち
、製造されたポリイミド粉末をタブレット、円柱状等の
ペレット状に加工成型し加熱処理するか、あるいは製造
されたポリイミド粉末を加熱処理した粉状品をタブレッ
ト、円柱状等のペレット状に加工成型し、さらに加熱処
理して成形加工機に適用できる結晶化したポリイミドペ
レットとして調製されたものである。ペレットに加工す
る前にポリイミド粉末に加熱処理を施す方法、すなわち
後者の方法によるペレットは、成形加工品に気泡の混入
が無く安定した品質の成形品を得ることか出来る。
The polyimide to be supplied to the extrusion molding machine in the present invention is processed into pellets by heating and melting the polyimide powder produced by the above method or the polyimide powder that has been heat-treated in advance, and then heat-treating the pellets. The resulting crystallized polyimide pellets. That is, the manufactured polyimide powder is processed and molded into pellets such as tablets and cylinders, and heat treated, or the manufactured polyimide powder is heat-treated and the powdered product is processed and molded into pellets such as tablets and cylinders. The polyimide pellets were then further heat treated to produce crystallized polyimide pellets that can be applied to molding machines. A method in which polyimide powder is heat-treated before being processed into pellets, that is, pellets produced by the latter method, can produce molded products with stable quality without the inclusion of air bubbles in the molded products.

本発明におけるポリイミドベレットは、通常実施されて
いる溶融押出法により調製される。重合で得られたポリ
イミド粉末を、好ましくは250〜370℃て1分間乃
至50時間熱処理した後、押出機に供給する。押出機に
供給する前に、120〜350℃て3〜24時間乾燥し
、ポリイミドの水分含有率を200 ppm以下とする
ことか好ましい。
The polyimide pellet in the present invention is prepared by a commonly used melt extrusion method. The polyimide powder obtained by polymerization is preferably heat-treated at 250 to 370°C for 1 minute to 50 hours, and then supplied to an extruder. It is preferable to dry the polyimide at 120 to 350° C. for 3 to 24 hours before supplying it to an extruder, so that the water content of the polyimide is 200 ppm or less.

押出温度は300〜450℃の範囲で行われ、好ましく
は350〜430℃である。溶融状態で押し出されるス
トランドの径は特に限定されないが1〜5mm程度が一
般的である。ペレットに切断する方法は、溶融ストラン
ドを水冷または空冷の後切断してもよいし、冷却なしに
切断する、いわゆるホットカットの後、水冷または空冷
してもよい。
The extrusion temperature is in the range of 300 to 450°C, preferably 350 to 430°C. The diameter of the strand extruded in a molten state is not particularly limited, but is generally about 1 to 5 mm. The molten strand may be cut into pellets after being water-cooled or air-cooled, or the molten strand may be cut without cooling, so-called hot cutting, and then water-cooled or air-cooled.

使用する押出機は広く用いられている通常の型式のもの
で差し支えないが、ベント式または真空ホッパーを備え
たものが好ましく用いられる。
The extruder used may be of a commonly used type, but a vent type or one equipped with a vacuum hopper is preferably used.

このようにして得られたポリイミドペレットは、ペレッ
ト加工前において半結晶状態であったものか非晶状態と
なっている。本発明ではこの非晶状態のポリイミドペレ
ットを加熱処理して、結晶化度か5%以上のポリイミド
ペレットとすることか必要である。
The polyimide pellets thus obtained are either semi-crystalline or amorphous before pellet processing. In the present invention, it is necessary to heat-treat this amorphous polyimide pellet to form a polyimide pellet with a crystallinity of 5% or more.

加熱処理の条件は、つぎの通りである。The conditions for the heat treatment are as follows.

熱処理温度は250〜370℃か好ましい。熱処理温度
が250℃未満では結晶化か非常に遅く、実用性に乏し
いので好ましくない。また、370℃を越えても、結晶
化が遅く、さらに樹脂の溶融か始まるために、樹脂同士
の溶着または分解か起こり易くなり好ましくない。特に
好ましくは、290〜330℃である。
The heat treatment temperature is preferably 250 to 370°C. If the heat treatment temperature is less than 250° C., crystallization will be very slow and it will be impractical, so it is not preferable. Further, even if the temperature exceeds 370°C, crystallization is slow and the resin starts to melt, which is not preferable because welding or decomposition of the resins tends to occur. Particularly preferably, the temperature is 290 to 330°C.

熱処理時間は、熱処理温度および結晶化度により変わる
ので、特に限定するものではないか、通常は、1分〜5
0時間の熱処理を施す。1分未満ては充分な結晶化が起
こらず、後の押出量の変動、押出不能、気泡の生成が起
こるために好ましくない。また、50時間を越えると熱
による分解か起こり、変色、押出時の発泡の原因となる
ので好ましくない。特に実用的に好ましい加熱処理の時
間は30分〜IO時間程度である。
The heat treatment time varies depending on the heat treatment temperature and degree of crystallinity, so it is not particularly limited, and is usually 1 minute to 5 minutes.
Heat treatment is performed for 0 hours. If the time is less than 1 minute, sufficient crystallization will not occur, resulting in fluctuations in the amount of extrusion, inability to extrude, and generation of bubbles, which is not preferable. Further, if the time exceeds 50 hours, thermal decomposition may occur, causing discoloration and foaming during extrusion, which is not preferable. A particularly practically preferable heat treatment time is about 30 minutes to IO hours.

本発明に適用する一般式(1)で表される繰り返し構造
単位を有するポリイミドは、上記の条件により加熱処理
して、その結晶化度が通常5%以上のポリイミドペレッ
トとするか、結晶化度か5%以上のポリイミドペレット
を得るために、熱処理温度をさらに高くしたり、熱処理
時間をさらに延長したりする等の方法で、または熱処理
を2回以上繰り返してもよく、この場合、好ましい結果
か得られることもある。結晶化度か5%未満では押出時
の押出量が変動したり、または押出不能となったりして
発泡、ダイ粕等か生じるため好ましくない。結晶化度の
上限は特に規定しないが、熱処理して得られるペレット
の結晶化度は最大50%であり、好ましい結晶化度の範
囲は5〜50%、より好ましくは10〜50%である。
The polyimide having a repeating structural unit represented by the general formula (1) applied to the present invention is heat-treated under the above conditions to form polyimide pellets whose crystallinity is usually 5% or more, or In order to obtain polyimide pellets with a polyimide content of 5% or more, the heat treatment temperature may be further increased, the heat treatment time may be further extended, or the heat treatment may be repeated two or more times. Sometimes you can get it. If the crystallinity is less than 5%, the extrusion rate during extrusion may fluctuate or extrusion may become impossible, resulting in foaming, die residue, etc., which is not preferable. Although the upper limit of the degree of crystallinity is not particularly specified, the degree of crystallinity of the pellets obtained by heat treatment is at most 50%, and the preferable range of the degree of crystallinity is 5 to 50%, more preferably 10 to 50%.

熱処理は空気、あるいは窒素、炭酸ガス、ヘリウム、ネ
オンまたはアルゴン等の不活性ガス中で加熱する方法か
好ましく、ポリイミドの酸化劣化防止のため不活性ガス
中で熱処理することか特に好ましい。さらに、樹脂の部
分的な融着を防ぐために熱処理中には撹拌することか好
ましい。
The heat treatment is preferably carried out in air or an inert gas such as nitrogen, carbon dioxide, helium, neon or argon, and particularly preferably in an inert gas to prevent oxidative deterioration of the polyimide. Further, it is preferable to stir the resin during the heat treatment to prevent partial fusion of the resin.

本発明における成形加工用ポリイミドの結晶化度は密度
勾配管法により求められる。即ち、予め、ポリイミドの
溶融物を急冷して得られる非結晶物の密度と結晶化した
物のX線回折および構造解析からの結晶密度を求めてお
き、ポリイミド(試料)の密度を測定することで式(I
II)、、、、、  (1) により求めることかできる。
The degree of crystallinity of the polyimide for molding in the present invention is determined by the density gradient tube method. That is, the density of the amorphous material obtained by rapidly cooling the polyimide melt and the crystal density of the crystallized material are obtained from X-ray diffraction and structural analysis, and then the density of the polyimide (sample) is measured. and the formula (I
II) It can be obtained by (1).

なお、一般式(I)のポリイミドに炭素やガラスなとの
無機フィラー、顔料等の添加剤を結晶化が著しく抑制さ
れない範囲において含んでいても差し支えない。
Incidentally, the polyimide of the general formula (I) may contain additives such as inorganic fillers such as carbon and glass, and pigments as long as crystallization is not significantly inhibited.

本発明の方法においては、上記のようにして調製された
結晶化度を5%以上の結晶性のポリイミドペレットを周
知の溶融押出機に供給し、加熱溶融させて、ダイによっ
て成形賦与され、冷却固化されて、繊維、フィルム、シ
ート、被覆電線、板、棒、パイプ等に成形される。
In the method of the present invention, the crystalline polyimide pellets with a crystallinity of 5% or more prepared as described above are supplied to a well-known melt extruder, heated and melted, molded by a die, and cooled. It is solidified and formed into fibers, films, sheets, covered wires, plates, rods, pipes, etc.

この際にも、製造されたポリイミドペレットは溶融押出
機に供給する前にポリイミドの水分含有率を200pI
)m以下とすることが好ましい。ボリイミトの水分含有
率を2001)pm以下とするには、とくにその方法は
限定されないか、−船釣には100℃以上の温度でポリ
イミドか溶融しない温度、通常、350℃以下の温度で
3〜24時間保持する。さらに、その雰囲気を空気、窒
素等で置換することも効果的であり、さらに減圧下で処
理してもよい。
At this time, the moisture content of the polyimide was reduced to 200 pI before supplying the produced polyimide pellets to the melt extruder.
)m or less. In order to reduce the moisture content of polyimide to 2001) pm or less, there are no particular limitations on the method. Hold for 24 hours. Furthermore, it is effective to replace the atmosphere with air, nitrogen, etc., and furthermore, the treatment may be performed under reduced pressure.

溶融押出機での成形温度は、300〜450℃の範囲で
あり、好ましくは350〜430 ’Cである。成形温
度か300℃未満では樹脂が溶融せず、押出が困難であ
る。また、450℃を越えると、樹脂の分解が進行し、
分解発泡、ダイライン、分解粕等か発生し、製品の外観
、性能を損なうので好ましくない。
The molding temperature in the melt extruder is in the range of 300-450°C, preferably 350-430'C. If the molding temperature is less than 300°C, the resin will not melt and extrusion will be difficult. In addition, when the temperature exceeds 450℃, the decomposition of the resin progresses,
This is undesirable because decomposed foaming, die lines, decomposed sludge, etc. are generated, impairing the appearance and performance of the product.

い。stomach.

また、使用する溶融押出機は、広く用いられている通常
の型式のもので差し支えないか、ベント式または真空ホ
ッパーを備えたものが好ましく用いられる。
Further, the melt extruder used may be of a commonly used general type, or a vent type or one equipped with a vacuum hopper is preferably used.

〔実施例〕〔Example〕

以下、実施例により本発明をさらに詳しく説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

尚、実施例において記述したポリイミドの特性値の測定
法を以下に示す。
The method for measuring the characteristic values of polyimide described in the Examples is shown below.

(1)ガラス転移温度、融点 ガラス転移温度(Tg)、融点(Tm)はDSC法によ
り測定した。試料は約10mgとし、4℃/minの昇
温速度で測定し、Tmは融解曲線のピーク温度をもって
定義した。
(1) Glass transition temperature, melting point Glass transition temperature (Tg) and melting point (Tm) were measured by DSC method. The sample was about 10 mg and measured at a heating rate of 4°C/min, and Tm was defined as the peak temperature of the melting curve.

(2)溶融粘度 高化式フローテスターを用いて測定し、200sec〜
1の見かけ打所速度、400℃での見掛は粘度を算出し
た。
(2) Measured using a melt viscosity enhancement type flow tester, 200 seconds ~
The apparent viscosity at an apparent printing speed of 1 and 400° C. was calculated.

(3)結晶化度 トルエン−四塩化炭素系密度勾配管法により23℃での
密度(、Xobs)を測定し、非結晶密度(Xam)と
結晶密度(Xcr)とから次式で算出した。
(3) Crystallinity Density (Xobs) at 23°C was measured by toluene-carbon tetrachloride density gradient tube method, and calculated from the amorphous density (Xam) and crystal density (Xcr) using the following formula.

ここで、 合成例1の結晶密度  1.459 g/aIr非結晶
密度  1.327 glcd 合成例合成語2密度  1.438 g/at非結晶密
度  1.292 g/al 〔合成例1〕 かきまぜ機、還流冷却器および窒素導入管を備えた反応
容器に、4.4゛−ビス(3−アミノフェノキシ)ビフ
ェニル368.4g (1モル)と、N、N−ジメチル
アセトアミド2344gを装入し、窒素雰囲気下に、ピ
ロメリット酸二無水物218.1g  (1モル)を溶
液温度の上昇に注意しながら分割して加え、室温で約2
0時間かきまぜた。かくして得られたポリアミド酸溶液
に30.3g (0,3モル)のトリエチルアミンおよ
び30.6g (0,3モル)の無水酢酸を約30分か
けて添加し、その後約30分かきまぜた。この溶液に2
000gのメタノールを装入し、30℃においてポリイ
ミド粉をろ別した。得られたポリイミド粉をメタノール
およびアセトンで洗浄した後、窒素雰囲気下に、300
℃で8時間乾燥して517gのポリイミドの粉を得た。
Here, Crystal density of synthesis example 1 1.459 g/aIr Amorphous density 1.327 glcd Synthesis example compound word 2 density 1.438 g/at Amorphous density 1.292 g/al [Synthesis example 1] Stirrer A reaction vessel equipped with a reflux condenser and a nitrogen inlet tube was charged with 368.4 g (1 mol) of 4.4'-bis(3-aminophenoxy)biphenyl and 2344 g of N,N-dimethylacetamide, and nitrogen was added. Under an atmosphere, 218.1 g (1 mol) of pyromellitic dianhydride was added in portions while being careful not to increase the solution temperature, and about 218.1 g (1 mol) of pyromellitic dianhydride was added at room temperature.
Stirred for 0 hours. To the thus obtained polyamic acid solution, 30.3 g (0.3 mol) of triethylamine and 30.6 g (0.3 mol) of acetic anhydride were added over about 30 minutes, followed by stirring for about 30 minutes. Add 2 to this solution
000 g of methanol was charged, and the polyimide powder was filtered out at 30°C. After washing the obtained polyimide powder with methanol and acetone, it was heated for 300 minutes under a nitrogen atmosphere.
It was dried at ℃ for 8 hours to obtain 517 g of polyimide powder.

得られたポリイミドはTgが248℃1Tmか386℃
1結晶化度35%の結晶性樹脂であり、溶融粘度は45
00ボイズてあった。
The obtained polyimide has a Tg of 248℃1Tm or 386℃
1 It is a crystalline resin with a crystallinity of 35% and a melt viscosity of 45%.
There was a 00 voice.

得られたポリイミド粉を180℃て24時間乾燥し、2
5Io+!ベント式押出機により、410℃で溶融し、
直径2mのノズルより押出し、自然放冷により約1.8
市φのストランドを得た。これを長さ方向に約3mmに
切断しベレットを得た。このポリイミド樹脂ベレットは
DSCにおいて冷結晶化のピーク(Tcc)が296℃
にみられ、さらに、密度は1.327g/c&であり結
晶化度0%の非結晶性の樹脂であった。
The obtained polyimide powder was dried at 180°C for 24 hours, and
5Io+! Melted at 410°C using a vented extruder,
Extruded through a 2m diameter nozzle and allowed to cool naturally to approximately 1.8
Got a strand of cityφ. This was cut into approximately 3 mm pieces in the length direction to obtain pellets. This polyimide resin pellet has a cold crystallization peak (Tcc) of 296°C in DSC.
Further, the resin had a density of 1.327 g/c&, and was an amorphous resin with a crystallinity of 0%.

このベレットをポリイミドAとする。This pellet is called polyimide A.

〔合成例2〕 かきまぜ機、還流冷却器および窒素導入管を備えた反応
容器に、4,4°−ビス(3−アミノフェノキシフェニ
ル)−1,l、 1.3.3.3−ヘキサフルオロプロ
パン259.2g (0,5モル)と、m−クレゾール
1713gを装入し、窒素雰囲気下にピロメリット酸二
無水物109、1g (0,5モル)を溶液温度の上昇
に注意しなから分割して加え、室温で約2時間かきまぜ
た。
[Synthesis Example 2] 4,4°-bis(3-aminophenoxyphenyl)-1,l, 1.3.3.3-hexafluoro was added to a reaction vessel equipped with a stirrer, a reflux condenser, and a nitrogen introduction tube. 259.2 g (0.5 mol) of propane and 1713 g of m-cresol were charged, and 109.1 g (0.5 mol) of pyromellitic dianhydride was added in a nitrogen atmosphere, taking care not to increase the solution temperature. The mixture was added in portions and stirred at room temperature for about 2 hours.

続いて、窒素雰囲気下に、加熱昇温した。60℃付近で
橙色透明溶液となり、更に昇温し、 150℃でかきま
ぜ続けると約1時間で淡黄色のボリイミド粉か徐々に析
出し始めた。加熱下で、5時間かきまぜた後、濾過して
ポリイミド粉を得た。この粉をメタノールおよびアセト
ンで洗浄した後、180℃で24時間減圧乾燥し、更に
、窒素雰囲気下に300℃で8時間乾燥して319gの
ポリイミドの粉を得た。
Subsequently, the temperature was increased under nitrogen atmosphere. It turned into an orange transparent solution at around 60°C, and when the temperature was further raised and stirring was continued at 150°C, pale yellow polyimide powder began to gradually precipitate in about 1 hour. After stirring under heating for 5 hours, the mixture was filtered to obtain polyimide powder. After washing this powder with methanol and acetone, it was dried under reduced pressure at 180° C. for 24 hours, and further dried at 300° C. for 8 hours in a nitrogen atmosphere to obtain 319 g of polyimide powder.

得られたポリイミドはTgか271″C,Tmか390
℃1結晶化度28%の結晶性樹脂であり、溶融粘度は6
500ボイズであった。
The obtained polyimide has a Tg of 271″C and a Tm of 390
It is a crystalline resin with a degree of crystallinity of 28% at ℃1, and a melt viscosity of 6
It was 500 voices.

得られたポリイミド粉を180℃て24時間乾燥し、2
5mmベント式押出機により、410″Cで溶融し、直
径2俳のノズルより押出し、自然放冷により約1.8仇
のストランドを得た。これを長手方向に約3msに切断
しペレットを得た。このポリイミド樹脂ペレットはDS
Cにおいて冷結晶化のピーク(Tcc)が296℃にみ
られ、さらに、密度1.292g/ cnl’で結晶化
度096の非結晶性の樹脂であった。このペレットをポ
リイミドBとする。
The obtained polyimide powder was dried at 180°C for 24 hours, and
It was melted at 410"C using a 5mm vented extruder, extruded through a nozzle with a diameter of 2mm, and left to cool naturally to obtain a strand of about 1.8mm. This was cut into lengths of about 3ms in the longitudinal direction to obtain pellets. This polyimide resin pellet is DS
A cold crystallization peak (Tcc) was observed at 296°C in C, and it was an amorphous resin with a density of 1.292 g/cnl' and a crystallinity of 096. This pellet will be referred to as polyimide B.

〔合成例3〕 4.4−ビス(3−アミノフェノキシ)ビフェニルの代
わりに4.4′−ビス(3−アミノフェノキシフェニル
)−スルフィト400.5g (1モル)を使用した以
外は合成lと同様にしてポリイミトペレソトを得た。こ
のペレットのDSC法によるガラス転移温度は230℃
てあり、結晶融点は認められなかった。
[Synthesis Example 3] Same as Synthesis 1 except that 400.5 g (1 mol) of 4.4′-bis(3-aminophenoxyphenyl)-sulfite was used instead of 4.4-bis(3-aminophenoxyphenyl)biphenyl. Polyimitopelesoto was obtained in the same manner. The glass transition temperature of this pellet by DSC method is 230°C
No crystalline melting point was observed.

このペレットをポリイミドCとする。This pellet is called polyimide C.

〔実施例1〜5〕 ポリイミドA2kgをステンレススチール製の容器に入
れ、密閉型の熱風式乾燥機に入れた。乾燥機内を充分に
窒素で置換し、In/minで窒素を流しなから310
℃て5時間熱処理し、室温まで戻した。熱処理後のペレ
ットの結晶化度は密度法で計算したところ31%であっ
た。
[Examples 1 to 5] 2 kg of polyimide A was placed in a stainless steel container and placed in a closed hot air dryer. The inside of the dryer was sufficiently replaced with nitrogen, and the nitrogen was flowed at a rate of 310 m/min.
The mixture was heat-treated at ℃ for 5 hours and then returned to room temperature. The crystallinity of the pellets after heat treatment was calculated by the density method and was 31%.

このペレットを180℃で24時間乾燥し、真空ホッパ
ーを備えた25叩押出機に供給し、410℃て加熱溶融
し、幅150叩のスリットダイ(隙間0.5mm)から
押出し、空中で自然放冷し、厚さ約0.5!IImのシ
ートを得た。この時、スクリュー回転数を第1表に示す
ように5〜+50 rpmの範囲で変化させたが、押出
量変動、気泡発生等の問題はなんら認められなかった。
The pellets were dried at 180°C for 24 hours, fed to a 25° extruder equipped with a vacuum hopper, heated and melted at 410°C, extruded through a 150° wide slit die (gap 0.5 mm), and released naturally in the air. Cool, about 0.5 thick! A sheet of IIm was obtained. At this time, the screw rotation speed was varied in the range of 5 to +50 rpm as shown in Table 1, but no problems such as fluctuation in the extrusion amount or generation of bubbles were observed.

結果の詳細を第1表に示す。Details of the results are shown in Table 1.

〔実施例6〜10〕 ポリイミドAを熱処理の温度、時間を変えて、空気中で
処理しくこれらの例では、熱処理後すぐに乾燥機から取
り出し、撹拌しなから常温の空気を吹きつけて冷却した
)結晶化度の異なる5種のペレットを得た。これらのペ
レットを用いて、実施例2と同様な方法でシートを得た
。その結果、押出量の変動、気泡発生等の問題は何ら認
められなかった。結果の詳細を第1表に示す。
[Examples 6 to 10] Polyimide A was heated in air by changing the temperature and time. In these examples, the polyimide A was taken out of the dryer immediately after the heat treatment, and cooled by blowing room temperature air without stirring. Five types of pellets with different degrees of crystallinity were obtained. A sheet was obtained in the same manner as in Example 2 using these pellets. As a result, no problems such as fluctuation in extrusion amount or generation of bubbles were observed. Details of the results are shown in Table 1.

〔比較例1〜5〕 ポリイミドAを熱処理せずそのまま実施例1と同様な方
法で、第1表に示すスクリュー回転数で、シート成形を
行った。その結果、押出量の変動、押出不能、気泡の発
生が認められた。結果の詳細を第1表に示す。
[Comparative Examples 1 to 5] Polyimide A was not heat-treated and sheet-molded in the same manner as in Example 1 at the screw rotation speed shown in Table 1. As a result, fluctuations in extrusion rate, inability to extrude, and generation of bubbles were observed. Details of the results are shown in Table 1.

〔比較例6〕 ポリイミド八を第1表に示す条件で熱処理し、結晶化度
3.5%のペレットを得た。これを実施例2と同様な方
法で、シート成形を行った。その結果、押出量の変動、
気泡の発生が認められた。結果の詳細を第1表に示す。
[Comparative Example 6] Polyimide 8 was heat treated under the conditions shown in Table 1 to obtain pellets with a crystallinity of 3.5%. This was formed into a sheet in the same manner as in Example 2. As a result, fluctuations in the extrusion rate,
Generation of bubbles was observed. Details of the results are shown in Table 1.

〔実施例If) 実施例2と同様な熱処理をしたペレットを用い、溶融押
出時に直径0.3mmのノズルを押出機に取りつけ、引
き取り速度を2m/minとした以外は実施例2と同様
な方法で原糸を得た。その結果、平均押出量7.5 g
/min、変動幅3%と押出量の変動は少なかった。ま
た、糸切れの問題もなかった。
[Example If] The same method as in Example 2 except that pellets that had been heat-treated in the same manner as in Example 2 were used, a nozzle with a diameter of 0.3 mm was attached to the extruder during melt extrusion, and the take-up speed was 2 m/min. The raw yarn was obtained. As a result, the average extrusion amount was 7.5 g.
/min, the fluctuation width was 3%, and the fluctuation in the extrusion amount was small. Also, there was no problem with thread breakage.

〔比較例7〕 ポリイミドAを用いた以外は実施例11と同様な方法で
原糸を得ようと試みたが、糸切れか頻繁に発生し、糸を
得ることができなかった。
[Comparative Example 7] An attempt was made to obtain yarn in the same manner as in Example 11 except that polyimide A was used, but yarn breakage occurred frequently and yarn could not be obtained.

〔実施例12〕 実施例2と同様なペレットを用いて、溶融押出時に直径
20Bのノズルを取りつけ、約50℃に保ったサイジン
グダイにより、直径20mmの丸棒を製作した。その結
果、直径の変動は約5%であり、内部に気泡がなく、良
好な成形品を得た。
[Example 12] Using the same pellets as in Example 2, a round bar with a diameter of 20 mm was produced using a sizing die that was fitted with a nozzle of 20 B in diameter during melt extrusion and kept at about 50°C. As a result, the variation in diameter was about 5%, there were no bubbles inside, and a good molded product was obtained.

〔比較例8〕 ポリイミドAを用いた以外は、実施例12と同様な方法
て丸棒を得ようと試みた。しかし、押出量の変動か著し
く、また内部に著しい気泡を生し、丸棒とはいえないも
のであった。
[Comparative Example 8] An attempt was made to obtain a round bar in the same manner as in Example 12, except that polyimide A was used. However, the extrusion rate fluctuated significantly, and significant air bubbles were formed inside the bar, so it could not be called a round bar.

(実施例+3) ポリイミドBを260℃て28時間、310℃で5時間
、窒素雰囲気下で熱処理したところ、結晶化度23%の
結晶性のベレットか得られた。
(Example +3) When polyimide B was heat-treated at 260° C. for 28 hours and at 310° C. for 5 hours in a nitrogen atmosphere, a crystalline pellet with a crystallinity of 23% was obtained.

このベレットを180℃で24時間乾燥し、25mm押
出機に供給し、400℃で加熱溶融し、幅150mmの
スリットダイ(隙間0.5mm)から押出し、空中で自
然・放冷し、約0.5auのシートを得た。この時、ス
クリュー回転数10rpmで行ったか、押出量変動が3
%であり、気泡等の問題はなんら認められなかった。
The pellets were dried at 180°C for 24 hours, fed to a 25mm extruder, heated and melted at 400°C, extruded through a 150mm wide slit die (gap 0.5mm), allowed to cool naturally in the air, and then heated to about 0.0000°C. A sheet of 5au was obtained. At this time, the screw rotation speed was 10 rpm, or the extrusion amount fluctuation was 3.
%, and no problems such as bubbles were observed.

〔実施例14〜16〕 ポリイミドBを第1表に示す条件(温度、時間)で、実
施例1に準じて熱処理し結晶化度の異なる3種のベレッ
トを得た。これらのベレットを180″Cで24時間乾
燥し、25mm押出機に供給し、400℃で加熱溶融し
、幅150−のスリットダイ(隙間0.5−)から押出
し、空中で自然放冷し、約0.5mmのシートを得た。
[Examples 14 to 16] Polyimide B was heat treated according to Example 1 under the conditions (temperature, time) shown in Table 1 to obtain three types of pellets with different degrees of crystallinity. These pellets were dried at 180"C for 24 hours, fed to a 25mm extruder, heated and melted at 400°C, extruded through a 150-wide slit die (gap 0.5-), allowed to cool naturally in the air, A sheet of about 0.5 mm was obtained.

この時、スクリュー回転数をIOrpmで行ったか、押
出量の変動、気泡等の問題は何ら認められなかった。結
果の詳細を第1表に示す。
At this time, the screw rotation speed was set at IOrpm, and no problems such as fluctuations in the extrusion amount or bubbles were observed. Details of the results are shown in Table 1.

〔比較例9〜10) ポリイミドBをそのまま用いるか(比較例10)あるい
は実施例1と同様な方法てポリイミドBを280℃で5
分間熱処理し結晶化度2.596のベレットを得た(比
較例9)。これらのベレットを実施例14と同様な方法
で押出しシートを得た。しかし押出量の変動、気泡の発
生が認められた。結果の詳細を第1表に示す。
[Comparative Examples 9 to 10] Polyimide B was used as it was (Comparative Example 10), or polyimide B was heated to
A pellet with a crystallinity of 2.596 was obtained by heat treatment for a minute (Comparative Example 9). These pellets were extruded into sheets in the same manner as in Example 14. However, fluctuations in the extrusion amount and generation of bubbles were observed. Details of the results are shown in Table 1.

〔実施例17) 実施例13で使用したベレットを用い、熔融押出時に直
径0.3mmのノズルを押出機に取りつけ、引き取り速
度を2m/minとした以外は実施例2と同様な方法で
原糸を得た。
[Example 17] Raw yarn was produced in the same manner as in Example 2, except that the pellet used in Example 13 was used, a nozzle with a diameter of 0.3 mm was attached to the extruder during melt extrusion, and the take-up speed was 2 m/min. I got it.

その結果、平均押出J16.8g/min、変動幅6%
と押出量の変動は少なかった。また、糸切れの問題もな
かった。
As a result, the average extrusion J was 16.8 g/min, and the fluctuation range was 6%.
and the fluctuation of the extrusion amount was small. Also, there was no problem with thread breakage.

(比較例II) ポリイミドBを用いた以外は実施例17と同様な方法で
原糸を得ようと試みたか、糸切れが頻繁に発生し、糸を
得ることができなかった。
(Comparative Example II) An attempt was made to obtain a raw yarn in the same manner as in Example 17 except that polyimide B was used, or yarn breakage occurred frequently and no yarn could be obtained.

〔実施例18] 実施例13で使用したベレットを用いて、溶融押出時に
直径20n+I11のノズルを取りつけ、約50℃に保
ったサイジングダイにより、直径20閤の丸棒を製作し
た。その結果、直径の変動は約8%であり、内部に気泡
がなく、良好な成形品を得た。
[Example 18] Using the pellet used in Example 13, a round bar with a diameter of 20 mm was manufactured using a sizing die that was fitted with a nozzle with a diameter of 20n+I11 and maintained at about 50° C. during melt extrusion. As a result, the variation in diameter was about 8%, there were no bubbles inside, and a good molded product was obtained.

〔比較例12) ポリイミドBを用いた以外は、実施例18と同様な方法
で丸棒を得ようと試みた。しかし、押出量の変動が著し
く、また内部に著しい気泡を生し、丸棒とはいえないも
のであった。
[Comparative Example 12] An attempt was made to obtain a round bar in the same manner as in Example 18, except that polyimide B was used. However, the extrusion rate fluctuated significantly, and significant air bubbles were formed inside the bar, so it could not be called a round bar.

〔比較例13〕 ポリイミドCを窒素雰囲気下、250℃て48時間熱処
理したか、DSC法およびX線法により結晶性は認めら
れなかった。熱処理したポリイミドCを180℃で24
時間乾燥し、実施例2と同様の方法でシート成形を行っ
た。その結果、平均押出f17,5g/nin、変動幅
53%で押出量の変動か大きく、また得られたシートに
は気泡およびダイ粕の発生か認められた。
[Comparative Example 13] Polyimide C was heat-treated at 250° C. for 48 hours in a nitrogen atmosphere, and no crystallinity was observed by DSC and X-ray methods. Heat-treated polyimide C at 180℃ for 24 hours
After drying for a while, sheet molding was performed in the same manner as in Example 2. As a result, the average extrusion rate was f17.5 g/nin, the variation range was 53%, and the extrusion amount fluctuated greatly, and bubbles and die residue were observed in the obtained sheet.

〔発明の効果〕 本発明におけるポリイミド横断の押出成形法は、押出成
形時の押出量の変動、押出不能等の押出成形における根
本的な問題を解決するばかりでなく、樹力旨とともに輸
送された気体か樹脂の溶融に伴い排除される結果、製品
への気体の混入あるいはそれによってもたらされるダイ
粕等の二次的な問題を解決することかでき、ポリイミド
樹脂の押出成形に極めて有効である。
[Effects of the Invention] The extrusion molding method for cross-polyimide in the present invention not only solves fundamental problems in extrusion molding, such as fluctuations in the extrusion amount during extrusion molding and the inability to extrude, but also solves As the gas is removed as the resin melts, it is possible to solve secondary problems such as gas contamination into the product and die scum caused by it, and is extremely effective in extrusion molding of polyimide resin.

Claims (1)

【特許請求の範囲】 1、一般式〔 I 〕 ▲数式、化学式、表等があります▼ 〔 I 〕 (式中、Xは単結合またはヘキサフルオロイソプロピリ
デン基を示す)で表される繰り返し構造単位を有するポ
リイミドをペレット状に加工し、これを加熱処理して結
晶化度が5%以上のポリイミドとして溶融押出機に供給
することを特徴とするポリイミドの押出成形法。 2、加熱処理を250〜370℃の温度で実施する請求
項1記載の方法。 3、結晶化度が5〜50%である請求項1記載の方法。 4、重合して得られた一般式〔 I 〕 ▲数式、化学式、表等があります▼ 〔 I 〕 (式中、Xは単結合またはヘキサフルオロイソプロピリ
デン基を示す)で表される繰り返し構造単位を有するポ
リイミドを、ペレット状に加工し、ついでこれを加熱処
理し結晶化度を5%以上とした押出成形用ポリイミドペ
レット。 5、加熱処理が250〜370℃の温度である請求項4
記載のポリイミドペレット。 6、結晶化度が5〜50%である請求項4のポリイミド
ペレット。
[Claims] 1. A repeating structural unit represented by the general formula [I] ▲There are mathematical formulas, chemical formulas, tables, etc.▼ [I] (In the formula, X represents a single bond or a hexafluoroisopropylidene group) 1. A polyimide extrusion molding method, which comprises processing polyimide having a polyimide into pellets, heat-treating the pellets, and supplying the polyimide having a crystallinity of 5% or more to a melt extruder. 2. The method according to claim 1, wherein the heat treatment is carried out at a temperature of 250 to 370°C. 3. The method according to claim 1, wherein the crystallinity is 5 to 50%. 4. General formula obtained by polymerization [I] ▲There are mathematical formulas, chemical formulas, tables, etc.▼ [I] (In the formula, X represents a single bond or a hexafluoroisopropylidene group) Repeating structural unit represented by A polyimide pellet for extrusion molding in which a polyimide having the following formula is processed into pellets, which are then heat-treated to have a crystallinity of 5% or more. 5.Claim 4, wherein the heat treatment is performed at a temperature of 250 to 370°C.
Polyimide pellets as described. 6. The polyimide pellet according to claim 4, which has a crystallinity of 5 to 50%.
JP2075452A 1989-04-05 1990-03-27 Polyimide extrusion molding method and polyimide pellets used in this method Expired - Lifetime JPH0798348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2075452A JPH0798348B2 (en) 1989-04-05 1990-03-27 Polyimide extrusion molding method and polyimide pellets used in this method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8488989 1989-04-05
JP1-84889 1989-04-05
JP2075452A JPH0798348B2 (en) 1989-04-05 1990-03-27 Polyimide extrusion molding method and polyimide pellets used in this method

Publications (2)

Publication Number Publication Date
JPH0342224A true JPH0342224A (en) 1991-02-22
JPH0798348B2 JPH0798348B2 (en) 1995-10-25

Family

ID=26416580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2075452A Expired - Lifetime JPH0798348B2 (en) 1989-04-05 1990-03-27 Polyimide extrusion molding method and polyimide pellets used in this method

Country Status (1)

Country Link
JP (1) JPH0798348B2 (en)

Also Published As

Publication number Publication date
JPH0798348B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
US4426479A (en) Poly-p-phenylene sulfide resin composition and film made thereof
US6159406A (en) Process for rapid crystallization of polyesters and co-polyesters via in-line drafting and flow-induced crystallization
KR20010024527A (en) Polypropylene composition useful for making solid state oriented film
EP0409466A2 (en) Process for the preparation of a polyimide film
US4448925A (en) Injection moldable polymers containing phthalic anhydride
US4451422A (en) Method for producing polyethylene terephthalate packing material
KR940003165B1 (en) Method for extrusion molding of polyimide and polyimide pellet used therein
JPH0737066B2 (en) Method for producing low-viscosity polyester sheet
JPH0331331B2 (en)
KR910005206B1 (en) Method of manufacturing polybutylene telephthalate resin films
JPH0625519A (en) Polyethylene terephthalate composition, method for producing its molded product and method for using the same
US5496919A (en) Process for production of styrene-based polymer moldings
JPH0342224A (en) Method for extrusion molding of polyimide and polyimide pellet used therein
US5206339A (en) Extrusion process of polyimide and polyimide pellet used for the process
JP3888512B2 (en) Production of reduced gas permeable polyalkylene terephthalate films by strain-induced crystallization
EP0325125B1 (en) Styrene-based polymer moldings and process for production thereof
CN113563700A (en) Polylactic acid composition containing hydrazide type nucleating agent and preparation method thereof
ITMI962159A1 (en) PERFECTED PROCESS FOR THE DIMENSIONAL STABILIZATION OF POLYETHYLENTEREPHTHALATE PRODUCTS
JP3380774B2 (en) Products made of glass fiber reinforced polyester resin
US5264534A (en) Oriented semicrystalline polymer films
JP2000326405A (en) Production of film from thermoplastic liquid crystal polymer
JPH03255162A (en) Polyarylene thioether resin composition and its extrusion-molded article
RU2755476C1 (en) Crystallisable fusible polyetherimide composite
KR100601757B1 (en) Process for manufacturing Polytrimethyleneterephthalate films
JP3796010B2 (en) Ethylene vinyl acetate copolymer saponified resin sheet and method for producing stretched film thereof