JP3796010B2 - Ethylene vinyl acetate copolymer saponified resin sheet and method for producing stretched film thereof - Google Patents

Ethylene vinyl acetate copolymer saponified resin sheet and method for producing stretched film thereof Download PDF

Info

Publication number
JP3796010B2
JP3796010B2 JP17654197A JP17654197A JP3796010B2 JP 3796010 B2 JP3796010 B2 JP 3796010B2 JP 17654197 A JP17654197 A JP 17654197A JP 17654197 A JP17654197 A JP 17654197A JP 3796010 B2 JP3796010 B2 JP 3796010B2
Authority
JP
Japan
Prior art keywords
stretching
resin
vinyl acetate
acetate copolymer
resin sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17654197A
Other languages
Japanese (ja)
Other versions
JPH115246A (en
Inventor
和久 宮下
弘喜 午菴
雅士 長谷川
茂道 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP17654197A priority Critical patent/JP3796010B2/en
Publication of JPH115246A publication Critical patent/JPH115246A/en
Application granted granted Critical
Publication of JP3796010B2 publication Critical patent/JP3796010B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、エチレン酢酸ビニル共重合体けん化樹脂シート及びその延伸フイルムの製造方法に関するものであり、詳しくは、高ガスバリヤー性で且つ優れた強靭性を兼ね備えたエチレン酢酸ビニル共重合体けん化樹脂シート及びその延伸フイルムの安定な製造方法に関するものである。
【0002】
【従来の技術】
エチレン酢酸ビニル共重合体けん化樹脂(以下、けん化樹脂と略記する)は、酸素ガスに対するバリヤー性が極めて優れ、且つ、透明性、耐油性にも優れている。しかしながら、けん化樹脂は、熱安定性が悪く、溶融押出しの際、樹脂が着色したり、ゲルが発生する。そして、押し出された溶融樹脂シートの表面に荒れが発生する。また、冷却して得られる樹脂シートを延伸処理したり熱処理する際、上記のゲル部より破断を起こし、粘度上昇により押出機のトルクが上昇し、押し出しが不能となることもあり、長時間の連続運転を行なうのが困難である。
【0003】
上記の問題点は、樹脂の粘着を防ぐために溶融押出装置の樹脂が接触する部分にクロムメッキを施したり、樹脂の滞留を減らすためメルトラインの形状を出来るだけ単純化する等の対策を行なっても、十分には解消されない。
【0004】
上記の様なゲルの発生を防ぐ方法として、特開昭53−88067号公報や特公昭47−29578号公報には、樹脂100重量部当たり15〜60重量部の水分が含有されたけん化樹脂を溶融した後、80〜120℃で押し出して未延伸フイルムを製造する方法が記載されている。
【0005】
しかしながら、上記の方法で製造した未延伸フィルムは、引張強度などの物性が劣る。斯かる物性を改良するため、押出後に水分を除去して後に延伸する場合、水分を除去している間にけん化樹脂の結晶化が進み、後の延伸処理工程が不安定となる。
【0006】
【発明が解決しようとする課題】
本発明は、上記実情に鑑みなされたものであり、その目的は、高ガスバリヤー性と優れた強靭性を兼ね備えたエチレン酢酸ビニル共重合体けん化樹脂のシート及びその延伸フイルムを安定的に製造し得る製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題達成のため、種々検討を進めた結果、含水率が10〜50重量%に調整された樹脂を使用し、溶融樹脂シートを急冷することにより延伸後の引張強度が改善されることに想到し、本発明を完成した。すなわち、本発明の第一の要旨は、エチレン含有率が10〜60モル%且つけん化度が90モル%以上であって、含水率が10〜50重量%に調整されたエチレン酢酸ビニル共重合体けん化樹脂を溶融押出装置で溶融混練し、ダイから90〜110℃で押し出しし、押し出された溶融樹脂シートを40℃以下の冷却ロールに密着させて急冷することを特徴とするエチレン酢酸ビニル共重合体けん化樹脂シートの製造方法に存する。そして、本発明の第二の要旨は、上記のエチレン酢酸ビニル共重合体けん化樹脂シートを少なくとも1方向に延伸することを特徴とするエチレン酢酸ビニル共重合体けん化樹脂延伸フィルムの製造方法に存する。
【0008】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明の第一の要旨に係る発明(第一発明)は、けん化樹脂を溶融押し出しし、得られた溶融樹脂シートを冷却ロールに密着して急冷し、樹脂シートを得ることから成る。
【0009】
上記のけん化樹脂は、通常、エチレン酢酸ビニル共重合体をけん化して製造される。けん化樹脂中のエチレン含有量は、10〜60モル%、好ましくは20〜50モル%であり、酢酸ビニル成分のけん化度は、90モル%以上、好ましくは95モル%以上である。エチレン含有量が60モル%を超える場合は、酸素遮断性や印刷適性などの特性が劣る。また、けん化度が90モル%未満の場合は、酸素遮断性や耐湿性が低下する。
【0010】
なお、けん化樹脂には、20モル%以下の範囲において、(1)プロピレン、イソブテン、αーオクテン、αードデセン、αーオクタデセン等のαーオレフィン、(2)不飽和カルボン酸、その塩、部分アルキルエステル又は完全アルキルエステル、(3)アクリロニトリル等のニトリル、(4)カプラミド等のアミド、(5)無水マレイン酸等の無水物、(6)不飽和スルホン酸またはその塩などをコモノマーとして含んでいてもよい。
【0011】
けん化樹脂は、含水率が10〜50重量%、好ましくは25〜35重量%に調整されて溶融押出装置に供給される。含水率が10重量%未満の場合は、水分による押し出し時の安定効果が少なく、逆に、含水率が50重量%を超える場合は、溶融押出する際、樹脂と水分の一部が分離し易く、その結果、押出が不安定になる。
【0012】
上記の含水率の調整方法としては、例えば、(1)けん化樹脂の製造工程において、乾燥条件を調節する方法、(2)けん化樹脂を熱水中で処理(レトルト処理)する方法、(3)けん化樹脂と水とを二軸押出機などで混練する方法が挙げられる。
【0013】
溶融押出装置のスクリューとしては、一般的なフルフライトスクリューを使用できるが、混練効果を向上させるため、ミキシングゾーン付きのスクリューが好ましく、二軸タイプの溶融押出装置がより好ましい。
【0014】
後述のダイ出口に到る迄のけん化樹脂の溶融温度は、ダイ出口において制御されるけん化樹脂の温度とは無関係に設定可能であるが、樹脂の熱劣化やエネルギー消費の観点から溶融混練が十分で且つ押し出せる範囲内で低い方が好ましく、例えば、150℃以下である。
【0015】
また、けん化樹脂のメルトラインには、必要に応じてギヤポンプ等の定量吐出ポンプ、フィルター等の濾過装置を組み込むことが出来る。また、溶融樹脂の押出口であるダイとしては、通常、Tダイが使用される。その際、ダイのリップ部に溶融樹脂の滞留が出来るだけ少なくなる様に考慮されたダイを選択するのが好ましい。
【0016】
ダイから押し出す際のけん化樹脂の温度は90〜110℃の範囲に制御する。溶融混練温度が110℃を超える場合は、ダイ出口に到達する前のメルトラインにおいて熱交換器などを使用して上記の温度範囲に冷却する。押出温度が110℃を超える場合は、ダイから樹脂が押し出される際、樹脂中の水分が発泡し、フィルムに孔が穿き易い。また、押出温度が90℃未満の場合は、溶融樹脂の粘度が高いため押出機への負荷が大きくなる。
【0017】
上記の様にして押し出された溶融樹脂シートは、40℃以下、好ましくは35℃以下の冷却ロールに密着させて急冷する。温度が40℃を超える場合は、次の様な問題がある。すなわち、けん化樹脂の含有水分により結晶化が進まず、その結果、透明性の良好な樹脂シートを得ることが出来、さらに、後工程の延伸処理も全く問題なく行なうことが出来るが、得られる延伸フィルムの引張強度が低くなる。上記の冷却ロール温度の下限は通常10℃程度である。
【0018】
本発明の第二の要旨に係る発明(第二発明)は、上記の急冷により得られるシートを延伸処理することから成る。斯かる延伸により、透明性およびガスバリヤー性が優れ、しかも、高強度のフィルムが得られる。
【0019】
一軸方向のみに延伸処理する場合には、通常、ロール延伸法が好適に採用される。この場合、延伸温度は通常45〜100℃であり、延伸倍率は、通常2.5〜8倍、好ましくは3〜8倍である。延伸倍率が2.5倍未満の場合は、延伸の効果が少なく、延伸フィルムの強度が劣る。また、延伸倍率が8倍を超える場合は、延伸中にフィルムの破断が多くなり、長時間安定して連続運転を行うのが困難である。
【0020】
また、二軸方向に延伸処理する場合、通常、逐次二軸延伸方式または同時二軸延伸方式が採用される。
【0021】
逐次二軸延伸方式の場合、第一段の延伸には、延伸装置として、通常、ロール式縦延伸機が使用される。この場合、延伸温度は通常40℃〜80℃であり、延伸倍率は、通常2.5〜8倍、好ましくは3〜8倍である。第二段の延伸には、延伸装置として、通常、テンター式横延伸機が使用される。この場合、延伸温度は通常60℃〜100℃であり、延伸倍率は、通常2.5〜8倍、好ましくは3〜8倍である。
【0022】
また、同時二軸延伸方式の場合には、延伸装置として、通常、テンター式同時二軸延伸機が使用される。この場合、延伸温度は通常60℃〜100℃であり、延伸倍率は、通常、縦横共に夫々2.5〜8倍、好ましくは3〜8倍である。
【0023】
上記の各二軸延伸処理において、各軸方向の延伸倍率が2.5倍未満の場合は、延伸の効果が少なく、フィルムの強度が劣り、また、延伸倍率が8倍を超える場合は、延伸中にフィルムの破断が多くなり、実用上長時間の連続運転が困難である。
【0024】
なお、一軸および二軸の各延伸温度は、上記の延伸温度の範囲内で、且つ、延伸処理工程中で含まれている水分を可能な限り蒸発除去し得る範囲に制御するのが好ましい。
【0025】
上記の様にして延伸して得られる延伸フイルムは、その後、熱処理することにより寸法安定性の優れた延伸フィルムとなる。斯かる熱処理は、通常、110℃以上、けん化樹脂の絶乾状態の融点より5℃低い温度以下の範囲で2〜10秒間行われる。斯かる条件範囲の中で温度および処理時間を適宜調節することにより、種々の熱水収縮率を持った延伸フィルムが得られる。
【0026】
以上の様にして得られるけん化樹脂の延伸フィルムは、酸素透過率が従来のけん化樹脂延伸フィルムに比べて劣らないばかりでなく、例えば、縦方向(MD)、横方向(TD)の夫々に20Kg/mm2以上の高い引張破断強度を実現することが出来、しかも、耐ボイル性も向上する。すなわち、本発明によれば、優れたガスバリヤー性を損なわず、しかも、引張破断強度および耐ボイル性が向上したけん化樹脂の延伸フィルムを得ることが出来、斯かる延伸フィルムは、食品包装、医療品包装、その他多くの包装分野に非常に有利な包装資材として使用することが出来る。
【0027】
【実施例】
以下、本発明を実施例により更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。
【0028】
実施例1
高圧容器中の120℃の熱水中においてエチレン含有量32モル%、けん化度99.5モル%のけん化樹脂(日本合成化学工業社製「ソアノールDC3203」)を5時間レトルト処理した後、高圧容器の底部から外径5mmのストランド状で溶融樹脂を押し出し、冷水中で冷却後、長さ5mmにカットしてペレットとした。このペレットに30℃の乾燥空気を1時間吹き付け、表面の水分を乾燥させた。水分計(ケット科学研究所製FD−620)でこのペレットの含水率を測定した結果、30.5重量%であった。
【0029】
コートハンガーTダイが具備された直径65mmの溶融押出機に上記のペレットを供給し、130℃で溶融混練した後、熱交換法により冷却した98℃の溶融樹脂を押し出し、次いで、25℃に冷却された直径800mmの冷却ロールに上記の溶融樹脂シートを密着させて急冷し、厚さが略300μの樹脂シートを得た。得られた樹脂シートを50℃に加熱した後、ロール式延伸機にて長さ方向(縦方向)に4倍に延伸して一軸延伸フィルムを得、次いで、テンター装置により、フィルム温度を90℃に加熱し、横方向に4.5倍に延伸した。得られた延伸フィルムを温度160℃の熱風中に4秒間通して熱処理し、厚み約12μの二軸延伸フィルムを得た。
【0030】
以上の様な溶融押出工程、延伸工程および熱処理工程を3週間継続して運転した。その間、フィルム表面の荒れやゲルの発生、延伸装置のトルクアップ等について観察した結果、溶融押出工程においてゲルの発生は殆どなく、順調に運転できた。上記の期間は連続加工性として表1に示した。
【0031】
上記の二軸延伸フィルムについて酸素透過率および引張破断強度を測定した。酸素透過率は、酸素透過率測定装置(モダンコントロール社製「OXTRAN100」)を使用し、25℃×50%RHの条件下で測定した。また、二軸延伸フィルムの引張破断強度は、オートグラフ(島津製作所製)を使用し、23℃×50%RHの環境下、チャック間50mm、試料幅10mm、引張速度50mm/分の条件により測定した。測定値を単位断面積あたりの荷重に換算して引張破断強度とし、その結果を表1に示した。
【0032】
実施例2
実施例1において、溶融樹脂シートの冷却に使用した冷却ロール温度を35℃とした以外は実施例1と同様にして、溶融押出、延伸および熱処理を行なった。その結果、溶融押出、延伸および熱処理は、全く問題なく、運転開始後3週間、ゲルの発生は殆どなく、順調に連続して運転することが出来た。得られた二軸延伸フィルムの酸素透過率、引張破断強度および連続加工期間を評価し、それらの結果を表1に示した。
【0033】
実施例3
エチレン32モル%のエチレン酢酸ビニル共重合体40重量部にメタノール70重量部および水酸化ナトリウム4重量部を加え、60℃で3時間加熱してけん化反応を行なった。得られたメタノール溶液をけん化樹脂濃度が40重量%になる様に濃縮し、得られた溶液100重量部当たり26重量部の水を添加し、メタノール−水混合溶媒系けん化樹脂溶液を得た。得られたけん化樹脂のけん化度は98.5モル%、エチレン含有量は32モル%であった。
【0034】
15℃に温調したメタノールの30重量%水溶液から成る凝固液中に、直径が5mmのノズルから上記のメタノール−水混合溶媒系けん化樹脂溶液を凝固液量の0.1重量倍となるまで押し出し、ストランド状に析出凝固させた。このストランドを水中に浸漬することにより、メタノール分を充分水に置換した後、ペレット状にカットした。このペレットに30℃の乾燥空気を4時間吹き付け、表面の水分を乾燥させた。このペレットの含水率を水分計(ケット科学研究所製「FD−620」)で測定した結果、31.5重量%であった。
【0035】
実施例1において、原料樹脂として上記のペレットを使用した以外は実施例1と同様にして、溶融押出、延伸処理および熱処理を行なった。その結果、運転開始後3週間の間、ゲルの発生は殆どなく、順調に連続運転することが出来た。得られた二軸延伸フィルムの酸素透過率、引張破断強度、フィルムの酸素透過率、引張破断強度および連続加工期間を実施例1の場合と同様にして評価し、それらの結果を表1に示した。
【0036】
比較例1
実施例1において、けん化樹脂のレトルト条件を100℃×4時間とした以外は実施例1と同様にして、けん化樹脂のペレットを製造した。乾燥したけん化樹脂のペレットの水分率は8重量%であった。このペレットを使用して実施例1と同様にして直径65mmの押出機にてシート状に溶融押出しを行なった。しかしながら、温度を上げないと樹脂が溶融せず、その結果、ダイ出口における樹脂温度が125℃になり、それに伴い、フィルムが発泡し、孔あきが多発した。
【0037】
比較例2
実施例1において、冷却ロール温度を70℃とした以外は実施例1と同様にして、溶融押出、延伸処理および熱処理を行なった。溶融押出、延伸処理および熱処理は全く問題なく行なうことが出来、押し出し開始後3週間経過した時点でもゲルの発生は殆どなく、順調に運転できた。得られた延伸フィルムの酸素透過率、引張破断強度および連続加工期間を評価し、その結果を表1に示した。その結果、引張破断強度が著しく低かった。
【0038】
比較例3
エチレン含有量32モル%、けん化度99.5モル%のエチレン酢酸ビニル共重合体けん化樹脂(日本合成化学工業社製「ソアノールDC3203」)(含水率0.5重量%)をレトルト処理しないでそのままコートハンガーTダイが具備された直径65mmの押出機に供給して樹脂温度230℃で溶融押し出しし、25℃に冷却した冷却ロールで急冷し、厚さが略135μの樹脂シートを得た。
【0039】
得られた樹脂シートを60℃に昇温後、ロール式延伸機にて縦方向に3倍に延伸し、次いで、90℃に加熱した後、横方向に3倍に延伸し、さらに、160℃で4秒間熱処理してけん化樹脂の二軸延伸フィルムを得た。しかしながら、押し出し開始後1週間運転を継続した頃、直径1mm程度のゲルの発生が多くなり、延伸中のフィルムの破断が多くなったため、そこで運転を中止した。得られた二軸延伸フィルムの酸素透過度および引張破断強度を評価し、それらの結果を連続加工期間と共に表1に示した。
【0040】
【表1】

Figure 0003796010
【0041】
【発明の効果】
以上説明した本発明によれば、高ガスバリヤー性で且つ優れた強靭性を兼ね備えたエチレン酢酸ビニル共重合体けん化樹脂のシート及びその延伸フイルムを安定的に製造することが出来る。すなわち、本発明によれば、特に、食品包装、医療・医薬包装、衣料包装、その他の包装材料として有用な上記のシート及びフイルムを安価に提供することが出来る。従って、本発明の工業的価値は大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ethylene vinyl acetate copolymer saponified resin sheet and a method for producing the stretched film, and more specifically, an ethylene vinyl acetate copolymer saponified resin sheet having high gas barrier properties and excellent toughness. And a method for stably producing the stretched film.
[0002]
[Prior art]
An ethylene vinyl acetate copolymer saponified resin (hereinafter abbreviated as saponified resin) has an extremely excellent barrier property against oxygen gas, and also has excellent transparency and oil resistance. However, the saponified resin has poor thermal stability, and the resin is colored or gel is generated during melt extrusion. And the roughness generate | occur | produces on the surface of the extruded molten resin sheet. In addition, when the resin sheet obtained by cooling is stretched or heat-treated, the gel part breaks, the torque of the extruder increases due to the increase in viscosity, and extrusion may be impossible. It is difficult to perform continuous operation.
[0003]
In order to prevent the adhesion of the resin, the above-mentioned problems include measures such as applying chrome plating to the resin contact portion of the melt extrusion device, and simplifying the shape of the melt line as much as possible to reduce resin retention. However, it is not solved sufficiently.
[0004]
As a method for preventing the generation of the gel as described above, JP-A-53-88067 and JP-B-47-29578 disclose a saponified resin containing 15 to 60 parts by weight of water per 100 parts by weight of resin. A method for producing an unstretched film by melting at 80 to 120 ° C. after melting is described.
[0005]
However, the unstretched film manufactured by the above method is inferior in physical properties such as tensile strength. In order to improve such physical properties, when moisture is removed after extrusion and stretching is performed later, saponification resin is crystallized while moisture is removed, and the subsequent stretching process becomes unstable.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and an object thereof is to stably produce an ethylene vinyl acetate copolymer saponified resin sheet having high gas barrier properties and excellent toughness, and a stretched film thereof. It is to provide a manufacturing method.
[0007]
[Means for Solving the Problems]
As a result of various investigations for achieving the above-mentioned problems, the present inventors use a resin whose water content is adjusted to 10 to 50% by weight, and the molten resin sheet is rapidly cooled, whereby the tensile strength after stretching is increased. The present invention has been completed with the idea of improvement. That is, the first gist of the present invention is an ethylene vinyl acetate copolymer having an ethylene content of 10 to 60 mol%, a saponification degree of 90 mol% or more, and a water content of 10 to 50 wt%. A saponified resin is melt-kneaded with a melt-extrusion apparatus, extruded from a die at 90 to 110 ° C., and the extruded molten resin sheet is brought into close contact with a cooling roll of 40 ° C. or less and rapidly cooled. It exists in the manufacturing method of a coalescence saponification resin sheet. And the 2nd summary of this invention exists in the manufacturing method of the ethylene vinyl acetate copolymer saponification resin stretched film characterized by extending | stretching said ethylene vinyl acetate copolymer saponification resin sheet | seat to at least 1 direction.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. The invention according to the first aspect of the present invention (first invention) comprises melt-extrusion of a saponified resin, and the resulting molten resin sheet is brought into close contact with a cooling roll and rapidly cooled to obtain a resin sheet.
[0009]
The saponified resin is usually produced by saponifying an ethylene vinyl acetate copolymer. The ethylene content in the saponified resin is 10 to 60 mol%, preferably 20 to 50 mol%, and the saponification degree of the vinyl acetate component is 90 mol% or more, preferably 95 mol% or more. When the ethylene content exceeds 60 mol%, properties such as oxygen barrier properties and printability are inferior. On the other hand, when the degree of saponification is less than 90 mol%, oxygen barrier properties and moisture resistance are lowered.
[0010]
In addition, the saponified resin may contain (1) an α-olefin such as propylene, isobutene, α-octene, α-dedecene, α-octadecene, (2) an unsaturated carboxylic acid, a salt thereof, a partial alkyl ester, It may contain a complete alkyl ester, (3) a nitrile such as acrylonitrile, (4) an amide such as a capramide, (5) an anhydride such as maleic anhydride, and (6) an unsaturated sulfonic acid or a salt thereof as a comonomer. .
[0011]
The saponification resin is adjusted to a moisture content of 10 to 50% by weight, preferably 25 to 35% by weight, and is supplied to the melt extrusion apparatus. When the moisture content is less than 10% by weight, the stability effect during extrusion by moisture is small, and conversely, when the moisture content exceeds 50% by weight, the resin and a part of moisture are easily separated during melt extrusion. As a result, extrusion becomes unstable.
[0012]
As a method for adjusting the water content, for example, (1) a method of adjusting drying conditions in the production process of the saponified resin, (2) a method of treating the saponified resin in hot water (retort treatment), (3) A method of kneading a saponified resin and water with a twin screw extruder or the like is mentioned.
[0013]
As the screw of the melt extruder, a general full flight screw can be used. However, in order to improve the kneading effect, a screw with a mixing zone is preferable, and a biaxial melt extruder is more preferable.
[0014]
The melting temperature of the saponification resin until it reaches the die exit described later can be set regardless of the temperature of the saponification resin controlled at the die exit, but melt kneading is sufficient from the viewpoint of thermal degradation of the resin and energy consumption. And lower within the range that can be extruded, for example, 150 ° C. or less.
[0015]
Further, a metering discharge pump such as a gear pump and a filtration device such as a filter can be incorporated in the melt line of the saponified resin as necessary. Further, a T die is usually used as a die that is an extrusion port of the molten resin. At that time, it is preferable to select a die that takes into consideration that the molten resin stays in the lip portion of the die as much as possible.
[0016]
The temperature of the saponification resin when extruding from the die is controlled in the range of 90 to 110 ° C. When the melt kneading temperature exceeds 110 ° C., it is cooled to the above temperature range using a heat exchanger or the like in the melt line before reaching the die outlet. When extrusion temperature exceeds 110 degreeC, when resin is extruded from die | dye, the water | moisture content in resin foams and it is easy to make a hole in a film. Moreover, when extrusion temperature is less than 90 degreeC, since the viscosity of molten resin is high, the load to an extruder becomes large.
[0017]
The molten resin sheet extruded as described above is brought into close contact with a cooling roll of 40 ° C. or less, preferably 35 ° C. or less, and rapidly cooled. When the temperature exceeds 40 ° C., there are the following problems. That is, crystallization does not proceed due to the moisture content of the saponified resin, and as a result, a resin sheet with good transparency can be obtained, and further, the subsequent stretching process can be performed without any problem, but the obtained stretching can be performed. The tensile strength of the film is lowered. The lower limit of the cooling roll temperature is usually about 10 ° C.
[0018]
The invention according to the second aspect of the present invention (second invention) comprises subjecting the sheet obtained by the rapid cooling to stretching treatment. By such stretching, a film having excellent transparency and gas barrier properties and high strength can be obtained.
[0019]
In the case where the stretching process is performed only in the uniaxial direction, the roll stretching method is usually preferably employed. In this case, the stretching temperature is usually 45 to 100 ° C., and the stretching ratio is usually 2.5 to 8 times, preferably 3 to 8 times. When the draw ratio is less than 2.5, the effect of stretching is small and the strength of the stretched film is poor. When the draw ratio exceeds 8 times, the film breaks during stretching, and it is difficult to carry out continuous operation stably for a long time.
[0020]
In addition, when stretching in the biaxial direction, a sequential biaxial stretching method or a simultaneous biaxial stretching method is usually employed.
[0021]
In the case of the sequential biaxial stretching method, a roll type longitudinal stretching machine is usually used as the stretching device for the first stage stretching. In this case, the stretching temperature is usually 40 ° C. to 80 ° C., and the stretching ratio is usually 2.5 to 8 times, preferably 3 to 8 times. For the second stage stretching, a tenter-type transverse stretching machine is usually used as a stretching apparatus. In this case, the stretching temperature is usually 60 ° C. to 100 ° C., and the stretching ratio is usually 2.5 to 8 times, preferably 3 to 8 times.
[0022]
In the case of the simultaneous biaxial stretching method, a tenter type simultaneous biaxial stretching machine is usually used as the stretching device. In this case, the stretching temperature is usually 60 ° C. to 100 ° C., and the stretching ratio is usually 2.5 to 8 times, preferably 3 to 8 times, both vertically and horizontally.
[0023]
In each of the above biaxial stretching processes, when the stretching ratio in each axial direction is less than 2.5 times, the stretching effect is small, the film strength is inferior, and when the stretching ratio exceeds 8 times, the stretching is performed. Film breakage increases, and continuous operation for a long time is difficult in practice.
[0024]
The uniaxial and biaxial stretching temperatures are preferably controlled within the above-described range of the stretching temperature and within a range in which moisture contained in the stretching treatment step can be removed by evaporation as much as possible.
[0025]
The stretched film obtained by stretching as described above becomes a stretched film having excellent dimensional stability by heat treatment thereafter. Such heat treatment is usually performed for 2 to 10 seconds in a range of 110 ° C. or higher and 5 ° C. or lower than the melting point of the saponified resin in the absolutely dry state. By appropriately adjusting the temperature and the treatment time within such a condition range, stretched films having various hot water shrinkage rates can be obtained.
[0026]
The stretched film of the saponified resin obtained as described above has not only inferior oxygen permeability as compared with the conventional stretched saponified resin film, for example, 20 kg in each of the machine direction (MD) and the transverse direction (TD). High tensile breaking strength of / mm 2 or more can be realized, and the boil resistance is also improved. That is, according to the present invention, it is possible to obtain a stretched film of a saponified resin that does not impair excellent gas barrier properties and that has improved tensile break strength and boil resistance. It can be used as a packaging material that is very advantageous for product packaging and many other packaging fields.
[0027]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example, unless the summary is exceeded.
[0028]
Example 1
After retorting a saponification resin (“Soarnol DC3203” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) having an ethylene content of 32 mol% and a saponification degree of 99.5 mol% in hot water at 120 ° C. in a high-pressure vessel for 5 hours, The molten resin was extruded in the form of a strand having an outer diameter of 5 mm from the bottom of the tube, cooled in cold water, and then cut into a length of 5 mm to obtain pellets. The pellets were sprayed with dry air at 30 ° C. for 1 hour to dry the moisture on the surface. The moisture content of this pellet was measured with a moisture meter (FD-620, manufactured by Kett Science Laboratory), and was found to be 30.5% by weight.
[0029]
The pellets described above were supplied to a 65 mm diameter melt extruder equipped with a coat hanger T die, melted and kneaded at 130 ° C, extruded with a 98 ° C molten resin cooled by a heat exchange method, and then cooled to 25 ° C. The molten resin sheet was brought into close contact with the cooling roll having a diameter of 800 mm and quenched to obtain a resin sheet having a thickness of about 300 μm. The obtained resin sheet was heated to 50 ° C., and then stretched 4 times in the length direction (longitudinal direction) with a roll-type stretching machine to obtain a uniaxially stretched film, and then the film temperature was set to 90 ° C. with a tenter device. And stretched 4.5 times in the transverse direction. The obtained stretched film was heat-treated for 4 seconds in hot air at a temperature of 160 ° C. to obtain a biaxially stretched film having a thickness of about 12 μm.
[0030]
The melt extrusion process, stretching process, and heat treatment process as described above were continued for 3 weeks. Meanwhile, as a result of observing roughness of the film surface, generation of gel, torque-up of the stretching apparatus, etc., gel was hardly generated in the melt extrusion process, and the operation could be performed smoothly. The above period is shown in Table 1 as continuous processability.
[0031]
The oxygen transmission rate and tensile breaking strength of the above biaxially stretched film were measured. The oxygen permeability was measured under the condition of 25 ° C. × 50% RH using an oxygen permeability measuring device (“OXTRAN100” manufactured by Modern Control). In addition, the tensile strength at break of the biaxially stretched film was measured using an autograph (manufactured by Shimadzu Corporation) under the conditions of 23 ° C. × 50% RH under conditions of 50 mm between chucks, 10 mm sample width, and 50 mm / min tensile speed. did. The measured value was converted into the load per unit cross-sectional area to obtain the tensile breaking strength, and the results are shown in Table 1.
[0032]
Example 2
In Example 1, melt extrusion, stretching, and heat treatment were performed in the same manner as in Example 1 except that the temperature of the cooling roll used for cooling the molten resin sheet was set to 35 ° C. As a result, melt extrusion, stretching and heat treatment had no problems at all, and almost no gel was generated for 3 weeks after the start of operation, and the operation could be performed smoothly and continuously. The obtained biaxially stretched film was evaluated for oxygen permeability, tensile breaking strength, and continuous processing period, and the results are shown in Table 1.
[0033]
Example 3
70 parts by weight of methanol and 4 parts by weight of sodium hydroxide were added to 40 parts by weight of ethylene vinyl acetate copolymer of 32 mol% of ethylene, and the mixture was heated at 60 ° C. for 3 hours to carry out a saponification reaction. The obtained methanol solution was concentrated so that the saponification resin concentration was 40% by weight, and 26 parts by weight of water was added per 100 parts by weight of the obtained solution to obtain a methanol-water mixed solvent saponification resin solution. The obtained saponified resin had a saponification degree of 98.5 mol% and an ethylene content of 32 mol%.
[0034]
The methanol-water mixed solvent saponified resin solution is extruded from a nozzle having a diameter of 5 mm into a coagulating liquid consisting of a 30 wt% aqueous solution of methanol adjusted to 15 ° C. until the amount of the coagulating liquid becomes 0.1 wt times. Then, it was precipitated and solidified into a strand shape. By immersing this strand in water, the methanol content was sufficiently replaced with water and then cut into pellets. The pellets were sprayed with dry air at 30 ° C. for 4 hours to dry the surface moisture. The moisture content of the pellets was measured with a moisture meter (“FD-620” manufactured by Kett Science Laboratory) and found to be 31.5% by weight.
[0035]
In Example 1, melt extrusion, stretching treatment and heat treatment were performed in the same manner as in Example 1 except that the above pellets were used as the raw material resin. As a result, during the 3 weeks after the start of operation, there was almost no gel generation, and continuous operation could be performed smoothly. The obtained biaxially stretched film was evaluated for oxygen permeability, tensile break strength, film oxygen permeability, tensile break strength, and continuous processing period in the same manner as in Example 1, and the results are shown in Table 1. It was.
[0036]
Comparative Example 1
In Example 1, saponified resin pellets were produced in the same manner as in Example 1 except that the retort condition of the saponified resin was 100 ° C. × 4 hours. The moisture content of the dried saponified resin pellets was 8% by weight. Using the pellets, melt extrusion was carried out in the form of a sheet in a 65 mm diameter extruder in the same manner as in Example 1. However, unless the temperature was raised, the resin did not melt, and as a result, the resin temperature at the die exit became 125 ° C., and the film foamed and perforated frequently.
[0037]
Comparative Example 2
In Example 1, melt extrusion, stretching treatment and heat treatment were performed in the same manner as in Example 1 except that the cooling roll temperature was 70 ° C. Melt extrusion, stretching treatment and heat treatment could be carried out without any problem, and almost no gel was generated even after 3 weeks from the start of extrusion, and the operation could be performed smoothly. The obtained stretched film was evaluated for oxygen permeability, tensile strength at break, and continuous processing period, and the results are shown in Table 1. As a result, the tensile strength at break was extremely low.
[0038]
Comparative Example 3
An ethylene vinyl acetate copolymer saponification resin (“Soarnol DC3203” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) (water content 0.5 wt%) having an ethylene content of 32 mol% and a saponification degree of 99.5 mol% is used as it is without retorting. It was supplied to an extruder with a diameter of 65 mm equipped with a coat hanger T die, melt extruded at a resin temperature of 230 ° C., and quenched with a cooling roll cooled to 25 ° C. to obtain a resin sheet having a thickness of about 135 μm.
[0039]
The obtained resin sheet was heated to 60 ° C., then stretched 3 times in the longitudinal direction by a roll type stretching machine, then heated to 90 ° C., then stretched 3 times in the transverse direction, and further 160 ° C. Was subjected to heat treatment for 4 seconds to obtain a biaxially stretched film of a saponified resin. However, when the operation was continued for one week after the start of extrusion, the generation of gel having a diameter of about 1 mm increased, and the film during stretching increased in number, so the operation was stopped there. The oxygen permeability and tensile strength at break of the obtained biaxially stretched film were evaluated, and the results are shown in Table 1 together with the continuous processing period.
[0040]
[Table 1]
Figure 0003796010
[0041]
【The invention's effect】
According to the present invention described above, it is possible to stably produce an ethylene vinyl acetate copolymer saponified resin sheet having high gas barrier properties and excellent toughness, and a stretched film thereof. That is, according to the present invention, the above-described sheet and film useful as food packaging, medical / pharmaceutical packaging, clothing packaging, and other packaging materials can be provided at low cost. Therefore, the industrial value of the present invention is great.

Claims (2)

エチレン含有率が10〜60モル%且つけん化度が90モル%以上であって含水率が10〜50重量%に調整されたエチレン酢酸ビニル共重合体けん化樹脂を溶融混練し、ダイから90〜110℃で押し出しし、得られた溶融樹脂シートを40℃以下の冷却ロールに密着させて急冷することを特徴とするエチレン酢酸ビニル共重合体けん化樹脂シートの製造方法。An ethylene vinyl acetate copolymer saponified resin having an ethylene content of 10 to 60 mol% and a saponification degree of 90 mol% or more and a water content adjusted to 10 to 50 wt% is melt-kneaded, and 90 to 110 from the die. A method for producing an ethylene vinyl acetate copolymer saponified resin sheet, characterized by extruding at a temperature of C and bringing the resulting molten resin sheet into close contact with a cooling roll of 40C or less and quenching. 請求項1に記載のエチレン酢酸ビニル共重合体けん化樹脂シートを少なくとも1方向に延伸することを特徴とするエチレン酢酸ビニル共重合体けん化樹脂延伸フイルムの製造方法。A method for producing an ethylene vinyl acetate copolymer saponified resin stretched film, wherein the ethylene vinyl acetate copolymer saponified resin sheet according to claim 1 is stretched in at least one direction.
JP17654197A 1997-06-17 1997-06-17 Ethylene vinyl acetate copolymer saponified resin sheet and method for producing stretched film thereof Expired - Fee Related JP3796010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17654197A JP3796010B2 (en) 1997-06-17 1997-06-17 Ethylene vinyl acetate copolymer saponified resin sheet and method for producing stretched film thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17654197A JP3796010B2 (en) 1997-06-17 1997-06-17 Ethylene vinyl acetate copolymer saponified resin sheet and method for producing stretched film thereof

Publications (2)

Publication Number Publication Date
JPH115246A JPH115246A (en) 1999-01-12
JP3796010B2 true JP3796010B2 (en) 2006-07-12

Family

ID=16015403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17654197A Expired - Fee Related JP3796010B2 (en) 1997-06-17 1997-06-17 Ethylene vinyl acetate copolymer saponified resin sheet and method for producing stretched film thereof

Country Status (1)

Country Link
JP (1) JP3796010B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4663842B2 (en) * 2000-03-10 2011-04-06 日本合成化学工業株式会社 Polyvinyl alcohol film and method for producing the same
TWI240724B (en) 2001-12-17 2005-10-01 Kuraray Co Polyvinyl alcohol film and polarizing film
KR100508822B1 (en) 2002-03-20 2005-08-17 가부시키가이샤 구라레 Polyvinyl alc0h0l film

Also Published As

Publication number Publication date
JPH115246A (en) 1999-01-12

Similar Documents

Publication Publication Date Title
JPS62106904A (en) Production of pellet of saponified ethylene/vinyl acetate copolymer of improved quality
JPH11291244A (en) Method for drying saponified ethylene/vinyl acetate copolymer pellets
JPH0564178B2 (en)
JP3796010B2 (en) Ethylene vinyl acetate copolymer saponified resin sheet and method for producing stretched film thereof
TW201731941A (en) Ethylene-vinyl alcohol copolymer resin compound pellet clusters
JPS623866B2 (en)
JP2000128996A (en) Saponified product pellet of ethylene-vinyl acetate copolymer
JP3984628B2 (en) Process for producing ethylene-vinyl alcohol copolymer resin composition
JPH11105130A (en) Production of saponified ethylene/vinyl acetate copolymer resin film
EP1085028A1 (en) Method of drying saponified ethylene-vinyl acetate copolymers
JP4082780B2 (en) Manufacturing method of resin composition
US4683261A (en) Acrylonitrile polymer film and process for preparing same
JP3762704B2 (en) Process for producing ethylene-vinyl alcohol copolymer resin composition
JP2825904B2 (en) Manufacturing method of laminated biaxially stretched film
JP4164151B2 (en) Manufacturing method of resin composition
JP5116186B2 (en) Process for producing ethylene-vinyl acetate copolymer saponified composition pellets
JP4093384B2 (en) Resin composition and multilayer structure
JP2006083400A (en) Production method of ethylene-vinyl alcohol copolymer resin composition
JPH11254523A (en) Production of saponified ethylene/vinyl acetate copolymer film
WO2000050481A1 (en) Thermally melt processable multipolymers of acrylonitrile and olefinically unsaturated monomers
JPH09327858A (en) Manufacture of biaxially oriented polyamide film
JP4156138B2 (en) Ethylene-vinyl acetate copolymer saponified film and method for producing the same
JPH01108028A (en) Manufacture of laminated biaxially oriented film
JP2000318036A (en) Production of biaxially stretched polyamide film
JP2000000817A (en) Production of pellet of saponified ethylene-vinyl acetate copolymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040416

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees