JPH0798348B2 - Polyimide extrusion molding method and polyimide pellets used in this method - Google Patents

Polyimide extrusion molding method and polyimide pellets used in this method

Info

Publication number
JPH0798348B2
JPH0798348B2 JP2075452A JP7545290A JPH0798348B2 JP H0798348 B2 JPH0798348 B2 JP H0798348B2 JP 2075452 A JP2075452 A JP 2075452A JP 7545290 A JP7545290 A JP 7545290A JP H0798348 B2 JPH0798348 B2 JP H0798348B2
Authority
JP
Japan
Prior art keywords
polyimide
extrusion
pellets
crystallinity
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2075452A
Other languages
Japanese (ja)
Other versions
JPH0342224A (en
Inventor
益巳 猿渡
従一 辻
康弘 藤井
Original Assignee
三井東圧化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井東圧化学株式会社 filed Critical 三井東圧化学株式会社
Priority to JP2075452A priority Critical patent/JPH0798348B2/en
Publication of JPH0342224A publication Critical patent/JPH0342224A/en
Publication of JPH0798348B2 publication Critical patent/JPH0798348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱可塑性ポリイミドの押出成形法およびこの
方法に用いるポリイミドペレットに関する。さらに詳し
くは、ポリイミドの押出成形において、安定した押出
量、気泡やダイ粕等のない製品を安定して製造し得る方
法であって、特定構造のポリイミドを、予め特定範囲の
結晶化度に結晶化させたポリイミドを押出機に供給して
成形する方法、およびこの方法に適用するポリイミドペ
レットに関するものである。
TECHNICAL FIELD The present invention relates to a method for extrusion-molding a thermoplastic polyimide and a polyimide pellet used in this method. More specifically, in the extrusion molding of polyimide, a stable extrusion amount, a method capable of stably producing a product without bubbles or die meal, polyimide having a specific structure, pre-crystallized to a crystallinity of a specific range. TECHNICAL FIELD The present invention relates to a method of supplying a compounded polyimide to an extruder for molding, and a polyimide pellet applied to this method.

〔従来の技術〕[Conventional technology]

芳香族ポリイミドは、有機ポリマーの中で最高の耐熱性
に加え、優れた機械的性質、耐薬品性、電気絶縁性を有
しており、電気、電子工業分野、機械産業、原子力、自
動車工業等の分野で広く使われている。
Aromatic polyimides have the highest heat resistance among organic polymers, as well as excellent mechanical properties, chemical resistance, and electrical insulation properties, and are used in the electrical, electronic industry, mechanical industry, nuclear power, automobile industry, etc. Widely used in the field.

近年、熱可塑性ポリイミドやその成形方法が報告されて
いる。
In recent years, thermoplastic polyimide and its molding method have been reported.

この種のポリイミドの中に、押出成形性の良好なポリイ
ミドとして一般式〔I〕 (式中、Xは単結合またはヘキサフルオロイソプロピリ
デン基を示す)で表される繰り返し構造単位を有するポ
リイミドが開発されている(例えば、特開昭62−205124
号公報、特開昭62−241923号公報)。
Among the polyimides of this type, a polyimide of the general formula [I] having good extrusion moldability is used. A polyimide having a repeating structural unit represented by the formula (wherein X represents a single bond or a hexafluoroisopropylidene group) has been developed (for example, JP-A-62-205124).
Japanese Patent Laid-Open No. 62-241923).

これらのポリイミドは、熱可塑性を有し周知の押出成形
法により繊維、フィルム、シート、電線、棒、板または
管材等の製品を製造することができる。しかし、これら
のポリイミドやその成形方法の中で押出成形法への適用
については、これらのポリイミドに適した十分に満足で
きる成形方法が未だ提案されていない。
These polyimides are thermoplastic and can be manufactured into products such as fibers, films, sheets, electric wires, rods, plates or pipes by a well-known extrusion molding method. However, among these polyimides and their molding methods, a sufficiently satisfactory molding method suitable for these polyimides has not yet been proposed for application to the extrusion molding method.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

前記一般式〔I〕で表わされる繰り返し構造単位を有す
るポリイミドは、成形困難な他のポリイミドに比べ、押
出成形加工への適用性は良好であり、通常、ペレットに
加工した後、押出成形機に供給し成形されている。
The polyimide having a repeating structural unit represented by the general formula [I] has better applicability to extrusion molding than other polyimides that are difficult to mold, and is usually processed into pellets and then used in an extruder. Supplied and molded.

しかしながら、このようなポリイミドであっても、製造
したポリイミド粉末をペレット状に加工し、これをその
まゝ押出成形機に供給すると、押出成形が円滑にでき
ず、また成形品が得られても製品中に、気泡やダイ粕が
発生し、安定した品質の製品を得ることが困難である。
However, even with such a polyimide, if the manufactured polyimide powder is processed into pellets and supplied to the extruder as it is, extrusion molding cannot be performed smoothly and a molded product is obtained. Bubbles and die meal are generated in the product, and it is difficult to obtain a product of stable quality.

このような現象は、押出成形機に供給された樹脂がスク
リューの供給部分および/または圧縮部分で受ける温度
と圧力によって急激な可塑化を受けるためであり、スク
リューの回転数によっては、スクリューに樹脂が巻きつ
き、全く押し出されなくなってしまうこともある。ま
た、閉塞を起こさない場合でも、急激に可塑化した樹脂
とともに輸送される気体、例えば空気が本来排除される
べきスクリューの圧縮部分で排除されず、ダイまで輸送
され気泡を発生させることが判った。
Such a phenomenon is because the resin supplied to the extruder undergoes rapid plasticization due to the temperature and pressure received at the screw supply part and / or the compression part. There is a case where it is wrapped around and cannot be extruded at all. It was also found that even when the blockage does not occur, the gas that is transported together with the rapidly plasticized resin, for example, air, is not removed at the compression portion of the screw that should be originally removed and is transported to the die to generate bubbles. .

このような現象が生じると、例えば、繊維加工において
は、押出量変動に伴うデニール変動、気泡の発生による
糸切れが起こり易いという問題があり、またフィルム、
シート加工においては、押出量変動に伴う厚さ変動、気
泡またはダイ粕等の発生による外観不良や機械的強度の
低下が起こり易いという問題があり、さらに棒、パイプ
加工においては、押出量変動に伴う直径の変動、内部気
泡の発生による強度低下、ダイ粕による外観不良が起こ
り易いという問題があり、その上、電線加工においては
気泡またはダイ粕発生による電気絶縁性の低下が起こり
易いという問題が生ずる。
When such a phenomenon occurs, for example, in fiber processing, there is a problem that denier fluctuation due to fluctuation of extrusion amount and yarn breakage due to generation of bubbles are likely to occur.
In sheet processing, there is a problem that thickness variation due to extrusion rate variation, appearance defects due to the occurrence of air bubbles or die meal, and deterioration of mechanical strength are likely to occur, and in rod and pipe processing, extrusion rate variation There is a problem that the diameter fluctuation accompanying it, the strength decrease due to the generation of internal bubbles, the appearance defect due to the die cake is likely to occur, and further, the electric insulation is likely to be deteriorated due to the air bubbles or the die cake in the electric wire processing. Occurs.

これらの問題の解決策として、樹脂の可塑化が急激に進
行しない温度、即ち、250℃以下に押出機のシリンダー
温度を下げる等の押出機の温度条件を変える方法が考え
られるが、この方法では、溶融樹脂の粘度が異常に高く
なって押出不能となるか、または多量の剪断発熱を伴い
樹脂の劣化を起こし好ましくなかった。また、押出機の
スクリュー形状を変えることも考えられるが、押出量の
変動(いわゆるサージング現象)が起こり、場合によっ
ては押出成形ができなくなる現象が起こり問題を解決す
ることが困難である。
As a solution to these problems, a temperature at which the plasticization of the resin does not rapidly proceed, that is, a method of changing the temperature condition of the extruder such as lowering the cylinder temperature of the extruder to 250 ° C. or less can be considered. However, the viscosity of the molten resin becomes abnormally high and extrusion becomes impossible, or a large amount of heat generated by shearing causes deterioration of the resin, which is not preferable. Although it is possible to change the screw shape of the extruder, it is difficult to solve the problem because the extrusion amount varies (so-called surging phenomenon), and in some cases, extrusion molding cannot be performed.

このように前記ポリイミドでも、押出成形法において
は、解決すべき点があり、これを解決しないかぎり、要
求した性能を有する成形品を得ることが難しい状況にあ
った。
As described above, even with the above-mentioned polyimide, there is a point to be solved in the extrusion molding method, and unless this is solved, it was difficult to obtain a molded product having the required performance.

したがって、本発明の目的は、優れた機械的性質、耐薬
品性、電気絶縁性を有するポリイミドの押出成形法につ
いて、一段と改善された方法を提供することである。
Therefore, it is an object of the present invention to provide a further improved method for extrusion molding of polyimide having excellent mechanical properties, chemical resistance and electrical insulation.

他の目的は、特定構造のポリイミドの適用性を拡大する
ために、そのポリイミドに適用可能でかつ品質の安定し
た成形品を与える改善された押出成形方法を提供するこ
とである。
Another object is to provide an improved extrusion method which, in order to extend the applicability of a polyimide of a specific structure, gives a molded article which is applicable to that polyimide and which has a stable quality.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、この目的を達成すべく鋭意検討した。そ
の結果、重合して製造された前記一般式〔I〕で表され
る繰り返し構造単位のポリイミドは、通常、半結晶状態
の粉状であるが、押出成形に適用するに際して、供給形
態として好ましいペレット状に加工すると、意外なこと
に結晶性のポリイミドであっても、このペレット製造時
に結晶化度が著しく低下し非晶状態となってしまい、こ
の非晶状態のペレットをそのまゝ押出成形機に供給する
と前記の各種の問題が発生することがわかった。さら
に、ペレット状に加工した非晶状態のポリイミドを特定
の温度条件で加熱処理することにより半結晶状態のポリ
イミドにすることが可能であり、これを押出成形機に供
給して成形すると前記の各種問題を解決できることを見
出し、本発明を達成することに至った。
The present inventors diligently studied to achieve this object. As a result, the polyimide of the repeating structural unit represented by the general formula [I] produced by polymerization is usually a powder in a semi-crystalline state, but when it is applied to extrusion molding, it is preferably a pellet as a supply form. Unexpectedly, even if it is a crystalline polyimide, the crystallinity of the pellets will be significantly reduced during the production of the pellets, resulting in an amorphous state. It has been found that the above-mentioned various problems occur when it is supplied to. Furthermore, it is possible to make a polyimide in a semi-crystalline state by heat-treating the amorphous polyimide processed into pellets under specific temperature conditions. The inventors have found that the problems can be solved and have achieved the present invention.

すなわち、本発明の方法は、一般式〔I〕 (式中、Xは単結合またはヘキサフルオロイソプロピリ
デン基を示す)で表される繰り返し構造単位を有するポ
リイミドを溶融押出機に供給するに際して、重合して得
られたポリイミドを、あらかじめ、加熱溶融してペレッ
ト状に加工し、これを加熱処理して結晶化度を5%以上
としたポリイミドペレット、およびこのポリイミドを押
出成形機に供給し成形することを特徴とするポリイミド
の押出成形方法である。
That is, the method of the present invention has the general formula [I] (In the formula, X represents a single bond or a hexafluoroisopropylidene group) When a polyimide having a repeating structural unit represented by the formula is supplied to a melt extruder, the polyimide obtained by polymerization is heated and melted in advance. And a polyimide pellet having a crystallinity of 5% or more, and a polyimide extrusion molding method characterized by supplying the polyimide to an extrusion molding machine for molding.

本発明は、前記のポリイミドの押出成形上の問題点を改
善したものであり、一般式〔I〕で表される繰り返し構
造単位を有するポリイミドを実用的に満足な状態で、即
ち、押出量の変動、気泡、ダイ粕等の発生を防止し、肉
厚変動が少なく、機械的強度や電気絶縁性に優れた製品
を安定して成形する方法を提供するものである。
The present invention is to improve the above-mentioned problems in extrusion molding of polyimide, and to provide a polyimide having a repeating structural unit represented by the general formula [I] in a practically satisfactory state, that is, It is intended to provide a method for stably molding a product which prevents fluctuations, air bubbles, die residue, etc., has little fluctuation in wall thickness, and has excellent mechanical strength and electrical insulation.

本発明におけるポリイミドは、一般式〔I〕 (式中、Xは単結合またはヘキサフルオロイソプロピリ
デン基を示す)で表される繰り返し構造単位を有するポ
リイミドである。
The polyimide in the present invention has the general formula [I] (In the formula, X represents a single bond or a hexafluoroisopropylidene group) and is a polyimide having a repeating structural unit.

これらのポリイミドは、ピロメリット酸二無水物と4,
4′−ビス(3−アミノフェノキシ)ビフェニルまたは
2,2−ビス(3−アミノフェノキシフェニル)1,1,1,3,
3,3−ヘキサフルオプロパンとの脱水縮合反応による下
記式〔II〕 (式中、Xは前記と同じ意味である)で表されるポリア
ミド酸を経由し、これを熱的または化学的にイミド化す
ることによって得ることができる。
These polyimides include pyromellitic dianhydride and 4,
4'-bis (3-aminophenoxy) biphenyl or
2,2-bis (3-aminophenoxyphenyl) 1,1,1,3,
The following formula [II] by dehydration condensation reaction with 3,3-hexafluoropropane It can be obtained by subjecting a polyamic acid represented by the formula (wherein X has the same meaning as described above) to thermal or chemical imidization.

本発明における押出成形機に供給するポリイミドは、前
記の方法で製造されたポリイミド粉末、またはポリイミ
ド粉末を予め加熱処理したものを加熱溶融することによ
りペレット状に加工し、このペレットを加熱処理して得
られる結晶化したポリイミドペレットである。すなわ
ち、製造されたポリイミド粉末をタブレット、円柱状等
のペレット状に加工成型し加熱処理するか、あるいは製
造されたポリイミド粉末を加熱処理した粉状品をタブレ
ット、円柱状等のペレット状に加工成型し、さらに加熱
処理して成形加工機に適用できる結晶化したポリイミド
ペレットとして製造されたものである。ペレットに加工
する前にポリイミド粉末に加熱処理を施す方法、すなわ
ち後者の方法によるペレットは成形加工品に気泡の混入
が無く安定した品質の成形品を得ることが出来る。
The polyimide to be supplied to the extruder in the present invention is processed into a pellet by heating and melting the polyimide powder produced by the above-mentioned method, or the polyimide powder that has been heat-treated in advance, and heat-treating the pellet. The resulting crystallized polyimide pellet. That is, the manufactured polyimide powder is processed into a pellet shape such as a tablet or a cylinder, and heat-treated, or the powdered product obtained by heating the manufactured polyimide powder is processed into a pellet shape such as a tablet or a cylinder shape. It is manufactured as crystallized polyimide pellets which can be further heat-treated and applied to a molding machine. A method of subjecting a polyimide powder to a heat treatment before processing into pellets, that is, the pellets obtained by the latter method, can obtain a molded product of stable quality without inclusion of bubbles in the molded product.

本発明におけるポリイミドペレットは、通常実施されて
いる溶融押出法により調製される。重合で得られたポリ
イミド粉末を、好ましくは250〜370℃で1分間乃至50時
間熱処理した後、押出機に供給する。押出機に供給する
前に、120〜350℃で3〜24時間乾燥し、ポリイミドの水
分含有率を200ppm以下とすることが好ましい。
The polyimide pellets in the present invention are prepared by a commonly used melt extrusion method. The polyimide powder obtained by the polymerization is preferably heat-treated at 250 to 370 ° C. for 1 minute to 50 hours and then fed to the extruder. Before supplying to the extruder, it is preferable to dry at 120 to 350 ° C. for 3 to 24 hours so that the water content of the polyimide is 200 ppm or less.

押出温度は300〜450℃の範囲で行われ、好ましくは350
〜430℃である。溶融状態で押し出されるストランドの
径は特に限定されないが1〜5mm程度が一般的である。
ペレットに切断する方法は、溶融ストランドを水冷また
は空冷の後切断してもよいし、冷却なしに切断する、い
わゆるホットカットの後、水冷または空冷してもよい。
Extrusion temperature is in the range of 300 ~ 450 ℃, preferably 350
~ 430 ° C. The diameter of the strand extruded in the molten state is not particularly limited, but is generally about 1 to 5 mm.
As a method of cutting into pellets, the molten strand may be water-cooled or air-cooled and then cut, or may be cut without cooling, that is, so-called hot cutting, and then water-cooled or air-cooled.

使用する押出機は広く用いられている通常の型式のもの
で差し支えないが、ベント式または真空ホッパーを備え
たものが好ましく用いられる。
The extruder to be used may be an ordinary type which is widely used, but a vented type or a type equipped with a vacuum hopper is preferably used.

このようにして得られたポリイミドペレットは、ペレッ
ト加工前において半結晶状態であったものが非晶状態と
なっている。本発明ではこの非晶状態のポリイミドペレ
ットを加熱処理して、結晶化度が5%以上のポリイミド
ペレットとすることが必要である。
The polyimide pellets obtained in this way are in a semi-crystalline state before being processed into a non-crystalline state. In the present invention, it is necessary to heat the amorphous polyimide pellets into polyimide pellets having a crystallinity of 5% or more.

加熱処理の条件は、つぎの通りである。The conditions of the heat treatment are as follows.

熱処理温度は250〜370℃が好ましい。熱処理温度が250
℃未満では結晶化が非常に遅く、実用性に乏しいので好
ましくない。また、370℃を越えても、結晶化が遅く、
さらに樹脂の溶融が始まるために、樹脂同士の溶着また
は分解が起こり易くなり好ましくない。特に好ましく
は、290〜330℃である。
The heat treatment temperature is preferably 250 to 370 ° C. Heat treatment temperature is 250
If the temperature is lower than ℃, crystallization is very slow and the practicality is poor, which is not preferable. Also, even if it exceeds 370 ℃, crystallization is slow,
Further, since the melting of the resin is started, the resin is liable to be welded or decomposed, which is not preferable. Particularly preferably, it is 290 to 330 ° C.

熱処理時間は、熱処理温度および結晶化度により変わる
ので、特に限定するものではないが、通常は、1分〜50
時間の熱処理を施す。1分未満では充分な結晶化が起こ
らず、後の押出量の変動、押出不能、気泡の生成が起こ
るために好ましくない。また、50時間を越えると熱によ
る分解が起こり、変色、押出時の発泡の原因となるので
好ましくない。特に実用的に好ましい加熱処理の時間は
30分〜10時間程度である。
The heat treatment time is not particularly limited because it varies depending on the heat treatment temperature and the crystallinity, but it is usually 1 minute to 50 minutes.
Heat treatment for an hour. If it is less than 1 minute, sufficient crystallization does not occur, and subsequent fluctuation of the extrusion amount, inability to extrude, and generation of bubbles occur, which is not preferable. Further, if it exceeds 50 hours, decomposition due to heat occurs, which causes discoloration and foaming during extrusion, which is not preferable. Especially, the practically preferable heat treatment time is
It is about 30 minutes to 10 hours.

本発明に適用する一般式〔I〕で表される繰り返し構造
単位を有するポリイミドは、上記の条件により加熱処理
して、その結晶化度が通常5%以上のポリイミドペレッ
トとするが、結晶化度が5%以上のポリイミドペレット
を得るために、熱処理温度をさらに高くしたり、熱処理
時間をさらに延長したりする等の方法で、または熱処理
を2回以上繰り返してもよく、この場合、好ましい結果
が得られることもある。結晶化度が5%未満では押出時
の押出量が変動したり、または押出不能となったりして
発泡、ダイ粕等が生じるため好ましくない。結晶化度の
上限は特に規定しないが、熱処理して得られるペレット
の結晶化度は最大50%であり、好ましい結晶化度の範囲
は5〜50%、より好ましくは10〜50%である。
The polyimide having a repeating structural unit represented by the general formula [I] applied to the present invention is heat-treated under the above-mentioned conditions to give a polyimide pellet having a crystallinity of usually 5% or more. In order to obtain a polyimide pellet of 5% or more, the heat treatment temperature may be further increased, the heat treatment time may be further extended, or the heat treatment may be repeated twice or more. In this case, preferable results are obtained. It may be obtained. If the degree of crystallinity is less than 5%, the amount of extrusion during extrusion may change, or extrusion may become impossible, resulting in foaming, die cake, etc., which is not preferable. Although the upper limit of the crystallinity is not particularly specified, the pellet obtained by heat treatment has a maximum crystallinity of 50%, and a preferable crystallinity range is 5 to 50%, more preferably 10 to 50%.

熱処理は空気、あるいは窒素、炭酸ガス、ヘリウム、ネ
オンまたはアルゴン等の不活性ガス中で加熱する方法が
好ましく、ポリイミドの酸化劣化防止のため不活性ガス
中で熱処理することが特に好ましい。さらに、樹脂の部
分的な融着を防ぐために熱処理中には攪拌することが好
ましい。
The heat treatment is preferably performed by heating in air or an inert gas such as nitrogen, carbon dioxide gas, helium, neon or argon, and particularly preferably in an inert gas for preventing oxidative deterioration of the polyimide. Furthermore, it is preferable to stir during the heat treatment in order to prevent partial fusion of the resin.

本発明における成形加工用ポリイミドの結晶化度は密度
勾配管法により求められる。即ち、予め、ポリイミドの
溶融物を急冷して得られる非結晶物の密度と結晶化した
物のX線回折および構造解析からの結晶密度を求めてお
き、ポリイミド(試料)の密度を測定することで式〔II
I〕 により求めることができる。
The crystallinity of the molding polyimide in the present invention is determined by the density gradient tube method. That is, the density of an amorphous material obtained by rapidly cooling a melt of polyimide and the crystal density of the crystallized material from X-ray diffraction and structural analysis are obtained in advance, and the density of the polyimide (sample) is measured. And the formula [II
I] Can be obtained by

なお、一般式〔I〕のポリイミドに炭素やガラスなどの
無機フィラー、顔料等の添加剤を結晶化が著しく抑制さ
れない範囲において含んでいても差し支えない。
It should be noted that the polyimide of the general formula [I] may contain an inorganic filler such as carbon or glass and an additive such as a pigment in a range in which crystallization is not significantly suppressed.

本発明の方法においては、上記のようにして調製された
結晶化度を5%以上の結晶性のポリイミドペレットを周
知の溶融押出機に供給し、加熱溶融させて、ダイによっ
て成形賦与され、冷却固化されて、繊維、フィルム、シ
ート、被覆電線、板、棒、パイプ等に成形される。
In the method of the present invention, crystalline polyimide pellets having a crystallinity of 5% or more prepared as described above are supplied to a known melt extruder, heated and melted, and molded and imparted by a die, and cooled. It is solidified and formed into fibers, films, sheets, covered electric wires, plates, rods, pipes and the like.

この際にも、製造されたポリイミドペレットは溶融押出
機に供給する前にポリイミドの水分含有率を200ppm以下
とすることが好ましい。ポリイミドの水分含有率を200p
pm以下とするには、とくにその方法は限定されないが、
一般的には100℃以上の温度でポリイミドが溶融しない
温度、通常、350℃以下の温度で3〜24時間保持する。
さらに、その雰囲気を空気、窒素等で置換することも効
果的であり、さらに減圧下で処理してもよい。
Also in this case, it is preferable that the produced polyimide pellets have a water content of 200 ppm or less before being supplied to the melt extruder. Moisture content of polyimide is 200p
The method is not particularly limited to be pm or less,
Generally, it is kept at a temperature of 100 ° C or higher at which the polyimide does not melt, usually at a temperature of 350 ° C or lower for 3 to 24 hours.
Further, it is effective to replace the atmosphere with air, nitrogen, etc., and the treatment may be further performed under reduced pressure.

溶融押出機での成形温度は、300〜450℃の範囲であり、
好ましくは350〜430℃である。成形温度が300℃未満で
は樹脂が溶融せず、押出が困難である。また、450℃を
越えると、樹脂の分解が進行し、分解発泡、ダイライ
ン、分解粕等が発生し、製品の外観、性能を損なうので
好ましくない。
The molding temperature in the melt extruder is in the range of 300-450 ℃,
It is preferably 350 to 430 ° C. If the molding temperature is less than 300 ° C, the resin does not melt and extrusion is difficult. On the other hand, if the temperature exceeds 450 ° C., the decomposition of the resin progresses, and decomposition foaming, die line, decomposition residue, etc. occur, and the appearance and performance of the product are impaired, which is not preferable.

また、使用する溶融押出機は、広く用いられている通常
の型式のもので差し支えないが、ベント式または真空ホ
ッパーを備えたものが好ましく用いられる。
The melt extruder to be used may be an ordinary type which is widely used, but a vent type or one having a vacuum hopper is preferably used.

〔実施例〕〔Example〕

以下、実施例により本発明をさらに詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

尚、実施例において記述したポリイミドの特性値の測定
法を以下に示す。
In addition, the measuring method of the characteristic value of the polyimide described in the Example is shown below.

(1)ガラス転移温度、融点 ガラス転移温度(Tg)、融点(Tm)はDSC法により測定
した。試料は約10mgとし、4℃/minの昇温速度で測定
し、Tmは融解曲線のピーク温度をもって定義した。
(1) Glass transition temperature and melting point The glass transition temperature (Tg) and melting point (Tm) were measured by the DSC method. The sample was about 10 mg and was measured at a temperature rising rate of 4 ° C./min, and Tm was defined as the peak temperature of the melting curve.

(2)溶融粘度 高化式フローテスターを用いて測定し、200sec-1の見か
け剪断速度、400℃での見掛け粘度を算出した。
(2) Melt viscosity The melt viscosity was measured using a Koka type flow tester, and an apparent shear rate of 200 sec −1 and an apparent viscosity at 400 ° C. were calculated.

(3)結晶化度 トルエン−四塩化炭素系密度勾配管法により23℃での密
度(Xobs)を測定し、非結晶密度(Xam)と結晶密度(X
cr)とから次式で算出した。
(3) Crystallinity The density (Xobs) at 23 ° C was measured by the toluene-carbon tetrachloride-based density gradient tube method, and the non-crystalline density (Xam) and the crystal density (Xobs) were measured.
cr) and the following formula.

ここで、 合成例1の結晶密度 1.459g/cm2 非結晶密度 1.327g/cm2 合成例2の結晶密度 1.438g/cm2 非結晶密度 1.292g/cm2 〔合成例1〕 かきまぜ機、還流冷却器および窒素導入管を備えた反応
容器に、4.4′−ビス(3−アミノフェノキシ)ビフェ
ニル368.4g(1モル)と、N,N−ジメチルアセトアミド2
344gを装入し、窒素雰囲気下に、ピロメリット酸二無水
物218.1g(1モル)を溶液温度の上昇に注意しながら分
割して加え、室温で約20時間かきまぜた。かくして得ら
れたポリアミド酸溶液に30.3g(0.3モル)のトリエチル
アミンおよび30.6g(0.3モル)の無水酢酸を約30分かけ
て添加し、その後約30分かきまぜた。この溶液に2000g
のメタノールを装入し、30℃においてポリイミド粉をろ
別した。得られたポリイミド粉をメタノールおよびアセ
トンで洗浄した後、窒素雰囲気下に、300℃で8時間乾
燥して517gのポリイミドの粉を得た。得られたポリイミ
ドはTgが248℃、Tmが386℃、結晶化度35%の結晶性樹脂
であり、溶融粘度は4500ポイズであった。
Here, Synthesis Example 1 of crystal density 1.459g / cm 2 non crystal density 1.327g / cm crystal density of 2 Synthesis Example 2 1.438g / cm 2 non crystal density 1.292g / cm 2 [Synthesis Example 1] stirrer, reflux In a reaction vessel equipped with a condenser and a nitrogen introducing tube, 368.4 g (1 mol) of 4.4'-bis (3-aminophenoxy) biphenyl and N, N-dimethylacetamide 2
After charging 344 g, 218.1 g (1 mol) of pyromellitic dianhydride was added in portions under a nitrogen atmosphere while paying attention to the rise of the solution temperature, and the mixture was stirred at room temperature for about 20 hours. To the thus obtained polyamic acid solution, 30.3 g (0.3 mol) of triethylamine and 30.6 g (0.3 mol) of acetic anhydride were added over about 30 minutes, followed by stirring for about 30 minutes. 2000g in this solution
Was charged and the polyimide powder was filtered off at 30 ° C. The obtained polyimide powder was washed with methanol and acetone, and then dried at 300 ° C. for 8 hours in a nitrogen atmosphere to obtain 517 g of polyimide powder. The obtained polyimide was a crystalline resin having Tg of 248 ° C., Tm of 386 ° C. and a crystallinity of 35%, and a melt viscosity of 4,500 poises.

得られたポリイミド粉を180℃で24時間乾燥し、25mmベ
ント式押出機により、410℃で溶融し、直径2mmのノズル
より押出し、自然放冷により約1.8mmφのストランドを
得た。これを長さ方向に約3mmに切断しペレットを得
た。このポリイミド樹脂ペレットはDSCにおいて冷結晶
化のピーク(Tcc)が296℃にみられ、さらに、密度は、
1.327g/cm3であり結晶化度1%の非結晶性の樹脂であっ
た。このペレットをポリイミドAとする。
The obtained polyimide powder was dried at 180 ° C. for 24 hours, melted at 410 ° C. by a 25 mm vent type extruder, extruded from a nozzle having a diameter of 2 mm, and naturally cooled to obtain a strand of about 1.8 mmφ. This was cut into about 3 mm in the length direction to obtain pellets. This polyimide resin pellet showed a peak (Tcc) of cold crystallization at 296 ° C in DSC, and further, the density was
It was an amorphous resin having a crystallinity of 1% and a weight of 1.327 g / cm 3 . This pellet is designated as polyimide A.

〔合成例2〕 かきまぜ機、還流冷却器および窒素導入管を備えた反応
容器に、4,4′−ビス(3−アミノフェノキシフェニ
ル)−1,1,1.3,3,3−ヘキサフルオロプロパン259.2g
(0.5モル)と、m−クレゾール1713gを装入し、窒素雰
囲気下にピロメリット酸二無水物109.1g(0.5モル)を
溶液温度の上昇に注意しながら分割して加え、室温で約
2時間かきまぜた。
[Synthesis Example 2] 4,4'-bis (3-aminophenoxyphenyl) -1,1,1.3,3,3-hexafluoropropane 259.2 was placed in a reaction vessel equipped with a stirrer, a reflux condenser and a nitrogen inlet tube. g
(0.5 mol) and 1713 g of m-cresol were added, and 109.1 g (0.5 mol) of pyromellitic dianhydride was added in portions under a nitrogen atmosphere while paying attention to the rise of the solution temperature, and then at room temperature for about 2 hours. Stir it.

続いて、窒素雰囲気下に、加熱昇温した。60℃付近で橙
色透明溶液となり、更に昇温し、150℃でかきまぜ続け
ると約1時間で淡黄色のポリイミド粉が徐々に析出し始
めた。加熱下で、5時間かきまぜた後、濾過してポリイ
ミド粉を得た。この粉をメタノールおよびアセトンで洗
浄した後、180℃で24時間減圧乾燥し、更に、窒素雰囲
気下に300℃で8時間乾燥して319gのポリイミドの粉を
得た。得られたポリイミドはTgが271℃、Tmが390℃、結
晶化度28%の結晶性樹脂であり、溶融粘度は6500ポイズ
であった。
Then, it heated and heated up in nitrogen atmosphere. The solution became an orange transparent solution at around 60 ° C, and the temperature was further raised, and when stirring was continued at 150 ° C, pale yellow polyimide powder gradually began to precipitate in about 1 hour. The mixture was stirred for 5 hours under heating and then filtered to obtain a polyimide powder. The powder was washed with methanol and acetone, dried under reduced pressure at 180 ° C. for 24 hours, and further dried at 300 ° C. for 8 hours in a nitrogen atmosphere to obtain 319 g of polyimide powder. The obtained polyimide was a crystalline resin having Tg of 271 ° C., Tm of 390 ° C. and a crystallinity of 28%, and a melt viscosity of 6500 poise.

得られたポリイミド粉を180℃で24時間乾燥し、25mmベ
ント式押出機により、410℃で溶融し、直径2mmのノズル
より押出し、自然放冷により約1.8mmのストランドを得
た。これを長手方向に約3mmに切断しペレットを得た。
このポリイミド樹脂ペレットはDSCにおいて冷結晶化の
ピーク(Tcc)が296℃にみられ、さらに、密度1.292g/c
m2で結晶化度0%の非結晶性の樹脂であった。このペレ
ットをポリイミドBとする。
The obtained polyimide powder was dried at 180 ° C. for 24 hours, melted at 410 ° C. by a 25 mm vent type extruder, extruded from a nozzle having a diameter of 2 mm, and naturally cooled to obtain a strand of about 1.8 mm. This was cut into about 3 mm in the longitudinal direction to obtain pellets.
This polyimide resin pellet showed a peak of cold crystallization (Tcc) at 296 ° C in DSC, and a density of 1.292 g / c.
It was an amorphous resin having a crystallinity of 0% at m 2 . This pellet is designated as polyimide B.

〔合成例3〕 4,4′−ビス(3−アミノフェノキシ)ビフェニルの代
わりに4,4′−ビス(3−アミノフェノキシフェニル)
−スルフイド400.5g(1モル)を使用した以外は合成1
と同様にしてポリイミドペレットを得た。このペレット
のDSC法によるガラス移転温度は230℃であり、結晶融点
は認められなかった。このペレットをポリイミドCとす
る。
[Synthesis Example 3] 4,4'-bis (3-aminophenoxyphenyl) instead of 4,4'-bis (3-aminophenoxy) biphenyl
-Synthesis 1 except that 400.5 g (1 mol) of sulfide was used
A polyimide pellet was obtained in the same manner as in. The glass transition temperature of the pellets by the DSC method was 230 ° C, and no crystal melting point was observed. This pellet is referred to as polyimide C.

〔実施例1〜5〕 ポリイミドA2kgをステンレススチール製の容器に入れ、
密閉型の熱風式乾燥機に入れた。乾燥機内を充分に窒素
で置換し、1/minで窒素を流しながら310℃で5時間
熱処理し、室温まで戻した。熱処理後のペレット結晶化
度は密度法で計算したところ31%であった。
[Examples 1 to 5] 2 kg of polyimide A was placed in a stainless steel container,
It was placed in a closed hot air dryer. The inside of the dryer was sufficiently replaced with nitrogen, and heat treatment was performed at 310 ° C. for 5 hours while flowing nitrogen at 1 / min, and the temperature was returned to room temperature. The pellet crystallinity after heat treatment was 31% as calculated by the density method.

このペレットを180℃で24時間乾燥し、真空ホッパーを
備えた25mm押出機に供給し、410℃で加熱溶融し、幅150
mmのスリットダイ(隙間0.5mm)から押出し、空中で自
然放冷し、厚さ約0.5mmのシートを得た。この時、スク
リュー回転数を第1表に示すように5〜150rpmの範囲で
変化させたが、押出量変動、気泡発生等の問題はなんら
認められなかった。結果の詳細を第1表に示す。
The pellets were dried at 180 ℃ for 24 hours, fed to a 25 mm extruder equipped with a vacuum hopper, heated and melted at 410 ℃, width 150
A sheet having a thickness of about 0.5 mm was obtained by extruding from a mm slit die (gap: 0.5 mm) and allowing to cool naturally in the air. At this time, the screw rotation speed was changed within the range of 5 to 150 rpm as shown in Table 1, but no problems such as variation in extrusion amount and generation of bubbles were observed. The details of the results are shown in Table 1.

〔実施例6〜10〕 ポリイミドAを熱処理の温度、時間を変えて、空気中で
処理し(これらの例では、熱処理後すぐに乾燥機から取
り出し、撹拌しながら常温の空気を吹きつけて冷却し
た)結晶化度の異なる5種のペレットを得た。これらの
ペレットを用いて、実施例2と同様な方法でシートを得
た。その結果、押出量の変動、気泡発生等の問題は何ら
認められなかった。結果の詳細を第1表に示す。
[Examples 6 to 10] Polyimide A was treated in air by changing the temperature and time of heat treatment (in these examples, immediately after the heat treatment, the polyimide A was taken out from the dryer and cooled by blowing air at room temperature with stirring. 5 pellets having different crystallinity were obtained. A sheet was obtained using these pellets in the same manner as in Example 2. As a result, no problems such as fluctuations in extrusion rate and bubble generation were observed. The details of the results are shown in Table 1.

〔比較例1〜5〕 ポリイミドAを熱処理せずそのまま実施例1と同様な方
法で、第1表に示すスクリュー回転数で、シート成形を
行った。その結果、押出量の変動、押出不能、気泡の発
生が認められた。結果の詳細を第1表に示す。
[Comparative Examples 1 to 5] Polyimide A was subjected to sheet molding in the same manner as in Example 1 without heat treatment at the screw rotation speed shown in Table 1. As a result, it was confirmed that the amount of extrusion varied, that extrusion was impossible, and that bubbles were generated. The details of the results are shown in Table 1.

〔比較例6〕 ポリイミドAを第1表に示す条件で熱処理し、結晶化度
3.5%のペレットを得た。これを実施例2と同様な方法
で、シート成形を行った。その結果、押出量の変動、気
泡の発生が認められた。結果の詳細を第1表に示す。
[Comparative Example 6] Polyimide A was heat treated under the conditions shown in Table 1 to obtain a crystallinity.
3.5% pellets were obtained. Sheet molding was performed in the same manner as in Example 2. As a result, it was confirmed that the extrusion amount varied and bubbles were generated. The details of the results are shown in Table 1.

〔実施例11〕 実施例2と同様な熱処理をしたペレットを用い、溶融押
出時に直径0.3mmのノズルを押出機に取りつけ、引き取
り速度を2m/minとした以外は実施例2と同様な方法で原
糸を得た。その結果、平均押出量7.5g/min、変動幅3%
と押出量の変動は少なかった。また、糸切れの問題もな
かった。
[Example 11] The same method as in Example 2 was repeated except that the pellets heat-treated in the same manner as in Example 2 were used, a nozzle having a diameter of 0.3 mm was attached to the extruder at the time of melt extrusion, and the take-up speed was 2 m / min. I got the raw yarn. As a result, average extrusion rate 7.5g / min, fluctuation range 3%
And the fluctuation of the extrusion rate was small. Also, there was no problem of thread breakage.

〔比較例7〕 ポリイミドAを用いた以外は実施例11と同様な方法で原
糸を得ようと試みたが、糸切れが頻繁に発生し、糸を得
ることができなかった。
[Comparative Example 7] An attempt was made to obtain a raw yarn in the same manner as in Example 11 except that polyimide A was used, but yarn breakage frequently occurred and the yarn could not be obtained.

〔実施例12〕 実施例2と同様なペレットを用いて、溶融押出時に直径
20mmのノズルを取りつけ、約50℃に保ったサイジングダ
イにより、直径20mmの丸棒を製作した。その結果、直径
の変動は約5%であり、内部に気泡がなく、良好な成形
品を得た。
[Example 12] The same pellets as in Example 2 were used to measure the diameter during melt extrusion.
A 20 mm diameter round bar was manufactured with a sizing die that was equipped with a 20 mm nozzle and kept at approximately 50 ° C. As a result, the variation in diameter was about 5%, and there were no bubbles inside, and a good molded product was obtained.

〔比較例8〕 ポリイミドAを用いた以外は、実施例12と同様な方法で
丸棒を得ようと試みた。しかし、押出量の変動が著し
く、また内部に著しい気泡を生じ、丸棒とはいえないも
のであった。
Comparative Example 8 An attempt was made to obtain a round bar in the same manner as in Example 12 except that Polyimide A was used. However, it could not be said to be a round bar because the extrusion amount fluctuated remarkably and remarkable bubbles were generated inside.

〔実施例13〕 ポリイミドBを260℃で28時間、310℃で5時間、窒素雰
囲気下で熱処理したところ、結晶化度23%の結晶性のペ
レットが得られた。
[Example 13] When polyimide B was heat-treated at 260 ° C for 28 hours and at 310 ° C for 5 hours in a nitrogen atmosphere, crystalline pellets having a crystallinity of 23% were obtained.

このペレットを180℃で24時間乾燥し、25mm押出機に供
給し、400℃で加熱溶融し、幅150mmのスリットダイ(隙
間0.5mm)から押出し、空中で自然放冷し、約0.5mmのシ
ートを得た。この時、スクリュー回転数10rpmで行った
が、押出量変動が3%であり、気泡等の問題はなんら認
められなかった。
These pellets are dried at 180 ℃ for 24 hours, supplied to a 25mm extruder, heated and melted at 400 ℃, extruded from a slit die with a width of 150mm (gap 0.5mm), naturally cooled in the air, and a sheet of about 0.5mm. Got At this time, the screw rotation speed was 10 rpm, but the extrusion rate fluctuation was 3%, and no problem such as bubbles was observed.

〔実施例14〜16〕 ポリイミドBを第1表に示す条件(温度、時間)で、実
施例1に準じて熱処理し結晶化度の異なる3種のペレッ
トを得た。これらのペレットを180℃で24時間乾燥し、2
5mm押出機に供給し、400℃で加熱溶融し、幅150mmのス
リットダイ(隙間0.5mm)から押出し、空中で自然放冷
し、約0.5mmのシートを得た。この時、スクリュー回転
数を10rpmで行ったが、押出量の変動、気泡等の問題は
何ら認められなかった。結果の詳細を第1表に示す。
[Examples 14 to 16] Polyimide B was heat treated according to Example 1 under the conditions (temperature and time) shown in Table 1 to obtain three types of pellets having different crystallinity. Dry these pellets at 180 ° C for 24 hours and
It was supplied to a 5 mm extruder, heated and melted at 400 ° C., extruded from a slit die having a width of 150 mm (gap: 0.5 mm), and naturally cooled in the air to obtain a sheet of about 0.5 mm. At this time, the screw rotation speed was 10 rpm, but there were no problems such as fluctuations in extrusion amount and bubbles. The details of the results are shown in Table 1.

〔比較例9〜10〕 ポリイミドBをそのまま用いるか(比較例10)あるいは
実施例1と同様な方法でポリイミドBを280℃で5分間
熱処理し結晶化度2.5%のペレットを得た(比較例
9)。これらのぺレットを実施例14と同様な方法で押出
しシートを得た。しかし押出量の変動、気泡の発生が認
められた。結果の詳細を第1表に示す。
[Comparative Examples 9 to 10] Polyimide B was used as it is (Comparative Example 10) or polyimide B was heat-treated at 280 ° C for 5 minutes in the same manner as in Example 1 to obtain pellets having a crystallinity of 2.5% (Comparative Example). 9). Extruded sheets were obtained from these pellets in the same manner as in Example 14. However, fluctuation of the extrusion rate and generation of bubbles were observed. The details of the results are shown in Table 1.

〔実施例17〕 実施例13で使用したペレットを用い、溶融押出時に直径
0.3mmのノズルを押出機に取りつけ、引き取り速度を2m/
minとした以外は実施例2と同様な方法で原糸を得た。
Example 17 Using the pellets used in Example 13, the diameter during melt extrusion
Attach a 0.3mm nozzle to the extruder, and pick up speed is 2m /
A raw yarn was obtained in the same manner as in Example 2 except that the min was set.

その結果、平均押出量6.8g/min、変動幅6%と押出量の
変動は少なかった。また、糸切れの問題もなかった。
As a result, the average extrusion rate was 6.8 g / min, the fluctuation range was 6%, and the fluctuation in the extrusion rate was small. Also, there was no problem of thread breakage.

〔比較例11〕 ポリイミドBを用いた以外は実施例17と同様な方法で原
糸を得ようと試みたが、糸切れが頻繁に発生し、糸を得
ることができなかった。
[Comparative Example 11] An attempt was made to obtain a raw yarn in the same manner as in Example 17 except that polyimide B was used, but yarn breakage frequently occurred, and a yarn could not be obtained.

〔実施例18〕 実施例13で使用したペレットを用いて、溶融押出時に直
径20mmのノズルを取りつけ、約50℃に保ったサイジング
ダイにより、直径20mmの丸棒を製作した。その結果、直
径の変動は約8%であり、内部に気泡がなく、良好な成
形品を得た。
Example 18 Using the pellets used in Example 13, a 20 mm diameter nozzle was attached at the time of melt extrusion, and a sizing die maintained at about 50 ° C. was used to produce a 20 mm diameter round bar. As a result, the variation in diameter was about 8%, and there were no bubbles inside, and a good molded product was obtained.

〔比較例12〕 ポリイミドBを用いた以外は、実施例18と同様な方法で
丸棒を得ようと試みた。しかし、押出量の変動が著し
く、また内部に著しい気泡を生じ、丸棒とはいえないも
のであった。
[Comparative Example 12] An attempt was made to obtain a round bar in the same manner as in Example 18 except that Polyimide B was used. However, it could not be said to be a round bar because the extrusion amount fluctuated remarkably and remarkable bubbles were generated inside.

〔比較例13〕 ポリイミドCを窒素雰囲気下、250℃で48時間熱処理し
たが、DSC法およびX線法により結晶性は認められなか
った。熱処理したポリイミドCを180℃で24時間乾燥
し、実施例2と同様の方法でシート成形を行った。その
結果、平均押出量7.5g/min、変動幅53%で押出量の変動
が大きく、また得られたシートには気泡およびダイ粕の
発生が認められた。
[Comparative Example 13] Polyimide C was heat-treated at 250 ° C for 48 hours in a nitrogen atmosphere, but no crystallinity was observed by the DSC method and the X-ray method. The heat-treated polyimide C was dried at 180 ° C. for 24 hours, and a sheet was formed in the same manner as in Example 2. As a result, it was found that the average extrusion rate was 7.5 g / min and the fluctuation range was 53%, the variation in the extrusion rate was large, and bubbles and die residue were generated in the obtained sheet.

〔発明の効果〕 本発明におけるポリイミド樹脂の押出成形法は、押出成
形時の押出量の変動、押出不能等の押出成形における根
本的な問題を解決するばかりでなく、樹脂とともに輸送
された気体が樹脂の溶融に伴い排除される結果、製品へ
の気体の混入あるいはそれによってもたらされるダイ粕
等の二次的な問題を解決することができ、ポリイミド樹
脂の押出成形に極めて有効である。
[Effects of the Invention] Extrusion molding method of the polyimide resin in the present invention not only solves the fundamental problem in extrusion molding such as fluctuation of the extrusion amount during extrusion molding, inability to extrude, but the gas transported together with the resin is As a result of being eliminated along with the melting of the resin, secondary problems such as mixing of gas into the product or the resulting die residue can be solved, which is extremely effective for extrusion molding of polyimide resin.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】一般式〔I〕 (式中、Xは単結合またはヘキサフルオロイソプロピリ
デン基を示す)で表される繰り返し構造単位を有するポ
リイミドをペレット状に加工し、これを加熱処理して結
晶化度が5%以上のポリイミドとして溶融押出機に供給
することを特徴とするポリイミドの押出成形法。
1. A general formula [I] (In the formula, X represents a single bond or a hexafluoroisopropylidene group) A polyimide having a repeating structural unit represented by the formula is processed into a pellet, and this is heat-treated to obtain a polyimide having a crystallinity of 5% or more. An extrusion molding method for polyimide, which comprises supplying to a melt extruder.
【請求項2】加熱処理を250〜370℃の温度で実施する請
求項1記載の方法。
2. The method according to claim 1, wherein the heat treatment is carried out at a temperature of 250 to 370 ° C.
【請求項3】結晶化度が5〜50%である請求項1記載の
方法。
3. The method according to claim 1, wherein the crystallinity is 5 to 50%.
【請求項4】重合して得られた一般式〔I〕 (式中、Xは単結合またはヘキサフルオロイソプロピリ
デン基を示す)で表される繰り返し構造単位を有するポ
リイミドを、ペレット状に加工し、ついでこれを加熱処
理し結晶化度を5%以上とした押出成形用ポリイミドペ
レット。
4. A general formula [I] obtained by polymerization. (In the formula, X represents a single bond or a hexafluoroisopropylidene group) A polyimide having a repeating structural unit represented by the formula is processed into pellets, which are then heat treated to have a crystallinity of 5% or more. Polyimide pellets for extrusion molding.
【請求項5】加熱処理が250〜370℃の温度である請求項
4記載のポリイミドペレット。
5. The polyimide pellet according to claim 4, wherein the heat treatment is performed at a temperature of 250 to 370 ° C.
【請求項6】結晶化度が5〜50%である請求項4のポリ
イミドペレット。
6. The polyimide pellet according to claim 4, which has a crystallinity of 5 to 50%.
JP2075452A 1989-04-05 1990-03-27 Polyimide extrusion molding method and polyimide pellets used in this method Expired - Lifetime JPH0798348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2075452A JPH0798348B2 (en) 1989-04-05 1990-03-27 Polyimide extrusion molding method and polyimide pellets used in this method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8488989 1989-04-05
JP1-84889 1989-04-05
JP2075452A JPH0798348B2 (en) 1989-04-05 1990-03-27 Polyimide extrusion molding method and polyimide pellets used in this method

Publications (2)

Publication Number Publication Date
JPH0342224A JPH0342224A (en) 1991-02-22
JPH0798348B2 true JPH0798348B2 (en) 1995-10-25

Family

ID=26416580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2075452A Expired - Lifetime JPH0798348B2 (en) 1989-04-05 1990-03-27 Polyimide extrusion molding method and polyimide pellets used in this method

Country Status (1)

Country Link
JP (1) JPH0798348B2 (en)

Also Published As

Publication number Publication date
JPH0342224A (en) 1991-02-22

Similar Documents

Publication Publication Date Title
EP1081173B1 (en) Process for producing aromatic liquid crystalline polyester and film thereof
JPH0513969B2 (en)
KR940003165B1 (en) Method for extrusion molding of polyimide and polyimide pellet used therein
JPH02248459A (en) Rapidly crystallizing thermoplastic resin composition
JPH0737066B2 (en) Method for producing low-viscosity polyester sheet
CN117464947A (en) High-temperature-resistant polylactic acid biaxially oriented film and preparation method thereof
US5206339A (en) Extrusion process of polyimide and polyimide pellet used for the process
US8231937B2 (en) Compartmentalized chips with similar polymers of different viscosities for improved processability
JPH0798348B2 (en) Polyimide extrusion molding method and polyimide pellets used in this method
JP2002018842A (en) Method for manufacturing liquid crystalline resin pellet
CN113563700A (en) Polylactic acid composition containing hydrazide type nucleating agent and preparation method thereof
KR100210692B1 (en) Article from a polyester resin reinforced with glass fibre
ITMI962159A1 (en) PERFECTED PROCESS FOR THE DIMENSIONAL STABILIZATION OF POLYETHYLENTEREPHTHALATE PRODUCTS
JP2001342243A (en) Aromatic liquid crystal polyester film and method for producing the same
JPH07178804A (en) Production of stretched polyimide film
CN110343335B (en) Heat-resistant label film and preparation method thereof
JP2553190B2 (en) Film and its manufacturing method
JPH04372625A (en) Process for molding aromatic ether copolymer
JPH0890557A (en) Pellet of highly crystalline polycyanoaryl ether, production thereof and molding thereof
JPH05169516A (en) Extrusion-molding method of semicrystalline polyimide
JPS63101416A (en) Wholly aromatic polyester polymer
JPS6258378B2 (en)
JPH03131650A (en) Thermoplastic molding material
JPH0218971B2 (en)
JP2002219742A (en) Method for manufacturing polyester pipe