JPH0342196A - Manufacture of foil-like brazing material - Google Patents

Manufacture of foil-like brazing material

Info

Publication number
JPH0342196A
JPH0342196A JP17200689A JP17200689A JPH0342196A JP H0342196 A JPH0342196 A JP H0342196A JP 17200689 A JP17200689 A JP 17200689A JP 17200689 A JP17200689 A JP 17200689A JP H0342196 A JPH0342196 A JP H0342196A
Authority
JP
Japan
Prior art keywords
sheet
powder
composition
brazing
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17200689A
Other languages
Japanese (ja)
Inventor
Hirofumi Furukawa
洋文 古河
Takamichi Tanaka
敬通 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17200689A priority Critical patent/JPH0342196A/en
Publication of JPH0342196A publication Critical patent/JPH0342196A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • B23K35/325Ti as the principal constituent

Abstract

PURPOSE:To manufacture a brazing material having optional composition and optional thickness by manufacturing a sheet from slurry adding solvent and organic binder, etc., to the specific metal powder with doctor blade method and further, sintering this under non-oxidizing atmosphere. CONSTITUTION:Mixed powder of one or more kinds of pure metal powders or metal powders of the prescribed composition is used. The prescribed quantities of the solvent and organic binder, etc., are added to the metal powder and kneaded, and the sheet 11 having the prescribed thickness is made from the slurry with a doctor blade forming device. Further, the sheet 11 is dried and sintered under non-oxidizing atmosphere. Then, diffusion among the particles at the time of sintering or brazing progresses to make the dense brazing material having uniform structure.

Description

【発明の詳細な説明】 〔産業上のlil用分野〕 本発明は箔状のろう材の製造方法に関する。[Detailed description of the invention] [Industrial lil field] The present invention relates to a method for producing a foil-shaped brazing filler metal.

〔従来の技術〕[Conventional technology]

TiAl系等の金属間化合物は軽量で、高温での強度及
びクリープ強度が大きいために高温で使用される構造部
材、すなわち耐熱材料として注目されている。しかしこ
れらの金属間化合物を接合するに際しては、局部的に高
温に加熱・溶融するアーク溶接、電子ビーム溶接等では
一般に金属間化合物は靭性に乏しいために割れが発生し
やすく、従って溶接は極めて困難である。
Intermetallic compounds such as TiAl-based intermetallic compounds are lightweight and have high strength and creep strength at high temperatures, so they are attracting attention as structural members used at high temperatures, that is, heat-resistant materials. However, when joining these intermetallic compounds, arc welding, electron beam welding, etc., which locally heat and melt them at high temperatures, are generally difficult to weld, as intermetallic compounds tend to crack easily due to their poor toughness. It is.

そこで溶接に替わる接合の一つとしてろう付け、すなわ
ち真空ろう付げがある。
Therefore, brazing, that is, vacuum brazing, is one of the joining methods that can replace welding.

従来、ろう付けに使用される合金ろう材の製造方法とし
て、主に以下の3つの方法が公知である。
Conventionally, the following three methods are mainly known as methods for manufacturing alloy brazing materials used for brazing.

(1)所定の合金組成を有する素材を所定の厚さに圧延
することにより箔状(数十〜数百μmn)のろう材を製
造する。
(1) A foil-shaped brazing filler metal (several tens to hundreds of μm) is manufactured by rolling a material having a predetermined alloy composition to a predetermined thickness.

(2)組成の異なる2種類以上の箔を圧延して多層の箔
状ろう材を製造する。
(2) Two or more types of foils with different compositions are rolled to produce a multilayer foil brazing material.

(3)圧延が困難な組成のろう材については所定の組成
からなる溶融合金を高速回転するロール表面にて急速冷
却、急速凝固することによりアモルファス化して箔状の
ろう材を製造する。ただし合金組成によってはアモルフ
ァス化しにくい材料がちり、該方法は合金組成上の制約
がある。
(3) For a brazing filler metal whose composition is difficult to roll, a foil-shaped brazing filler metal is produced by rapidly cooling and rapidly solidifying a molten alloy having a predetermined composition on the surface of a roll rotating at high speed to make it amorphous. However, depending on the alloy composition, there may be dust in the material that is difficult to turn into amorphous, and this method has limitations due to the alloy composition.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一例として、TiAl系金属間rヒ合物等の耐熱材料の
接合に要求される高融点ろう材として第3図に示すよう
なチタン64重量%、残部が銅からなる共晶点近傍の組
成を有するろう材がある。該ろう材は融点が高く、かつ
チタン系合金とは濡れ性も良好であるため、TiAl系
金属間化合物用のろう材として適している。しかし該、
組成近傍のTi−Cu合金は比較的靭性が小さいために
圧延による薄板化が困難であり、また例えば純チタン箔
と純銅箔を圧延して多層化することも困難でちる(単に
圧延するだけでは剥離して2種類の箔が接合しない)。
As an example, as a high melting point brazing material required for joining heat-resistant materials such as TiAl-based intermetallic arsenides, a composition near the eutectic point consisting of 64% by weight titanium and the balance copper as shown in Figure 3 is used. There is a brazing filler metal that has Since this brazing material has a high melting point and good wettability with titanium alloys, it is suitable as a brazing material for TiAl-based intermetallic compounds. However, the
Ti-Cu alloys with similar compositions have relatively low toughness, so it is difficult to roll them into thin sheets.For example, it is also difficult to roll pure titanium foil and pure copper foil to form a multilayer structure (simply rolling does not (The two types of foils will not bond together due to peeling).

かつ、Ti−Cu合金はアモルファス化しにくい組成で
あるため、上記(1)〜(3)の従来の方法では箔状の
ろう材を製造することは困難であった。
In addition, since the Ti-Cu alloy has a composition that does not easily become amorphous, it has been difficult to produce a foil-shaped brazing material using the conventional methods (1) to (3) above.

本発明は上記技術水準に鑑み、従来法では製造が困難で
ある箔状ろう材、例えばTi−Cu合金粉末あるいはチ
タン粉末と銅粉末の混合粉末等から厚さ数十〜数百μm
の箔状ろう材(なお、Ti−Cu系合金は一例であって
、これに1@定されるものではない)、を製造する方法
を提供しようとするものである。
In view of the above-mentioned state of the art, the present invention has been developed from a foil brazing filler metal that is difficult to manufacture using conventional methods, such as a Ti-Cu alloy powder or a mixed powder of titanium powder and copper powder, to a thickness of several tens to hundreds of μm.
The present invention aims to provide a method for manufacturing a foil-like brazing filler metal (Ti-Cu alloy is just one example, and is not limited thereto).

〔課題を解決する丸めの手段〕[Rounding method to solve the problem]

すなわち、本発明は以下の手段にて所定の厚さを有する
箔状のろう材を製造するものである。
That is, the present invention is to produce a foil-shaped brazing material having a predetermined thickness by the following means.

(1)純金属粉末あるいは所定の組成を有する合金粉末
の一種類あるいは二種類以上を所定の割合で配合した混
合粉末に、所定量の溶媒及び有機結合剤を添加、混練し
てスラリーとし、(2)  この泥漿からドクタープレ
ート法にて所定の厚さのシートを製造し、 (3)更に上記シートを非酸化性雰囲気(主に真空中)
にて所定の温度で焼結することによシ緻密化する。
(1) A predetermined amount of a solvent and an organic binder are added to a mixed powder made by blending one or more types of pure metal powder or alloy powder with a predetermined composition in a predetermined ratio, and the mixture is kneaded to form a slurry ( 2) Manufacture a sheet of a predetermined thickness from this slurry using the doctor plate method, (3) Furthermore, the sheet is placed in a non-oxidizing atmosphere (mainly in a vacuum).
It is densified by sintering at a predetermined temperature.

な訟、ドクタープレート法は、公知の技術であるがその
概要を第5図に示す。すなわち、あらかじめドクタブレ
ード9とベミルト保持板4上のシート用ベルト3間の隙
間を所定厚さに調整した装置に釦いて、モータ7にて、
減速器6、駆動ベルト5を経て駆動ロー/v2を回転さ
せることによりロール1に巻かれたシート用ベルト3を
駆動ロー/l/ 2に巻き取りながら所定の粘度に調整
した原料(スラリ)10を原′pr供給装置8に装入す
ると、所定厚さのシート11が連続的に製造される。シ
ート11はベルト3と共に移動し、その移動過程でシー
ト11中の無機溶媒(アルコ−)v )が蒸発し硬化し
た段階で適当な長さに切断する。
The doctor plate method is a well-known technique, and its outline is shown in FIG. That is, by pressing a button on a device in which the gap between the doctor blade 9 and the seat belt 3 on the Bemilt holding plate 4 has been adjusted to a predetermined thickness in advance, and using the motor 7,
The raw material (slurry) 10 is adjusted to a predetermined viscosity while winding the seat belt 3 wound around the roll 1 to the drive roller /l/2 by rotating the drive roller /v2 through the decelerator 6 and the drive belt 5. When the original 'pr supply device 8 is charged, sheets 11 of a predetermined thickness are continuously produced. The sheet 11 moves together with the belt 3, and in the course of its movement, the inorganic solvent (alcohol) v) in the sheet 11 evaporates, and when the sheet 11 is cured, it is cut into an appropriate length.

〔作用〕[Effect]

例えばエチルアルコ− ク粉末を分散させ、これに結合剤としてポリビニルアル
コール(PVA)等の結合剤及び各種の分散剤、可塑剤
等を添加してスラリー化し、これをドクターグレード法
にて厚さ数十〜数百μmのシートを製造し、更に大気あ
るいは所定雰囲気中にて焼結により箔状のセラミックを
製造することは公知である。
For example, ethyl alcohol powder is dispersed, a binder such as polyvinyl alcohol (PVA), various dispersants, plasticizers, etc. are added to form a slurry, and this is made into a slurry using the doctor grade method to a thickness of several tens of meters. It is known to produce a sheet with a thickness of several hundred micrometers and further to produce a foil-shaped ceramic by sintering in the air or a predetermined atmosphere.

本発明はE記公知技術を金属粉末に応用したものである
が、金属粉末としてはあらかじめ所定の組成を有する合
金粉末あるいは組成の異なる二種類以上の粉末を所定の
組成となるように配合した混合粉末でも使用できる。す
なわち、後者の場合には、組成が異なる2種類以上の金
属粉末を混合して使用しても、後工程の焼結時あるいは
ろう付は時に粒子間で拡散が進行して均−組成のかつ緻
密なろう材となる。
The present invention is an application of the known technology described in E to metal powder, and the metal powder may be an alloy powder having a predetermined composition or a mixture of two or more powders having different compositions so as to have a predetermined composition. It can also be used in powder form. In other words, in the latter case, even if two or more types of metal powders with different compositions are mixed and used, diffusion may progress between the particles during the subsequent sintering or brazing process, resulting in a uniform composition and a uniform composition. It becomes a dense brazing material.

〔実施例〕〔Example〕

本発明の一実施例の態様を以下に示す。 The aspects of one embodiment of the present invention are shown below.

第1図及び第2図に示す粒度構成を有するチタン粉末及
び銅沿末を、第3図に示すチタン−銅系平衡状態図のチ
タン64重量%、銅56重量%からなる共晶近誇の組成
を目標として、第1表に示す種Aの割合で配合した混合
粉末を使用し、混合粉末を重量割合で70%に対して溶
媒であるエチルアルコールを25%、結合剤であるポリ
ビニルブチラールを3%、更に分散剤としてモノオレイ
ン酸グリセリン及び可塑剤としてフタル酸ジブチル した混合物をボールミル れを第5図に概略の構造を示すドクタープレート成形装
置にて、幅200間、厚さ約50〜150μmのシート
11を製造し、シート11が乾燥後に該シート11を窒
化ボロン(B N )を塗布した鋼板上に置いて、10
−5Torrオーダの真空(減圧)雰囲気中で、850
〜900°Cの温度にて1時間の焼結を実施した。
The titanium powder having the particle size structure shown in Figs. 1 and 2 and the copper texture are combined into a eutectic powder consisting of 64% by weight of titanium and 56% by weight of copper in the titanium-copper system equilibrium diagram shown in Fig. 3. Aiming at the composition, a mixed powder blended in the proportions of species A shown in Table 1 was used, and the mixed powder was 70% by weight, 25% ethyl alcohol as a solvent, and polyvinyl butyral as a binder. A mixture of 3% glyceryl monooleate as a dispersant and dibutyl phthalate as a plasticizer was ball-milled using a doctor plate molding device whose structure is schematically shown in Fig. 5 to a width of 200 mm and a thickness of approximately 50 to 150 μm. After the sheet 11 is dried, the sheet 11 is placed on a steel plate coated with boron nitride (B N ).
In a vacuum (reduced pressure) atmosphere on the order of -5 Torr,
Sintering was carried out at a temperature of ˜900° C. for 1 hour.

第1表  (単位wt%) 一方、表2に示す組成のTiA1金属間化合物を第4図
の如く金属間化合物12.13のように加工して、上記
方法にて製造した厚さ約80μmのろう材13を第4図
に示した要領てて、温度1060℃、真空度5〜8×1
0 TOrr1接合時間20 min 、荷重1.5 
v /瓢2の条件にてろう付けを実施し、更に該接合材
から引張試験片を加工して、常温での接合強度を評価し
た。
Table 1 (Unit: wt%) On the other hand, a TiA1 intermetallic compound having the composition shown in Table 2 was processed to form intermetallic compound 12.13 as shown in Figure 4, and a thickness of about 80 μm was produced by the above method. The brazing filler metal 13 was prepared as shown in Fig. 4 at a temperature of 1060°C and a degree of vacuum of 5 to 8 x 1.
0 TOrr1 welding time 20 min, load 1.5
Brazing was carried out under the conditions of v/gourd 2, and a tensile test piece was further processed from the bonding material to evaluate the bonding strength at room temperature.

第2表 (重態 wt%) 引張試験ではいずれの試験片も接合部から破断したが、
接合部の強度は母材強度の90%以上あり、この方法に
て製造したTi−Cu系ろう材は充分な接合強度を発揮
することを確認した。
Table 2 (Severe state wt%) In the tensile test, all test pieces broke at the joint, but
The strength of the joint was 90% or more of the strength of the base material, and it was confirmed that the Ti-Cu brazing filler metal produced by this method exhibited sufficient joint strength.

咬たこの実施例では純チタンと純銅の混合粉末を使用し
たにもかかわらず、接合後のろう材をX線分析した結果
、ろう材は均一なチタンと銅の合金m戒になっていた。
Although a mixed powder of pure titanium and pure copper was used in this example, X-ray analysis of the brazing filler metal after bonding revealed that the brazing filler metal was a uniform alloy of titanium and copper.

この実施例では純金属の粉末2種類を配合した混合粉末
について述べたが、あらかじめ所定の組成を有する合金
粉末を使用することも可能である。また溶媒としてはエ
チルアルコール以外ニトリグレン、トルエン、アセトン
等が使用でき、結合剤としてはポリビニルプチラー)V
 (PVB)以外にポリビニルアルコール(P V A
 )、ポリビニルアセテート(PVAc )、’また分
散剤及び可塑剤としてモノオレイン酸グリセリン、フタ
ル酸ジプチル以外に各種の物質が使用可I詣であり、本
発明では特にこれらの溶媒、結合剤、分散剤及び可塑剤
として使用する物質は限定しない。またこれらの溶媒、
結合剤、分散剤及び可塑剤の適正な添加量は、粉末の粒
径及び形状等によっても異なるため、これらの配合量も
限定するものではない。
In this embodiment, a mixed powder in which two types of pure metal powders are blended is described, but it is also possible to use an alloy powder having a predetermined composition. In addition, as a solvent, nitriglen, toluene, acetone, etc. can be used other than ethyl alcohol, and as a binder, polyvinyl ptylar) V
In addition to (PVB), polyvinyl alcohol (PVB)
), polyvinyl acetate (PVAc), and various substances other than glycerin monooleate and diptylphthalate can be used as dispersants and plasticizers, and in the present invention, these solvents, binders, dispersants and The substance used as a plasticizer is not limited. Also, these solvents,
Appropriate amounts of the binder, dispersant, and plasticizer to be added vary depending on the particle size and shape of the powder, so there are no limitations on the amount of these added.

〔発明の効果〕〔Effect of the invention〕

本発明により、従来の圧延による方法あるいはアモルフ
ァス化による方法では箔状のろう材の製造が困難であっ
た組成についても、任意の組成及び任意の厚さのろう材
を製造することが可能である。
According to the present invention, it is possible to produce a brazing filler metal of any composition and thickness, even for compositions for which it is difficult to produce a foil brazing filler metal using conventional rolling methods or amorphization methods. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例で使用したチタン粉末の粒度分
布図、第2図は本発明の実施例で使用した銅粉の粒度分
布図、第3図はチタン−銅の平衡状態図、第4図は箔状
ろう材による接合例を示す説明図、第5図はドクタープ
レート装置の概略図である。
Figure 1 is a particle size distribution diagram of the titanium powder used in the examples of the present invention, Figure 2 is a particle size distribution diagram of the copper powder used in the examples of the present invention, Figure 3 is a titanium-copper equilibrium state diagram, FIG. 4 is an explanatory view showing an example of bonding using a foil brazing material, and FIG. 5 is a schematic view of a doctor plate device.

Claims (1)

【特許請求の範囲】[Claims]  純金属粉末あるいは所定の組成からなる合金粉末の一
種類あるいは二種類以上の混合粉末に溶媒と有機結合剤
等を所定量添加したスラリーからドクタープレート法に
て所定厚さのシートを製造し、更に該シートを非酸化性
雰囲気中にて焼結することを特徴とする箔状ろう材の製
造方法。
A sheet of a predetermined thickness is manufactured using a doctor plate method from a slurry made by adding a predetermined amount of a solvent, an organic binder, etc. to one type of pure metal powder or an alloy powder of a predetermined composition, or a mixed powder of two or more types, and then A method for producing a foil brazing filler metal, which comprises sintering the sheet in a non-oxidizing atmosphere.
JP17200689A 1989-07-05 1989-07-05 Manufacture of foil-like brazing material Pending JPH0342196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17200689A JPH0342196A (en) 1989-07-05 1989-07-05 Manufacture of foil-like brazing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17200689A JPH0342196A (en) 1989-07-05 1989-07-05 Manufacture of foil-like brazing material

Publications (1)

Publication Number Publication Date
JPH0342196A true JPH0342196A (en) 1991-02-22

Family

ID=15933773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17200689A Pending JPH0342196A (en) 1989-07-05 1989-07-05 Manufacture of foil-like brazing material

Country Status (1)

Country Link
JP (1) JPH0342196A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104759630A (en) * 2015-04-01 2015-07-08 成都易态科技有限公司 Preparation method of porous metal foil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104759630A (en) * 2015-04-01 2015-07-08 成都易态科技有限公司 Preparation method of porous metal foil

Similar Documents

Publication Publication Date Title
US10549350B2 (en) Process for producing shaped refractory metal bodies
US5846664A (en) Porous metal structures and processes for their production
WO2014188559A1 (en) Reactive powder, bonding material using reactive powder, bonded body bonded with bonding material and method for producing bonded body
US5711833A (en) Process for the production of thin walled ceramic structures
US5286314A (en) Rapidly solidified aluminum-germanium base brazing alloys
JP2014194075A (en) Aluminum raw material for sintering, method for producing aluminum raw material for sintering, and method for producing porous aluminum sintered compact
CN109365810B (en) Method for preparing copper-based shape memory alloy in any shape in situ by laser and product
JPS6362474B2 (en)
CN111926232A (en) High-entropy alloy material and preparation method thereof
JP2002371301A (en) Tungsten sintered compact and manufacturing method therefor
US6428904B2 (en) X-ray target
JPH0342196A (en) Manufacture of foil-like brazing material
DE102014115839A1 (en) Method for applying a solder material
CA1061607A (en) Method for fabricating beryllium structures
JP2005186127A (en) Brazing filler metal sheet and its manufacturing method
Karimi et al. Synthesis and characterization of Sn–Cu/SiO2 (np) lead-free nanocomposite solder through angular accumulative extrusion
JPH08141779A (en) Pasty joining material for brazing
JPH0378194B2 (en)
Xiong et al. Development of a new CuNiTiB brazing alloy for joining Si 3 N 4 to Si 3 N 4
JP2532114B2 (en) Brazing material
EP2708522A1 (en) Metal-carbon composite material and method for producing same
JP4803872B2 (en) JOINT BODY AND MANUFACTURING METHOD THEREOF
JPS61214424A (en) Heat-resisting jig and its manufacture
JPS63171847A (en) Molybdenum crucible and its production
JPH0254760A (en) Manufacture of target