JPH0342194A - Marine propeller - Google Patents

Marine propeller

Info

Publication number
JPH0342194A
JPH0342194A JP17566089A JP17566089A JPH0342194A JP H0342194 A JPH0342194 A JP H0342194A JP 17566089 A JP17566089 A JP 17566089A JP 17566089 A JP17566089 A JP 17566089A JP H0342194 A JPH0342194 A JP H0342194A
Authority
JP
Japan
Prior art keywords
propeller
erosion
alloy
present
seawater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17566089A
Other languages
Japanese (ja)
Inventor
Shintaro Matsuo
松尾 信太郎
Masahiro Saito
正洋 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17566089A priority Critical patent/JPH0342194A/en
Publication of JPH0342194A publication Critical patent/JPH0342194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To improve corrosion fatigue strength in seawater of the marine propeller and to improve erosion resistance thereof by performing cladding by welding of a Co-base alloy having specified composition on parts to sustain erosion damage of stainless steel marine propeller raw material. CONSTITUTION:The stainless steel marine propeller raw material having the chemical composition consisting of, by weight, <= 0.08% C, 0.1 - 1.5% Si, 0.1 - 5% Mn, 16 - 19% Cr, 5 - 7.5% Ni, 0.5 - 3% Mo and the balance Fe substantial ly is manufactured. Cladding by welding of the Co base-alloy 4 is then performed on the astern faces 3 liable to erosion of the propeller raw material. The chemi cal composition of the Co base-alloy 4 consists of, by weight, 20 - 32% Cr, 3 - 16% W, 0.7 - 3% C, <= 2% Si, <= 1.5% Mn, 0.5 - 1.5% Nb and the balance Co substantially. Accordingly, the propeller is remarkably excellent is corrosion fatigue strength in seawater and besides, erosion resistance thereof is remarkably improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は海水中で使用される舶用プロペラに’jIj’
L/ 、詩に現月の銅合金プロペラよりも4Sれた呵食
疲労強度と、耐エロージヨン性を有する加用プロペラに
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention applies to marine propellers used in seawater.
L/ relates to an additive propeller that has corrosion fatigue strength and erosion resistance 4S higher than current copper alloy propellers.

〔従来の技術〕[Conventional technology]

従来から舶用プロペラ材料には銅合金材が使用され、そ
の中でも最つとも多く使用されるニッケルアルミニウム
青銅でも海水中の疲れ強さは18kgf/慎2(繰返数
2 X 10’回)程度である。プロペラ翼厚は海水中
疲れ強さをもとに決められておシ、もし海水中疲れ強さ
の高い材料が開発されれば軽量で高効率なプロペラ製作
が可能となる。
Traditionally, copper alloy materials have been used for marine propeller materials, and even nickel-aluminum bronze, which is the most commonly used material, has a fatigue strength of about 18 kgf/shin2 (repetition number 2 x 10 times) in seawater. be. Propeller blade thickness is determined based on seawater fatigue strength, and if materials with high seawater fatigue strength are developed, it will be possible to manufacture lightweight, highly efficient propellers.

又、銅合金製プロペラに)いては、プロペラ回転中に発
生するキャビテーション気泡の崩壊に起因するエロージ
ョンによるプロペラ翼端部後進面(プロペラの前、すな
わち船首側から見た面)の損傷を避けることは不可能で
ある。最近、船舶が高速化するに伴って銅合金中では優
しタ耐エロージョン性ヲ有するアルミニウム青銅プロペ
ラでも短時間で翼端にエロージョンを受け、補修を必要
とするようにZつできている。
In addition, for copper alloy propellers, avoid damage to the propeller blade tip trailing surface (the surface seen from the front of the propeller, i.e., from the bow side) due to erosion caused by the collapse of cavitation bubbles generated during propeller rotation. is impossible. Recently, as ships have become faster, even aluminum-bronze propellers, which are made of copper alloy and have good erosion resistance, are being made so that their blade tips undergo erosion in a short period of time and require repair.

ろ11疹するとしても補修に伴う船舶の渠費、体船によ
る損失負担も大きいし、損傷対策として工ローション損
傷部を切除して補修などの処置をしているが、エロージ
ョン損傷部を切除するとプロペラの推進効率が低下する
Even if erosion occurs, the cost of docking the ship and the loss of the ship due to repairs are large, and as a countermeasure against damage, the damaged part is cut out and repaired using lotion, but if the damaged part of the erosion is removed, The propulsion efficiency of the propeller decreases.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

現在量も多く使用されている銅合金プロペラ材のニッケ
ルアルミニウム青銅は耐海水腐食性、工作性に優れてい
るが、機械的性質は引張強さ70kgf/m’が最高で
海水中疲れ強さも20kl?f/m”(繰返数2 X 
10?回)以下である。(後記第3表凪11参照) マタ、耐エロージヨン性に訃いても、硬さがプリネル硬
さで150〜160でキャビテーションの激しい環境で
の浸れた耐エロージヨン性は期待できない。
Nickel-aluminum bronze, a copper alloy propeller material currently widely used, has excellent seawater corrosion resistance and workability, but its mechanical properties have the highest tensile strength of 70 kgf/m' and seawater fatigue strength of 20 kl. ? f/m” (number of repetitions 2
10? times) or less. (See Table 3, Nagi 11 below) Even if the erosion resistance is poor, the hardness is 150 to 160 on Purinel hardness, so erosion resistance cannot be expected in environments with severe cavitation.

本発明は上記技術水準に鑑み、従来の銅合金プロペラ材
では得られなかった高い腐食疲れ強さを有すると共に、
耐エロージヨン性の優れたプロペラ材を提供し、銅合金
プロペラでは達成不可能な高効率舶用プロペラを提供し
ようとするものである。
In view of the above-mentioned technical level, the present invention has high corrosion fatigue strength that cannot be obtained with conventional copper alloy propeller materials, and
The objective is to provide a propeller material with excellent erosion resistance, and to provide a high-efficiency marine propeller that cannot be achieved with copper alloy propellers.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は重量%で、C:a08%以下、Si:(Ll 
〜t5%、Mn:[lL1〜3%、Cr:16〜19%
、Ni:5〜7.5’!6、Mo: (L 5〜3%を
含有し、残部が実質的にFe よりなるステンレヌ鋼製
舶用プロベヲ素材のエロージョン損傷を受ける部分に、
重量%で、Cr:20〜32%、W:3〜16%、C:
117〜5%、Si:2%以下、Mn:1.5%以下、
Nb:cs 〜ts%、残部が実質的にCOよりなるコ
バルト基合金を溶接肉盛してなることを特徴とする舶用
プロペラである。
In the present invention, C: a08% or less, Si: (Ll
~t5%, Mn:[lL1~3%, Cr:16~19%
, Ni: 5~7.5'! 6. Mo: (Contains 5 to 3% L and the remainder is substantially Fe, in the portion of the stainless steel marine probe material that suffers erosion damage.
In weight%, Cr: 20-32%, W: 3-16%, C:
117-5%, Si: 2% or less, Mn: 1.5% or less,
This is a marine propeller characterized by being formed by welding and overlaying a cobalt-based alloy consisting of Nb: cs to ts%, the remainder being substantially CO.

本発明のプロベフ素材にかいて、その合金組成に規定し
たのは以下の理由による。
The reason why the alloy composition of the Probef material of the present invention is specified is as follows.

Cニクロム炭化物を形成し、粒界に析出して耐食性へ腐
食疲労強度を下げるのでその含有量を008%以下とす
る。
Since C forms nichrome carbide and precipitates at grain boundaries, providing corrosion resistance and lowering corrosion fatigue strength, its content is set to 0.08% or less.

St:溶解時の脱酸剤として[11%以上添加する必要
がある。しかし添加量が1.5%を越えると脆化するの
で上限を1,5%とする。
St: As a deoxidizing agent during dissolution, it is necessary to add 11% or more. However, if the amount added exceeds 1.5%, it becomes brittle, so the upper limit is set at 1.5%.

Mn : S iと同様、脱酸剤として01%以上の添
加が必要であるが、3%を越えると脆化をもたらすので
上限を3′!Aにする。
Mn: Like Si, it is necessary to add 0.1% or more as a deoxidizing agent, but if it exceeds 3%, it will cause embrittlement, so the upper limit should be 3'! Make it A.

Cr:この発明にかいて耐食性を確保するのに最も重要
な元素であシ、その量が増加するほど材料の耐食性は向
上する。良好な釧食性を保持するには16%以上は必要
であるため丁丑を16%とし、19%を越えると耐食性
は増すが引張強さが低下するので上限を19%とする。
Cr: This is the most important element for ensuring corrosion resistance in this invention, and as the amount thereof increases, the corrosion resistance of the material improves. To maintain good corrosion resistance, 16% or more is necessary, so the content of chlorine is set at 16%, and if it exceeds 19%, the corrosion resistance increases but the tensile strength decreases, so the upper limit is set at 19%.

Ni:Crの添加量が上記のとおシ16〜19%の範囲
にある時、良好な衝撃値を得るには最低5%のN1が必
要である。一方との量が25%を超えると残留オーステ
ナイト量が増加し強度の低下を招くのでNi添加量の上
限を7.5%にする。
When the amount of Ni:Cr added is in the above range of 16-19%, a minimum of 5% N1 is required to obtain good impact values. If the amount of Ni exceeds 25%, the amount of retained austenite increases and the strength decreases, so the upper limit of the amount of Ni added is set at 7.5%.

)lO:耐食性の向上にきわめて有効な元素で化5%以
上の添加が必要である。しかし5%を超えると強度が低
下し脆化するのでその上限を3%とする。
) IO: This element is extremely effective in improving corrosion resistance and needs to be added in an amount of 5% or more. However, if it exceeds 5%, the strength decreases and becomes brittle, so the upper limit is set at 3%.

Nニオ−ステナイト相を安定にし、基地を強化させるの
に有効な元素であるので、0.02%〜[L2%程度含
有されてもよい。但し、Nは必須条件ではない。
Since N is an effective element for stabilizing the Niostenite phase and strengthening the matrix, it may be contained in an amount of about 0.02% to [L2%]. However, N is not an essential condition.

C: 0.08%以下、Si:0.1〜1.5%、)l
]:Q、1〜3%、Cr:16〜19%、Ni:5〜7
.5%、Mo:(L5〜3%を含有し、残部が実質的に
Fe よりなるステンレス潟&!釦用プロベフ累#の硬
さはプリネル硬さで220〜254と現用の銅合金の硬
さ150〜160に比較して高く、耐エロージヨン性は
著しく優れている。
C: 0.08% or less, Si: 0.1-1.5%, )l
]: Q, 1-3%, Cr: 16-19%, Ni: 5-7
.. 5%, Mo: (L) Containing 5 to 3%, the remainder being substantially Fe, the hardness of the stainless steel lag &! Button Probefu # is 220 to 254 on the Prinell hardness, which is the hardness of current copper alloys. 150 to 160, and the erosion resistance is extremely excellent.

しかしながら、高速艇用プロペラのように激しいキャビ
テーションを生ずる場合は、上記プロベフ素材でも後進
面翼端の後縁側にエロージョン損傷を発生し推進効率を
低化させる。その例を第1図によって説明する。
However, when severe cavitation occurs, such as in a propeller for a high-speed boat, even the Probef material described above causes erosion damage to the trailing edge side of the trailing surface wing tip, reducing propulsion efficiency. An example of this will be explained with reference to FIG.

第1図は舶用プロペラを後進面から見た父で1はプロペ
ラが回転して海水を切る(il;lのヌ縁である前縁、
2はその反対側の翼なである長トである。プロペラのキ
ャビテーションはプロペラの回転によってプロペ′7後
縁2周辺に減E部ができると、こkK気泡が発生し、こ
の気泡が哨滅する時に高圧を発生して、衝撃波によって
プロペラ翼面を損傷する現象で、その結果がエロージョ
ンである。第1図において2aが後進面後縁2に発生し
たエロージョン部を示し、通常、梨目状に損傷を受ける
が、激しい場合には61J後進面を貫通したシ、前進面
側へ曲る場合もある。
Figure 1 shows a marine propeller seen from the astern side, and 1 shows the propeller rotating to cut through the seawater (il; the leading edge, which is the nu edge of l,
2 is the wing on the opposite side, Nagato. Propeller cavitation occurs when a reduced E part is created around the trailing edge 2 of the propeller '7 due to the rotation of the propeller, causing air bubbles to form. When these air bubbles disperse, high pressure is generated and the propeller blade surface is damaged by shock waves. phenomenon, the result of which is erosion. In Fig. 1, 2a indicates the erosion part that has occurred on the rear edge 2 of the reversing surface, and it is usually damaged in a pear-shaped pattern, but in severe cases, it may penetrate the 61J reversing surface or curve toward the forward surface. be.

これらのエロージョン対策としては、これ1でに■エロ
ージョン発生力端を切除して形状変更したり、■エロー
ジョン発生部表面をグラインダーで研摩した後、閉盛浴
接補修するなどの方法が採用されているが、■の方法は
推進効率が低下する問題があり、■の方法は肉盛溶接材
としてプロペラ材と同材が使用されるため、エロージョ
ン再発生の懸念がある。
As countermeasures against these erosions, methods such as (1) cutting off the erosion-generating force end and changing the shape, and (2) polishing the surface of the erosion-generated area with a grinder and then repairing it using a closed bath are used. However, method (2) has the problem of reduced propulsion efficiency, and method (2) uses the same material as the propeller material as the overlay welding material, so there is a concern that erosion may occur again.

そこで本発明は上記のステンレヌ鋼製プロペラ素材よう
硬さが高く、耐エロージヨン性が優れているコバ/l/
)基合金をエロージョン損傷を受は易い部分に、プロペ
ラ製作過程で溶接肉盛して腐食疲労強度が高く、耐エロ
ージヨン性の優れた舶用プロペラにするものである。
Therefore, the present invention has developed a propeller material made of stainless steel, which has high hardness and excellent erosion resistance.
) The base alloy is welded overlay during the propeller manufacturing process to areas that are susceptible to erosion damage, resulting in a marine propeller with high corrosion fatigue strength and excellent erosion resistance.

第2図は本発明プロペラ素材を後進面から見た図であり
1エロージヨンが発生し易い後進面(L6R(Rはプロ
ペラ半径)から翼端側を硬さの高いコバルト基合金で溶
接肉盛した状態を示す。(通常、後進面のエロージョン
はプロペラ半径をRとした場合、[L6Rよシ翼端先側
へ発生する)第2図に卦いて、1は前縁、2は後縁、3
は後進面、4は溶接肉盛したコバルト基合金部を示す。
Figure 2 is a view of the propeller material of the present invention viewed from the reverse side.1 The blade tip side from the rear side where erosion is likely to occur (L6R (R is the propeller radius)) is welded with a cobalt-based alloy of high hardness. (Usually, when the propeller radius is R, erosion on the trailing surface occurs toward the tip of the wing from L6R.) In Figure 2, 1 is the leading edge, 2 is the trailing edge, and 3 is the leading edge.
4 shows the backward moving surface, and 4 shows the welded overlay cobalt-based alloy part.

コバルト基合金の溶接肉盛状況を第3図によって説明す
る。
The weld build-up situation of a cobalt-based alloy will be explained with reference to FIG.

第3図(a) K示すように、本発明の前述のプロペラ
素材の後進面3側を通常状態よシ最大10−程度薄肉状
態にしたプロペラ素材を製作する。
As shown in FIG. 3(a)K, a propeller material is manufactured in which the reverse plane 3 side of the above-mentioned propeller material of the present invention is made thinner by a maximum of about 10 mm compared to the normal state.

次に第3図〜)に示すように、薄肉の後進面3上にコバ
ルト基台金4を溶接肉盛シし、最後に第3図(C)に示
すように肉盛部の余肉部を切削研摩加工して平滑に仕上
げる。この処理は他のプロペラ翼についても同様に施工
する。
Next, as shown in Fig. 3~), a cobalt base metal 4 is welded overlay on the thin-walled backward moving surface 3, and finally, as shown in Fig. 3(C), the excess thickness of the overlay part is Cut and polish to give a smooth finish. This treatment is applied to other propeller blades in the same way.

本発明にシいて、このコバルト基合金は、重量%で、C
r:20〜32%、W:3〜16%。
According to the present invention, the cobalt-based alloy is composed of C
r: 20-32%, W: 3-16%.

C:0.7〜3%、 Si: 2%以下、 Mn: 1
.5%以下、 Nb: Q、 5〜1.5%、残部が実
質的にCo よりなるコバ/1/)基合金が用いられる
。このコバルト基合金の組成割合は次に述べる環内によ
って決定した。すなわち、Crを含むコバルト基合金の
硬さは初晶の炭化物Cr、C,あるいはc r7C3と
Co−Cr−Wの共晶の1に影響される。したがって、
これらの組織割合、すなわち硬度とコバルト基合金の溶
接性により特にCr、W、Cの量を決定した。
C: 0.7-3%, Si: 2% or less, Mn: 1
.. A Cobalt/1/)-based alloy containing 5% or less Nb: Q, 5 to 1.5%, and the remainder substantially Co is used. The composition ratio of this cobalt-based alloy was determined based on the ring conditions described below. That is, the hardness of a cobalt-based alloy containing Cr is influenced by the primary carbide Cr, C, or the eutectic of cr7C3 and Co-Cr-W. therefore,
In particular, the amounts of Cr, W, and C were determined based on these microstructure ratios, that is, the hardness and weldability of the cobalt-based alloy.

Cr:Crは添加によりCrt c’、の析出量が増加
し、溶接部の硬度が上昇すると共に溶接部の耐食性が増
加する。そこで肉盛部の海水中の耐食性を確保するため
Crは20%以上含有する必要がある。一方、Cr i
が32%を超えると溶接部に割れが発生しやすいのでそ
の上限を32%とした。
Cr: Addition of Cr increases the amount of Crt c' precipitated, increasing the hardness of the weld and increasing the corrosion resistance of the weld. Therefore, in order to ensure the corrosion resistance of the built-up part in seawater, it is necessary to contain 20% or more of Cr. On the other hand, Cr i
If it exceeds 32%, cracks are likely to occur in the welded part, so the upper limit was set at 32%.

77 :Wはその添加量の増加に畔いCr7 C3とC
o−Cr−Wの共晶組織が増41シて合金の硬度が上昇
する。しかしその量が16%を超えると耐衝撃性が劣る
ので、その上限を16%とした。−方、3%未満では硬
さ向上が期待できないので下限を3%とした。
77: W increases with increasing amount of Cr7 C3 and C
The eutectic structure of o-Cr-W increases and the hardness of the alloy increases. However, if the amount exceeds 16%, the impact resistance will be poor, so the upper limit was set at 16%. On the other hand, if it is less than 3%, no improvement in hardness can be expected, so the lower limit was set at 3%.

C:+17%未満では炭化物析出が不十分であシ、3%
を超えると初晶のCr、C,の及力;増加し溶接部が割
れやすいのでその上限を3%とした。
C: Less than +17%, carbide precipitation is insufficient, 3%
If it exceeds 3%, the influence of primary crystals of Cr and C will increase and the weld will easily crack, so the upper limit was set at 3%.

Si:Siは脱酸剤として必要であるが、多すぎると溶
接割れを起し易いので2%以下とした。
Si: Si is necessary as a deoxidizing agent, but too much Si tends to cause weld cracking, so it was set to 2% or less.

Mn:Mnは脱酸剤として必要な元素で添加量が1.5
%を超えると跪くなシ、割れが発生し易くなるのでt5
%以下とした。
Mn: Mn is an element necessary as a deoxidizing agent, and the amount added is 1.5
Do not kneel if it exceeds t5, as cracks are more likely to occur.
% or less.

Nb:NbはNb炭化物を析出させて硬さを高くしよう
としたもので、0.5%未満では硬さ向上が望めず、1
.5%を超えると溶接割れを起こし易いので上限を1.
5%とした。
Nb: Nb is an attempt to increase hardness by precipitating Nb carbide, and if it is less than 0.5%, no improvement in hardness can be expected;
.. If it exceeds 5%, weld cracking is likely to occur, so the upper limit should be set at 1.
It was set at 5%.

〔実施例〕〔Example〕

次に本発明プロペラ素材の製造性の一実施例を示し、本
発明の詳細な説明する。
Next, an example of the manufacturability of the propeller material of the present invention will be shown, and the present invention will be explained in detail.

第1表は本発明プロペラ素材の化学成分を示したもので
、試料階1〜凪4は本発明材料、試料m5〜凪10は比
較材料、l、klllは現用プロベフ材料でその化学成
分を第2表に示す。これらの機械的性質、腐食疲うJ麺
皮を第3表に示す。
Table 1 shows the chemical components of the propeller materials of the present invention. Samples 1 to Nagi 4 are materials of the present invention, samples m5 to Nagi 10 are comparative materials, and l and kll are current Probef materials. It is shown in Table 2. Table 3 shows these mechanical properties and J noodle skins that suffer from corrosion.

第  1  表 第 表 第 表 以上の表よシ次のことが明らかである。Table 1 No. table No. table From the above table, the following is clear.

化学成分が本発明範囲外では供試付随5〜!a10にみ
られるように、海水中の腐食疲労強度が21 kgf/
−”  以下と本発明付随1〜階4の29〜30 k!
9f/m”  に比較して著しく低い。又太発明材m1
〜)C4は現用銅合金材を社11の18−f / ts
 ”に対しテ29〜30 kg f /arm”  と
1.6倍以上高く、軽量で高効率のプロペラ製作が可能
となる。
If the chemical components are outside the scope of the present invention, the test items will be included in the sample. As seen in A10, the corrosion fatigue strength in seawater is 21 kgf/
-” 29-30 k for floors 1 to 4 accompanying this invention!
9f/m", which is significantly lower than that of 9f/m".
~) C4 is the current copper alloy material of Company 11's 18-f/ts
This is more than 1.6 times higher than that of ``29-30 kg f/arm'', making it possible to manufacture lightweight and highly efficient propellers.

腐食疲労試験は試験機としてウエラー式回転曲げ疲労試
験機(回転数s、 4s o rprn )を用い、試
験片直線は&Oz、試験捧返数は2 X j O’、試
験液は天然海水を使用し、試験温度は常温である。
For the corrosion fatigue test, a Weller rotary bending fatigue tester (rotation speed s, 4s o rprn) was used as the testing machine, the test piece straight line was &Oz, the number of test runs was 2 x j O', and the test liquid was natural seawater. However, the test temperature was room temperature.

次に、上記本発明プロベラ素材に溶撰肉盛するコバルト
基合金の化学成分、硬さふ・よびエロージョン減量を第
4表に示す。
Next, Table 4 shows the chemical composition, hardness, and erosion loss of the cobalt-based alloy to be hot-plated onto the Probera material of the present invention.

オた、第5表に肉盛なしの本発明プロベフ素材(第1表
m1)の、第6表に肉盛なしの現用のプロベラ素材であ
るアルミニウム青銅(第2表m11)の化学成分とエロ
ージョン減量を示す。
Additionally, Table 5 shows the chemical composition and erosion of the Provera material of the present invention without overlay (Table 1 m1), and Table 6 shows the current Provera material without overlay, aluminum bronze (Table 2 m11). Indicates weight loss.

第5表 第 6 表 以上の第4表、第5表および第6表から分るように本発
明の肉盛コバルト基合金は現用銅合金プロベラ材の30
倍以上の耐エロージヨン性を有している。これらのエロ
ージョン試験はジェット式エロージョン試験装置で50
時間(h)試験した結果である。
Table 5 Table 6 As can be seen from Tables 4, 5, and 6 above, the overlay cobalt-based alloy of the present invention
It has more than twice the erosion resistance. These erosion tests were carried out using a jet erosion tester.
These are the results of the time (h) test.

エロージョン試験は試験液に水道水を使用し、試験片中
央の周速がqhsrn/ss噴射水の流速1!L 2 
m / s s試験片に卦ける相対速度9′14m /
 s 、温度15〜25°Cの条件で実施した。
In the erosion test, tap water was used as the test liquid, and the circumferential velocity at the center of the test piece was qhsrn/ss, the flow rate of the jet water was 1! L 2
m / s Relative velocity for the s test piece 9'14 m /
The experiments were carried out at a temperature of 15 to 25°C.

この結果から明らかなように、Cr、W>よびNbを含
む本発明にかけるコバルト基合金は本発明素材および銅
合金に比較して著しく高硬度でら)、これを本発明プロ
ペラ素材に溶接肉盛した場合、現用のニッケルアルミニ
ウムプロペラロベフよ)優れた耐エロージヨン性を示し
ている。
As is clear from this result, the cobalt-based alloy of the present invention containing Cr, W> and Nb has significantly higher hardness than the material of the present invention and the copper alloy), and is welded to the propeller material of the present invention. When mounted, it shows superior erosion resistance (compared to current nickel-aluminum propellers).

そこで本発明プロペラ素材のエロージョンが発生し易い
部分である0、8R(Rは半径)翼端部に、前述した第
5図に関して述べた手段によシ、本発明の溶接肉盛用コ
バルト基合金を肉盛することによシ、本発明舶用プロベ
ラとした。
Therefore, the cobalt-based alloy for weld overlay of the present invention is applied to the blade tips of 0 and 8R (R is radius) where erosion is likely to occur in the propeller material of the present invention by the method described above with reference to FIG. By overlaying, the marine prover of the present invention was made.

以上詳述したように本発明プロペラは腐食疲労強度の優
れた本発明プロペラ素材のエロージョンによって損傷を
受ける部分に高硬度でCr。
As described in detail above, the propeller of the present invention has high hardness and Cr in the portion of the propeller material of the present invention which has excellent corrosion fatigue strength and is damaged by erosion.

W、Nbを含むコバルト基合金を溶接肉盛することによ
って、プロペラキャビテーションに起因する衝撃波をデ
ロペヲ翼が受けても潰食されない耐エロージヨンプロペ
ラを提供するものである。
By welding and overlaying a cobalt-based alloy containing W and Nb, an erosion-resistant propeller is provided that will not be corroded even if the propeller blades receive shock waves caused by propeller cavitation.

〔発明の効果〕〔Effect of the invention〕

本発明プロペラは現用銅合金プロペラに比較して海水中
の腐食疲労強度が著しく優れ、かつ耐エロージヨン性が
銅合金釦よびステンレス系プロペラより飛躍的に向上し
たものであり、その工業的効果は顕著である。
The propeller of the present invention has significantly superior corrosion fatigue strength in seawater compared to current copper alloy propellers, and has dramatically improved erosion resistance compared to copper alloy button and stainless steel propellers, and its industrial effects are remarkable. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般の舶用プロペラの後進面から見た正面図、
第2図は本発明の一実施例の舶用プロペラの後進面から
見た正面図、第5図は本発明舶用プロペラの製造過程を
示す説明図で本発明舶用プロペラ素材にコバルト基合金
を溶接肉盛する工程を示す。 仁理人  内
Figure 1 is a front view of a general marine propeller seen from the astern side.
Fig. 2 is a front view of a marine propeller according to an embodiment of the present invention as seen from the reverse side, and Fig. 5 is an explanatory view showing the manufacturing process of the marine propeller of the present invention. The process of plating is shown. Inside the human race

Claims (1)

【特許請求の範囲】[Claims]  重量%で、C:0.08%以下、Si:0.1〜1.
5%、Mn:0.1〜3%、Cr:16〜19%、Ni
:5〜7.5%、Mo:0.5〜3%を含有し、残部が
実質的にFeよりなるステンレス鋼製舶用プロペラ素材
のエロージョン損傷を受ける部分に、重量%で、Cr:
20〜32%、W:3〜16%、C:17〜3%、Si
:2%以下、Mn:1.5%以下、Nb:0.5〜1.
5%、残部が実質的にCoよりなるコバルト基合金を溶
接肉盛してなることを特徴とする舶用プロペラ。
In weight%, C: 0.08% or less, Si: 0.1 to 1.
5%, Mn: 0.1-3%, Cr: 16-19%, Ni
Cr: 5 to 7.5%, Mo: 0.5 to 3%, and the remainder substantially consists of Fe, on the part of the stainless steel marine propeller material that is subject to erosion damage, in weight%.
20-32%, W: 3-16%, C: 17-3%, Si
: 2% or less, Mn: 1.5% or less, Nb: 0.5-1.
A marine propeller, characterized in that it is made by welding overlay of a cobalt-based alloy consisting of 5% Co and the remainder substantially Co.
JP17566089A 1989-07-10 1989-07-10 Marine propeller Pending JPH0342194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17566089A JPH0342194A (en) 1989-07-10 1989-07-10 Marine propeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17566089A JPH0342194A (en) 1989-07-10 1989-07-10 Marine propeller

Publications (1)

Publication Number Publication Date
JPH0342194A true JPH0342194A (en) 1991-02-22

Family

ID=15999990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17566089A Pending JPH0342194A (en) 1989-07-10 1989-07-10 Marine propeller

Country Status (1)

Country Link
JP (1) JPH0342194A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376497A (en) * 1991-04-26 1994-12-27 Nippon Zeon Co., Ltd. Positive quinone diazide sulfonic acid ester resist composition containing select hydroxy compound additive
WO2010138073A1 (en) * 2009-05-29 2010-12-02 Rolls-Royce Aktiebolag Propeller blade for a ship

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549581A (en) * 1977-05-17 1979-01-24 Weresch Thomas Device for working terminal wire of electric element
JPS549582A (en) * 1977-06-23 1979-01-24 Mitsubishi Electric Corp Sealing method of semiconductor device
JPS6233090A (en) * 1985-08-02 1987-02-13 Daido Steel Co Ltd Alloy powder for building up of powder
JPS6431595A (en) * 1987-07-28 1989-02-01 Hitachi Metals Ltd Welding rod of co-base alloy and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549581A (en) * 1977-05-17 1979-01-24 Weresch Thomas Device for working terminal wire of electric element
JPS549582A (en) * 1977-06-23 1979-01-24 Mitsubishi Electric Corp Sealing method of semiconductor device
JPS6233090A (en) * 1985-08-02 1987-02-13 Daido Steel Co Ltd Alloy powder for building up of powder
JPS6431595A (en) * 1987-07-28 1989-02-01 Hitachi Metals Ltd Welding rod of co-base alloy and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376497A (en) * 1991-04-26 1994-12-27 Nippon Zeon Co., Ltd. Positive quinone diazide sulfonic acid ester resist composition containing select hydroxy compound additive
WO2010138073A1 (en) * 2009-05-29 2010-12-02 Rolls-Royce Aktiebolag Propeller blade for a ship

Similar Documents

Publication Publication Date Title
WO1997012072A1 (en) High-strength welded steel structures having excellent corrosion resistance
EA009108B1 (en) Duplex stainless steel alloy for use in seawater applications
US6159310A (en) Wire for welding high-chromium steel
JPS586779B2 (en) Wear-resistant iron-nickel-cobalt alloy
US3925064A (en) High corrosion fatigue strength stainless steel
Govindaraj et al. Additive manufactured marine component–Ni Al bronze propeller
Ambade et al. Experimental investigation of microstructural, mechanical and corrosion properties of 316L and 202 austenitic stainless steel joints using cold metal transfer welding
JPH0342194A (en) Marine propeller
WO2001068929A1 (en) Corrosion resistant austenitic alloy
JPH01318763A (en) Water wheel rotor blade
JPH07246481A (en) Production of high strength clad steel sheet
JPH07290245A (en) Production of large-diameter clad steel pipe
Yelamasetti et al. Effect of filler wires on mechanical properties of super-duplex stainless steel UNS S32750 and austenitic stainless steel 304 dissimilar joints welded with PCGTAW technique.
Nowacki Ferritic-austenitic steel and its weldability in large size constructions
EP0633326B1 (en) Sea water corrosion resistant steel suitable for hot and wet environments and method of manufacturing the same
Roguin Improved weld microstructure in welding austenitic-ferritic stainless steels
JPH0633193A (en) Corrosion resistant high strength material
Russell et al. The development of qualification standards for cast duplex stainless steel
JPH049451A (en) Seawater corrosion resisting material
JPH0288390A (en) Anticorrosion high strength propeller for ship
Butar et al. Evolution of structure, phase and mechanical properties duplex stainless steel (DSS) 31803 welding using GMAW with the addition of CO2 to Ar-CO2 shielding gas
JPH08254173A (en) Water turbine and manufacture thereof
JP2667538B2 (en) High-strength martensitic stainless steel rolled steel sheet with excellent fatigue resistance in a corrosive or corrosive environment
Kumar et al. Analysis of welding characteristics on stainless steel for the process of TIG and MIG with dye penetrate testing
SHARMA et al. NEW EROSION RESISTANCE MATERIALS FOR HYDRO POWER INDUSTRY