JPH0342036Y2 - - Google Patents

Info

Publication number
JPH0342036Y2
JPH0342036Y2 JP1984130052U JP13005284U JPH0342036Y2 JP H0342036 Y2 JPH0342036 Y2 JP H0342036Y2 JP 1984130052 U JP1984130052 U JP 1984130052U JP 13005284 U JP13005284 U JP 13005284U JP H0342036 Y2 JPH0342036 Y2 JP H0342036Y2
Authority
JP
Japan
Prior art keywords
crystal
particles
amount
monitoring
crystal resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984130052U
Other languages
Japanese (ja)
Other versions
JPS6144926U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13005284U priority Critical patent/JPS6144926U/en
Publication of JPS6144926U publication Critical patent/JPS6144926U/en
Application granted granted Critical
Publication of JPH0342036Y2 publication Critical patent/JPH0342036Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【考案の詳細な説明】 〔考案の技術分野〕 本考案は、被蒸着体の表面に形成される薄膜の
量を振動周波数の変化量から検出するモニタ用水
晶振動子に係り、特に水晶振動子のスプリアスの
発生を防止して蒸着源からの粒子の発生量を制御
し、複数個の被蒸着体に形成される薄膜の量を均
一化できるモニタ用水晶振動子に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a crystal oscillator for monitoring that detects the amount of a thin film formed on the surface of an object to be deposited based on the amount of change in vibration frequency. The present invention relates to a monitoring crystal oscillator that can control the amount of particles generated from a deposition source by preventing the generation of spurious waves, and can equalize the amount of thin films formed on a plurality of objects to be deposited.

〔考案の技術的背景〕[Technical background of the invention]

第2図は、従来のモニタ用水晶振動子が装備さ
れた蒸着装置の一例を示す概略構成図である。図
中1は真空容器で、真空ポンプ2,9により容器
1内は低圧力に維持される。3は、被蒸着体、例
えば板面に電極となる金属粒子が蒸着される水晶
片で、板面に平行に所望の電極形状に対応するマ
スクを配設している。4は、例えばATカツトで
円板状に切断加工した水晶片で、その主面に励振
電極を形成し、所定の共振周波数を有するモニタ
用水晶振動子である。そして、前記被蒸着体3の
蒸着時に、同時に前記モニタ用水晶振動子の励振
電極上に金属粒子が蒸着して、振動周波数が低下
するので、この周波数の変化量により前記被蒸着
体3に付着して形成した薄膜の量を検出するもの
である。そして5は熱源制御装置で、前記モニタ
用水晶振動子4は電極の質量の増加により振動周
波数が低下するので、これを監視し、単位時間当
りの振動周波数の低下率を一定とするように金属
粒子の発生源となる蒸発源6を加熱する熱源7の
通電電流を制御する。そして被蒸着体3に形成す
る薄膜の量が所定量になつたとき、即ちモニタ用
水晶振動子の振動周波数の低下量が所定の値とな
つた時に、熱源7のシヤツター8が作動し、蒸発
を中断してから通電電流を零とするように設定し
ているものである。従つて、この蒸着装置によれ
ば、モニタ用水晶振動子の周波数の変化量を所定
の値に設定することにより、被蒸着体3に所定量
の薄膜を形成することができる。
FIG. 2 is a schematic configuration diagram showing an example of a vapor deposition apparatus equipped with a conventional monitoring crystal resonator. In the figure, 1 is a vacuum container, and the inside of the container 1 is maintained at a low pressure by vacuum pumps 2 and 9. Reference numeral 3 denotes an object to be vapor-deposited, for example, a crystal piece on which metal particles serving as an electrode are vapor-deposited on a plate surface, and a mask corresponding to a desired electrode shape is disposed parallel to the plate surface. 4 is a crystal piece cut into a disk shape using an AT cut, for example, and has an excitation electrode formed on its main surface, and is a monitoring crystal resonator having a predetermined resonance frequency. At the time of vapor deposition of the object to be evaporated 3, metal particles are simultaneously vapor-deposited on the excitation electrode of the monitoring crystal resonator, and the vibration frequency is lowered. This method detects the amount of thin film formed. Reference numeral 5 denotes a heat source control device, which monitors the vibration frequency of the monitoring crystal oscillator 4, which decreases due to an increase in the mass of the electrode, and uses a metal The current applied to the heat source 7 that heats the evaporation source 6, which is a source of particles, is controlled. When the amount of thin film formed on the object 3 reaches a predetermined value, that is, when the vibration frequency of the monitoring crystal oscillator decreases to a predetermined value, the shutter 8 of the heat source 7 is activated to evaporate the film. The current is set to zero after the current is interrupted. Therefore, according to this vapor deposition apparatus, by setting the amount of change in the frequency of the monitoring crystal resonator to a predetermined value, a predetermined amount of a thin film can be formed on the deposition target 3.

ところで、蒸着装置の水平におかれた蒸着源6
から発生した金属粒子の蒸着質量比は第3図a,
bに示す関数曲線のように、一般に次式で与えら
れる。
By the way, the vapor deposition source 6 placed horizontally in the vapor deposition apparatus
The vapor deposition mass ratio of metal particles generated from is shown in Figure 3a,
Like the function curve shown in b, it is generally given by the following equation.

d(α)/d(o)=connα ……(1) ただし、αは蒸発源から垂直に伸ばした中心線
からの傾き角度、d(α)は、蒸発源と、一定距
離hだけ離れた水平面内の角度αだけ傾けた点Q
における蒸着量、及びd(o)は中心線上の上記
水平面と交わる点Pにおける蒸着量である。nは
蒸着速度を変数にもつ関数(1)を決定する係数であ
る。
d(α)/d(o)=con n α...(1) However, α is the inclination angle from the center line extending perpendicularly from the evaporation source, and d(α) is the distance h from the evaporation source. A point Q in a distant horizontal plane tilted by an angle α
and d(o) are the deposition amount at a point P on the center line that intersects with the horizontal plane. n is a coefficient that determines the function (1) having the deposition rate as a variable.

したがつて上式が常に1を示すように被蒸着体
と蒸着源の間の距離と、被蒸着体の主面と蒸発源
の設置面が形成する角度とを適当に選び、蒸着速
度を一定にすることによつて得られた蒸着源を見
込むある曲面上にそれぞれ蒸着源に向けて複数個
の被蒸着体3の主面を配置してやれば、それぞれ
の被蒸着体3における蒸着量は一定となり、均一
な薄膜を形成することができる。このため前述し
た制御装置5では、真空容器1内の蒸着密度が均
一な領域となる関数曲線が常時一定となるように
モニタ用水晶振動子の単位時間毎の周波数の低下
量、即ち蒸着速度を一定値とするように熱源7の
通電電流を制御しなければならない。なおこのよ
うなモニタ用の水晶振動子は1回ないし数回使用
すると周波数の変化率が鈍くなるために変換しな
ければならない。ここで水晶振動子全体を交換す
ることは合理的でないので水晶片のみを手際よく
交換できることが望まれる。
Therefore, the distance between the object to be evaporated and the evaporation source and the angle formed by the main surface of the object to be evaporated and the installation surface of the evaporation source are appropriately selected so that the above equation always shows 1, and the evaporation rate is kept constant. By arranging the main surfaces of a plurality of objects 3 facing the vapor deposition source on a curved surface that faces the vapor deposition source obtained by , a uniform thin film can be formed. For this reason, the control device 5 described above controls the amount of decrease in the frequency of the monitoring crystal oscillator per unit time, that is, the deposition rate, so that the function curve in which the deposition density in the vacuum chamber 1 is uniform is always constant. The current flowing through the heat source 7 must be controlled to maintain a constant value. Note that when such a crystal oscillator for monitoring is used once or several times, the rate of change in frequency becomes slow, so it must be converted. Since it is not reasonable to replace the entire crystal resonator, it is desirable to be able to quickly replace only the crystal piece.

〔背景技術の問題点〕[Problems with background technology]

ところで、本考案者等が被蒸着体を水晶片とし
て、この蒸着装置にて同一条件で板面に電極を形
成し、それぞれ発振させたところ、同一値となる
べき振動周波数にバラツキを生じる場合があるこ
とが判明した。そして、この原因は、各水晶片に
形成した電極となる薄膜の単位時間の蒸着量が異
なることにあつた。すなわち、このような振動周
波数のバラツキの原因を究明するために上述のよ
うに蒸着により電極を形成する以前に、各水晶片
を細部まで同一条件とするように格別に注意して
蒸着を行なつたとしてもその結果は同じであつ
た。そこで、本考案者等は蒸着時におけるモニタ
用水晶振動子の電極膜厚の増加により連続的に低
下する振動周波数と熱源を制御する通電電流との
相互関係について詳査したところ次の結論を得
た。第4図においてAは時間を横軸としたモニタ
用水晶振動子の周波数低下率の変化を示し、同図
においてBは同図Aの周波数低下率の変化による
熱源の通電電流の変化を示すグラフ図であるここ
で制御装置5はモニタ用水晶振動子の電極膜厚の
増加による振動周波数の低下率を図中Kで示す一
定値とするように制御電流を制御する。
By the way, when the present inventors formed electrodes on the plate surface under the same conditions using this evaporation apparatus using a crystal piece as the object to be evaporated, and caused each to oscillate, there were cases where variations occurred in the oscillation frequencies that were supposed to be the same value. It turns out that there is something. The cause of this was that the amount of thin film deposited per unit time of the thin film forming the electrode formed on each crystal piece was different. That is, in order to investigate the cause of such variations in vibration frequency, before forming the electrodes by vapor deposition as described above, the vapor deposition was performed with special care so that each crystal piece was made under the same conditions down to the smallest details. Even so, the result was the same. Therefore, the present inventors conducted a detailed study on the interrelationship between the vibration frequency, which continuously decreases due to an increase in the electrode film thickness of the monitoring crystal oscillator during vapor deposition, and the current flowing to control the heat source, and reached the following conclusion. Ta. In Fig. 4, A shows the change in the frequency reduction rate of the monitoring crystal oscillator with time as the horizontal axis, and B in the same figure shows the change in the current flowing through the heat source due to the change in the frequency reduction rate in A. In the figure, the control device 5 controls the control current so that the rate of decrease in the vibration frequency due to the increase in the electrode film thickness of the monitoring crystal resonator is a constant value indicated by K in the figure.

即ち、従来のものでは、熱源7を制御する通電
電流が時間の経過とともに激しく変動するので、
水晶片上の蒸着質量比が一定な関数曲線が得られ
ず蒸発源6から発生する金属粒子の蒸発速度が変
化するために、水晶片に蒸着する金属粒子の量が
変動して振動周波数にバラツキを生じることが判
明した。そして、熱源7の制御電流が時間の経過
とともに激しく変動するのは連続的に一定の割合
で低下するはずのモニタ用水晶振動子の振動周波
数が、順次にスプリアスと結合してジヤンプ現象
を呈し、振動周波数が不連続的に変化してしまう
ためである。
That is, in the conventional system, the current flowing to control the heat source 7 fluctuates drastically over time.
Since a function curve with a constant vapor deposition mass ratio on the crystal piece cannot be obtained and the evaporation rate of the metal particles generated from the evaporation source 6 changes, the amount of metal particles deposited on the crystal piece fluctuates, causing variations in the vibration frequency. It was found that this occurs. The reason why the control current of the heat source 7 fluctuates drastically over time is that the oscillation frequency of the monitoring crystal oscillator, which should continuously decrease at a constant rate, sequentially combines with spurious waves and exhibits a jump phenomenon. This is because the vibration frequency changes discontinuously.

〔考案の目的〕[Purpose of invention]

本考案は、上記の事情に鑑みてなされたもの
で、複数の被蒸着体に均一な量の薄膜を蒸着する
ことができるモニタ用水晶振動子を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a monitoring crystal resonator that can deposit a uniform amount of thin film onto a plurality of objects to be deposited.

〔解決手段の特徴〕[Characteristics of the solution]

電極が形成された厚み系の振動が励起される水
晶片の板面に質量を付加し、蒸着時に連続的に変
化する振動周波数に対して発生する不要振動を制
御し、振動周波数のジヤンプを防止した水晶振動
子をモニタ用水晶振動子に適用したことを特徴と
する。
By adding mass to the plate surface of the crystal piece where the thickness-based vibrations on which the electrodes are formed are excited, unnecessary vibrations that occur in response to the continuously changing vibration frequency during vapor deposition are controlled, and jumps in the vibration frequency are prevented. The crystal resonator is characterized in that it is applied to a monitor crystal resonator.

〔考案の実施例〕[Example of idea]

第1図はモニタ用水晶振動子の一例を示す側断
面図である。図中11は水晶の結晶軸に対して所
定角度に切断したATカツトで丸板の水晶片であ
る。この水晶片11は、表裏板面の中央部にそれ
ぞれ励振電極111,112を形成し、この励振
電極111,112をそれぞれ導出電極113,
114を介して板面端部へ導出している。そして
この水晶片11の表裏板面の外周縁をリング状の
シリコンゴム、カーボンゴム等の軟性物質12を
介して外筒13の底板131と導電性圧力板14
との間に挾持している。上記外筒13は、金属製
の有底筒体で、かつ底板の中心部に透孔132を
形成している。そして外筒13の開口端に絶縁材
からなる蓋体15を螺装し、この蓋体15と上記
導電性圧力板14との間にバネ16を介挿し、上
記水晶片11を弾性的に保持するようにしてい
る。なお、水晶片11の外周縁と外筒13の内壁
との間には、適宜な絶縁板17を介在させて電気
的に絶縁を図るようにしている。そして蓋体15
の中央にコンタクト18を設けバネ16および導
電性圧力板14を介して水晶片11に形成した一
方の電極を導出し、他方の電極は外筒13を介し
て導出するようにしている。また導電性圧力板1
4は適宜な位置に透孔141を穿設して水晶片1
1の表裏板面の圧力を均圧させるようにしてい
る。したがつて、水晶片11は外筒13の底板1
31と、この外筒13の開口端に螺装した蓋体1
5との間に外周縁をリング状の軟性物質12で挾
持されて、かつ導電性圧力板14を介して与えら
れるバネ16の弾性によつて弾性的に保持され
る。また水晶片11の板面に形成した一方の電極
111は上記バネ16を介して導出し、他方の電
極112は上記外筒13を介して導出するように
している。したがつて上記蓋体15と外筒13と
の間の螺装を解くことにより上記水晶片11を容
易に取り出しあるいは交換することができる。
FIG. 1 is a side sectional view showing an example of a monitor crystal resonator. In the figure, numeral 11 is a round crystal piece with an AT cut cut at a predetermined angle with respect to the crystal axis of the crystal. This crystal piece 11 has excitation electrodes 111 and 112 formed in the center of the front and back surfaces, respectively, and these excitation electrodes 111 and 112 are connected to lead-out electrodes 113 and 112, respectively.
114 to the end of the plate surface. Then, the outer peripheral edges of the front and back plate surfaces of this crystal piece 11 are connected to the bottom plate 131 of the outer cylinder 13 and the conductive pressure plate 14 via a ring-shaped soft material 12 such as silicon rubber or carbon rubber.
It is sandwiched between. The outer cylinder 13 is a metal cylinder with a bottom, and has a through hole 132 formed in the center of the bottom plate. A lid 15 made of an insulating material is screwed onto the open end of the outer cylinder 13, and a spring 16 is inserted between the lid 15 and the conductive pressure plate 14 to elastically hold the crystal piece 11. I try to do that. Note that an appropriate insulating plate 17 is interposed between the outer peripheral edge of the crystal piece 11 and the inner wall of the outer tube 13 to provide electrical insulation. and lid body 15
A contact 18 is provided at the center of the crystal blank 11 so that one electrode formed on the crystal piece 11 is led out through the spring 16 and the conductive pressure plate 14, and the other electrode is led out through the outer cylinder 13. Also conductive pressure plate 1
4 is a crystal piece 1 with a through hole 141 bored at an appropriate position.
The pressure on the front and back plate surfaces of No. 1 is made to be equalized. Therefore, the crystal piece 11 is attached to the bottom plate 1 of the outer cylinder 13.
31, and a lid 1 screwed onto the open end of this outer cylinder 13.
5, the outer peripheral edge is held between a ring-shaped soft material 12 and held elastically by the elasticity of a spring 16 applied via a conductive pressure plate 14. Further, one electrode 111 formed on the plate surface of the crystal blank 11 is led out through the spring 16, and the other electrode 112 is led out through the outer cylinder 13. Therefore, by unscrewing the screw between the lid 15 and the outer cylinder 13, the crystal piece 11 can be easily taken out or replaced.

なお、第5図は第1図D−D線矢示断面図、第
6図は第1図底面図である。
5 is a sectional view taken along the line D--D in FIG. 1, and FIG. 6 is a bottom view of FIG. 1.

そして第1図に示すモニター用水晶振動子を第
2図に示すような真空容器内に配置し、この容器
内に配置した多数の水晶片とともに金属蒸気の雰
囲気に置き電極の蒸着を行なうことは勿論であ
る。
Then, the monitoring crystal resonator shown in Fig. 1 is placed in a vacuum container as shown in Fig. 2, and the electrodes are deposited by placing it in an atmosphere of metal vapor together with a large number of crystal pieces placed in this container. Of course.

このようにすればモニター用水晶振動子は外周
縁部を弾性的に保持しているので振動時の変位に
対する自由度が高く、それによつてスプリアスの
発生を極力、小さくすることができる。したがつ
て蒸着時の電極膜厚の増加による共振周波数の変
化の際にジヤンプを生じることがなく蒸着源を加
熱する熱源に対する通電電流に急激な変動を生じ
ることもない。
In this way, since the outer periphery of the monitor crystal resonator is elastically held, the degree of freedom with respect to displacement during vibration is high, and thereby the generation of spurious waves can be minimized. Therefore, a jump does not occur when the resonance frequency changes due to an increase in the electrode film thickness during vapor deposition, and there is no sudden change in the current flowing to the heat source that heats the vapor deposition source.

第7図は第1図に示すようなモニター用水晶振
動子を用いて蒸着を行なう際の周波数低下量の変
化(図示E)および熱源の通電電流(図示F)の
変化を示すものである。この図からも明らかなよ
うに周波数の変化率も略、一定にでき、それによ
つて熱源の通電電流も略一定にできるので、真空
容器内の蒸着質量比の一定な関数曲線は変化する
ことがない。従つて、予め設定された関数曲線に
複数個の被蒸着体、例えば水晶片を配置しておけ
ば、それぞれ薄膜の量が均一で振動周波数にバラ
ツキがなく、一定の品質の水晶振動子を形成する
ことができる。
FIG. 7 shows changes in the amount of frequency reduction (E in the figure) and changes in the current flowing through the heat source (F in the figure) when vapor deposition is performed using the monitoring crystal resonator shown in FIG. As is clear from this figure, the rate of change in frequency can be kept almost constant, and the current flowing through the heat source can also be kept almost constant, so the constant function curve of the vapor deposition mass ratio in the vacuum container does not change. do not have. Therefore, by arranging multiple deposited objects, such as crystal pieces, on a preset function curve, a crystal resonator of constant quality can be formed with a uniform amount of thin film and no variation in vibration frequency. can do.

なお、この実施例においては、被蒸着体を、た
とえば水晶片として、蒸着粒子を金属として説明
したが、被蒸着体は水晶片に限定されるものでは
なく、また蒸着粒子も金属に限定されないことは
言うまでもない。
In addition, in this example, the object to be evaporated is described as a crystal piece, and the evaporation particles are metal. However, the object to be evaporated is not limited to a crystal piece, and the evaporation particles are not limited to metal either. Needless to say.

〔考案の効果〕[Effect of idea]

以上のように本考案によればスプリアスの発生
を極力抑えることができ、それによつて単位時間
に蒸着する薄膜の量を均一にできるモニタ用水晶
振動子を提供できる。
As described above, according to the present invention, it is possible to provide a monitoring crystal resonator that can suppress the generation of spurious as much as possible, thereby making the amount of thin film deposited per unit time uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例に用いるモニター用
水晶振動子の一例を示す側断面図、第2図は電極
の蒸着装置の一例を示す概略構成図、第3図aお
よび第3図bは蒸着源に対して平行に配置した場
合の蒸着質比を説明する図、第4図は蒸着時のモ
ニター用水晶振動子の周波数変化と通電電流の変
化を示す図、第5図は第1図のD−D線矢示断面
図、第6図は第1図に示す振動子の底面図、第7
図は第1図に示すモニター用水晶振動子を用いた
装置におけるモニター用水晶振動子の周波数およ
び通電電流の変化を示す図である。 1……容器、3……水晶片、4……モニター用
水晶振動子、5……制御装置、6……蒸着源、1
2……軟性物質。
FIG. 1 is a side sectional view showing an example of a monitoring crystal oscillator used in an embodiment of the present invention, FIG. 2 is a schematic configuration diagram showing an example of an electrode vapor deposition apparatus, and FIGS. 3a and 3b. 4 is a diagram explaining the deposition quality ratio when placed parallel to the evaporation source, FIG. 6 is a bottom view of the vibrator shown in FIG.
The figure is a diagram showing changes in the frequency and current of the monitoring crystal oscillator in a device using the monitoring crystal oscillator shown in FIG. DESCRIPTION OF SYMBOLS 1... Container, 3... Crystal piece, 4... Crystal resonator for monitoring, 5... Control device, 6... Evaporation source, 1
2... Soft substance.

Claims (1)

【実用新案登録請求の範囲】 蒸着源より発生した粒子を被蒸着体と水晶振動
子の板面に形成された電極に付着させ、前記水晶
振動子の電極に付着した粒子の質量によつて変化
する振動周波数の変化量から前記粒子が前記蒸着
体に付着して形成される薄膜の量を検出するモニ
タ用水晶振動子において、 底板に透孔を有し開口端に蓋体を螺装した外筒
と、 表裏板面の外周縁を上記粒子の質量により連続
的に変化する上記水晶振動子の振動周波数に対し
て発生する不要振動を抑制するリング状の軟性物
質を介して上記底板および導電性圧力板との間に
挾持される水晶片と、 上記蓋体と上記導電性圧力板との間に介挿され
上記水晶片を弾性的に保持するバネと、 を具備することを特徴とするモニタ用水晶振動
子。
[Claims for Utility Model Registration] Particles generated from a vapor deposition source are attached to electrodes formed on the plate surface of the object to be vaporized and a crystal resonator, and the mass of the particles is changed depending on the mass of the particles attached to the electrodes of the crystal resonator. In a monitoring crystal oscillator that detects the amount of a thin film formed by the particles adhering to the vapor deposited body from the amount of change in the vibration frequency, the outer part has a through hole in the bottom plate and a lid screwed to the opening end. The outer periphery of the tube and the front and back plates are connected to the bottom plate and the conductive material through a ring-shaped soft material that suppresses unnecessary vibrations generated in response to the vibration frequency of the crystal resonator that continuously changes depending on the mass of the particles. A monitor comprising: a crystal piece held between a pressure plate; and a spring inserted between the lid body and the conductive pressure plate to elastically hold the crystal piece. crystal oscillator.
JP13005284U 1984-08-28 1984-08-28 crystal oscillator for monitor Granted JPS6144926U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13005284U JPS6144926U (en) 1984-08-28 1984-08-28 crystal oscillator for monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13005284U JPS6144926U (en) 1984-08-28 1984-08-28 crystal oscillator for monitor

Publications (2)

Publication Number Publication Date
JPS6144926U JPS6144926U (en) 1986-03-25
JPH0342036Y2 true JPH0342036Y2 (en) 1991-09-03

Family

ID=30688661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13005284U Granted JPS6144926U (en) 1984-08-28 1984-08-28 crystal oscillator for monitor

Country Status (1)

Country Link
JP (1) JPS6144926U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5621590B2 (en) * 2010-12-28 2014-11-12 日本電波工業株式会社 Etching amount sensor and etching amount measuring method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488790A (en) * 1977-12-26 1979-07-14 Seiko Instr & Electronics Ltd Resonant frequency adjusting method for crystal oscillator
JPS58117714A (en) * 1982-01-06 1983-07-13 Hitachi Ltd Construction of crystal plate head

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488790A (en) * 1977-12-26 1979-07-14 Seiko Instr & Electronics Ltd Resonant frequency adjusting method for crystal oscillator
JPS58117714A (en) * 1982-01-06 1983-07-13 Hitachi Ltd Construction of crystal plate head

Also Published As

Publication number Publication date
JPS6144926U (en) 1986-03-25

Similar Documents

Publication Publication Date Title
US4375604A (en) Method of angle correcting doubly rotated crystal resonators
JP6712384B2 (en) Film thickness monitor
JP2602215B2 (en) Frequency adjustment method of piezoelectric vibrator
JPH0342036Y2 (en)
US2542651A (en) Temperature compensated piezoelectric crystal holder
TWI683089B (en) Film thickness sensor
JP2019057910A (en) Saw device and method of manufacturing the same
US2133647A (en) Electromechanical vibrator
JP2005269628A (en) Quartz resonator and manufacturing method of electrode film thereof
US1949149A (en) Vacuum mounted oscillator
JP2001024468A (en) Electrode film structure of piezoelectric oscillator
JP2000323442A (en) Frequency adjuster of piezoelectric element
US3877122A (en) Method of fabricating thin quartz crystal oscillator blanks
CN115287603B (en) Vapor deposition method
JPS5881304A (en) Dielectric resonator
JP3745051B2 (en) Film thickness measurement method
JPS58117714A (en) Construction of crystal plate head
JPH02301210A (en) Frequency adjustment method for surface acoustic wave device
JPS6192010A (en) Vapor deposition mask
US1924297A (en) Crystal oscillator and resonator
JPS59113174A (en) Method and device for forming thin film
US2038804A (en) Piezo-electric crystal holder
JPH0563485A (en) Frequency adjusting device of piezoelectric body by ion beam
JPH01209810A (en) Piezoelectric vibrator and fine adjustment method of its frequency
JPH09246621A (en) Electrode film forming vibrating strip holder and electrode film forming apparatus