JPH0341790A - Gas laser - Google Patents

Gas laser

Info

Publication number
JPH0341790A
JPH0341790A JP1175696A JP17569689A JPH0341790A JP H0341790 A JPH0341790 A JP H0341790A JP 1175696 A JP1175696 A JP 1175696A JP 17569689 A JP17569689 A JP 17569689A JP H0341790 A JPH0341790 A JP H0341790A
Authority
JP
Japan
Prior art keywords
gas
laser
flow
fine particles
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1175696A
Other languages
Japanese (ja)
Inventor
Hitoshi Takeuchi
仁 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP1175696A priority Critical patent/JPH0341790A/en
Publication of JPH0341790A publication Critical patent/JPH0341790A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Abstract

PURPOSE:To obtain a gas laser provided with a fine particle removing mechanism having little pressure loss of a gas flow and having the high capture efficiency of fine particles by a method wherein a fine particle capturing/removing means is provided on the wall surface of the interior of the bend part of a gas flow path in the circulating path of laser gas. CONSTITUTION:A fine particle removing mechanism is formed into a constitution, in which a circulating path constituted in a laser chamber 2 is provided between discharge electrodes 4 and gas coolers 5 and a gas circulating fan 3 circulates forcedly laser gas. Thereby, a bent gas flow F is formed in the bend part of the circulating path. A fine particle adsorbing material 1 is provided on the inner wall of the bend part, which comes into contact to this gas flow F, of the circulating path. As the flow F changes abruptly its direction at the bend part, which is provided with the material 1, of the circulating path, a centrifugal force to head for the outside works on fine particles in the flow F. Owing to this, the fine particles are driven out from the flow F to the outside and collide with the material 1. An enormous number of holes of a diameter of 10mum to several mm exist in the surface of the material 1 consisting of a porous thin film material and the fine particles are captured in these holes and are removed from the interior of the laser gas.

Description

【発明の詳細な説明】 [a業上の利用分野] 本発明は、例えばエキシマレーザ装置に応用される、微
粒子除去機構を備えたガスレーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas laser device equipped with a particulate removal mechanism, which is applied to, for example, an excimer laser device.

[従来の技術] 種々の用途が開発され、多くの分野で使用されているガ
スレーザ装置、特に強制循環させたレーザガスを放電励
起させて比較的高出力を得るようなガスレーザ装置にお
いては、運転に伴ない、レーザチャンバ内にガス状また
は微粒子状の不純物が発生し蓄積される。これらの不純
物は、電極材料等が蒸発して再凝固したり、レーザチャ
ンバ内に残留した有機物が分解されたり、レーザガスや
不純物から新たに物質が合成されたりして発生したもの
で、時間とともに増加してレーザガスを汚染する。これ
らの不純物は、光共振に係るレーザ光を吸収してレーザ
出力を低下させる。また、放電領域の電界分布を攪乱し
、ガス分子の運動を妨害して放電を不安定にする。従っ
て、レーザガス中の微粒子が増加するとガスレーザ装置
の性能は著しく低下する。特に、放電型エキシマレーザ
装置では、化学的に活性なハロゲンガスを用いるために
微粒子が大量に発生し、この微粒子は、レーザガスの高
速循環に伴ない放電領域に侵入して装置の正常な運転を
比較的短時間で損ねた。
[Prior Art] Gas laser devices that have been developed for various uses and are used in many fields, especially gas laser devices that generate relatively high output by discharge excitation of forcedly circulated laser gas, have a tendency to gaseous or particulate impurities are generated and accumulated within the laser chamber. These impurities are generated when electrode materials, etc. evaporate and re-solidify, organic substances remaining in the laser chamber are decomposed, or new substances are synthesized from laser gas and impurities, and they increase over time. and contaminate the laser gas. These impurities absorb laser light related to optical resonance and reduce laser output. It also disturbs the electric field distribution in the discharge region and impedes the movement of gas molecules, making the discharge unstable. Therefore, as the amount of fine particles in the laser gas increases, the performance of the gas laser device is significantly reduced. In particular, discharge-type excimer laser equipment uses chemically active halogen gas, which generates a large amount of fine particles.As the laser gas circulates at high speed, these fine particles invade the discharge area and interfere with the normal operation of the equipment. lost in a relatively short period of time.

従って、通常の放電型エキシマレーザ装置には不純物除
去機構が設けられてレーザガス中の不純物量を一定以下
に抑えている。
Therefore, a typical discharge type excimer laser device is provided with an impurity removal mechanism to suppress the amount of impurities in the laser gas below a certain level.

不純物の内でも、ガス状または液体微粒子状のものに対
しては、低温による吸着や凝固を利用した低温除去装置
が実用化されている。しかし、レーザガスの強制循環に
より舞い上がってチャンバ内を循環する固体微粒子に対
しては、低温による吸着や凝固作用が期待できないので
レーザガス流路にフィルタを挿入して捕獲除去する試み
が行われている。
Among impurities, low-temperature removal devices that utilize adsorption and coagulation at low temperatures have been put into practical use for gaseous or liquid particulates. However, since the low temperature cannot be expected to cause adsorption or coagulation of the solid particles that fly up and circulate within the chamber due to the forced circulation of the laser gas, attempts have been made to insert a filter into the laser gas flow path to capture and remove them.

微粒子除去機構を備えた第1従来例のエキシマレーザ装
置の構成を第5図に示す。第1従来例はレーザチャンバ
2内のレーザガスを、放電電極4とガス冷却器5との間
で、ガス循環ファン3によりガス流Fとして循環させる
°構成である。ここでは、ステンレスの細かいメツシュ
で形成されたフィルタ7がガス循環経路上に設置され、
微粒子を捕獲する。第1従来例では、後述するように、
フィルタ7におけるレーザガス循環経路の圧力損失が問
題となるが、レーザガスとともに循環する微粒子は必ず
フィルタ7を通過する。
FIG. 5 shows the configuration of a first conventional excimer laser device equipped with a particulate removal mechanism. The first conventional example has a configuration in which laser gas in a laser chamber 2 is circulated as a gas flow F between a discharge electrode 4 and a gas cooler 5 by a gas circulation fan 3. Here, a filter 7 formed of a fine mesh of stainless steel is installed on the gas circulation path,
Captures fine particles. In the first conventional example, as described later,
Although pressure loss in the laser gas circulation path in the filter 7 poses a problem, particulates circulating together with the laser gas always pass through the filter 7.

レーザガス循環経路における圧力損失を解決した第2従
来例のエキシマレーザ装置の構成を第6図に示す。第1
従来例の場合と同じ構成、機能を有する部材には同じ符
号を付しである。
FIG. 6 shows the configuration of a second conventional excimer laser device that solves the pressure loss in the laser gas circulation path. 1st
The same reference numerals are given to members having the same configuration and functions as in the conventional example.

第2従来例は、ダクト10とフィルタ8と循環ポンプ9
とからなる副循環経路を有していて、チャンバ2内のレ
ーザガスの一部を取り出しフィルタ8で微粒子を除去し
た後、再度チャンバ2内へ強制的に戻す構成である。
The second conventional example includes a duct 10, a filter 8, and a circulation pump 9.
It has a subcirculation path consisting of a subcirculation path, and is configured to take out a part of the laser gas in the chamber 2, remove particulates with a filter 8, and then forcibly return it into the chamber 2.

[発明が解決しようとする課題] 第1従来例のエキシマレーザ装置では、フィルタ7は、
ガス循環経路におけるガス流路全体をふさぐから、メツ
シュ密度を高くして捕獲効率を上昇するとレーザガス流
の圧力損失が拡大する。しかし、メツシュ密度を低くす
ると圧力損失は低くなるが微粒子の捕獲効率も低下する
。加えてフィルタ7は、装置運転に伴ない微粒子による
目すまりを発生して圧力損失を大きくしてガス流Fを妨
げる。
[Problems to be Solved by the Invention] In the excimer laser device of the first conventional example, the filter 7 is
Since the entire gas flow path in the gas circulation path is blocked, increasing the mesh density to increase the capture efficiency increases the pressure loss of the laser gas flow. However, if the mesh density is lowered, the pressure drop will be lowered, but the efficiency of capturing fine particles will also be lowered. In addition, the filter 7 becomes clogged with particulates as the device operates, increasing pressure loss and obstructing the gas flow F.

第2従来例のエキシマレーザ装置では、チャンバ2内の
レーザガス循環経路における圧力損失とフィルタ8とは
無関係であるが、フィルタ8を通らないチャンバ2内の
レーザガス循環経路を循環する微粒子は捕獲されないか
ら、フィルタ8の効果は限られたものとなる。また、ポ
ンプ9の能力を向上させればフィルタ8の効果も上がる
が、ポンプ9の大容量化は装置の製作と維持管理の観点
から不都合である。
In the second conventional excimer laser device, the pressure loss in the laser gas circulation path in the chamber 2 is unrelated to the filter 8, but particles circulating in the laser gas circulation path in the chamber 2 that do not pass through the filter 8 are not captured. , the effect of the filter 8 is limited. Further, if the capacity of the pump 9 is improved, the effectiveness of the filter 8 will be increased, but increasing the capacity of the pump 9 is inconvenient from the viewpoint of manufacturing and maintenance of the device.

本発明は、ガス流の圧力損失が小さく微粒子の捕獲効率
が高い微粒子除去機構を備えたガスレーザ装置を提供す
ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a gas laser device equipped with a particulate removal mechanism that has a small gas flow pressure loss and high particulate capture efficiency.

[課題を解決するための手段] 本発明に係るガスレーザ装置は、レーザチャンバ内のレ
ーザガスを循環させるガス循環手段を有する。また、レ
ーザガスの循環経路におけるガス流路の曲がり部の内部
壁面に、微粒子を捕獲する除去手段を備える。
[Means for Solving the Problems] A gas laser device according to the present invention includes gas circulation means for circulating laser gas within a laser chamber. Further, a removing means for capturing particulates is provided on the inner wall surface of the curved portion of the gas flow path in the laser gas circulation path.

[作 用] 本発明に係るガスレーザ装置のガス循環手段はレーザチ
ャンバ内のレーザガスを強制的に循環させて効率的なレ
ーザガスの冷却を行い、レーザガスの急速な劣化を阻止
して放電状態を安定に維持する。しかし、ガスレーザ装
置の運転に伴ないレーザチャンバ内には、次第に不要な
微粒子が増加してレーザガスを汚染する。ガス循環手段
は、レーザガス中に微粒子を混合攪拌する。
[Function] The gas circulation means of the gas laser device according to the present invention forcibly circulates the laser gas in the laser chamber to efficiently cool the laser gas, prevent rapid deterioration of the laser gas, and stabilize the discharge state. maintain. However, as the gas laser device is operated, unnecessary particles gradually increase in the laser chamber and contaminate the laser gas. The gas circulation means mixes and stirs the particles in the laser gas.

また、除去手段は、レーザガスの流れと並行して設けら
れるからレーザガスの流れを直接には妨げない、しかし
ながら除去手段は、ガス流路の曲がり部の内壁、特に曲
がりの外側の内壁に設けられるから、レーザガスから微
粒子を効率的に分離して捕獲することができる。すなわ
ち、レーザガス流の曲がりは微粒−子に遠心力を作用さ
せて外側方向への微粒子の濃縮と除去手段への衝突とが
弓き起こされる。
Furthermore, since the removing means is provided in parallel with the flow of the laser gas, it does not directly impede the flow of the laser gas.However, the removing means is provided on the inner wall of the bend in the gas flow path, especially on the inner wall outside the bend. , fine particles can be efficiently separated and captured from laser gas. That is, the bending of the laser gas flow causes a centrifugal force to act on the particles, causing them to concentrate outward and collide with the removal means.

[実施例] 第1図は、本発明の第1実施例のガスレーザ装置の概略
な構成を示す。放電電極4とガス冷却器5との間にレー
ザチャンバ2で構成された循環経路を有し、ガス循環フ
ァン3が、レーザガスを強制循環する構成である。これ
により、循環経路の曲がり部に折れ曲がったガス流Fが
形成される。
[Example] FIG. 1 shows a schematic configuration of a gas laser device according to a first example of the present invention. A circulation path including a laser chamber 2 is provided between the discharge electrode 4 and the gas cooler 5, and a gas circulation fan 3 is configured to forcefully circulate the laser gas. As a result, a bent gas flow F is formed at the bend in the circulation path.

このガス流Fに接する循環経路の曲がり部の内壁に微粒
子吸着材1が設けられている。
A particulate adsorbent 1 is provided on the inner wall of the curved portion of the circulation path that is in contact with this gas flow F.

微粒子吸着材1は、化学的に活性なレーザガスと直接接
触するから、耐食性の高い各種材料が使用される。すな
わち、耐食性金属(SUS316L、Ni等)や耐食性
有機物(フッ素樹脂等)や耐食性セラミックスが採用さ
れる。また、加工形状としては、メツシュや多孔質の薄
膜材やばらばらにならない様にメツシュ等で束ねて固定
されたウール状の1IiI!維の各形状が選択される。
Since the particulate adsorbent 1 comes into direct contact with the chemically active laser gas, various materials with high corrosion resistance are used. That is, a corrosion-resistant metal (SUS316L, Ni, etc.), a corrosion-resistant organic material (fluororesin, etc.), or a corrosion-resistant ceramic is used. In addition, the processed shape can be a mesh, a porous thin film material, or a wool-like 1IiI that is bundled and fixed with a mesh to prevent it from falling apart! Each shape of the fiber is selected.

ここではフッ素樹脂製の多孔質薄膜材を採用した。Here, a porous thin film material made of fluororesin was used.

ガス流Fは、微粒子吸着材1が設けられた循環経路の曲
がり部で急激に方向を変えるので、ガス流F中の微粒子
に対して外側に向かう遠心力が働く。このため、微粒子
は、ガス流Fから外側に追いやられ、微粒子吸着材1に
衝突する。多孔質薄膜材の微粒子吸着材1の表面には、
直径10μm〜数mmの膨大な数の孔が存在し、微粒子
はこの孔に捕えられてレーザガス中から排除される。
Since the gas flow F suddenly changes direction at a bend in the circulation path where the particulate adsorbent 1 is provided, centrifugal force acts on the particulates in the gas flow F toward the outside. Therefore, the particulates are driven outward from the gas flow F and collide with the particulate adsorbent 1. On the surface of the fine particle adsorbent 1, which is a porous thin film material,
There are a huge number of holes with diameters ranging from 10 μm to several mm, and fine particles are trapped in these holes and removed from the laser gas.

第2図は、本発明の第2実施例のガスレーザ装置の概略
な構成を示し、第1実施例と同様な構成と機能とを有す
る部材には、同じ符号を付しである。ここで、循環経路
の曲がり部は、並行する複数のガス流路に分割され、そ
れぞれのガス流Fを形成する。それぞれのガス流路に対
して微粒子吸着材1が設けられ、それぞれのガス流Fか
ら微粒子の除去を行う構成である。第2実施例では、微
粒子吸着材1とガス流Fとの接触表面積をS1実施例よ
りも増やすことができるから、より効率良く微粒子を捕
獲できる。
FIG. 2 shows a schematic configuration of a gas laser device according to a second embodiment of the present invention, and members having the same configuration and functions as those in the first embodiment are given the same reference numerals. Here, the curved portion of the circulation path is divided into a plurality of parallel gas flow paths to form respective gas flows F. A particulate adsorbent 1 is provided for each gas flow path, and particulates are removed from each gas flow F. In the second embodiment, since the contact surface area between the particulate adsorbent 1 and the gas flow F can be increased compared to the S1 embodiment, particulates can be captured more efficiently.

微粒子吸着材1は、微粒子吸着材のみで構成されていて
も良いが、各ガス流Fの隔壁としての強度を持たせるよ
うに補強構造を設けても良い。この補強構造は、通気性
、非通気性いずれの構造でも良い。
The particulate adsorbent 1 may be composed of only particulate adsorbent, but may be provided with a reinforcing structure so as to have strength as a partition wall for each gas flow F. This reinforcing structure may be either a breathable or non-breathable structure.

第3図は、本発明の第3実施例のガスレーザ装置の概略
な構成を示し、第1実施例と同様な構成と機能とを有す
る部材には、同じ符号を付しである。ここで、循環経路
の曲がり部は、対向する微粒子吸着材1により形成され
、微粒子吸着材1の折れ曲がV形状に沿ったガス流Fが
発生する。この曲がり部でも第1実施例と同様に、レー
ザガスからの微粒子の分離と固定が行われる。
FIG. 3 shows a schematic configuration of a gas laser device according to a third embodiment of the present invention, and members having the same configuration and functions as those in the first embodiment are given the same reference numerals. Here, the curved portion of the circulation path is formed by the opposing particulate adsorbents 1, and a gas flow F is generated in which the bends of the particulate adsorbents 1 follow a V-shape. Also at this curved portion, separation and fixation of particles from the laser gas is performed in the same manner as in the first embodiment.

第4図は、本発明の第4実施例のガスレーザ装置の概略
な構成を示し、第1実施例と同様な構成と機能とを有す
る部材には、同じ符号を付しである。ここで、微粒子吸
着材1は、ついたて状の形状を有し、循環経路の曲がり
部は、レーザガス循環経路内に互い違いに設置されたつ
いたて状の微粒子吸着材1により形成されている。対向
する微粒子吸着材1間のガス流路は、急激に折り曲げら
れたガス流Fを形成する。この曲がり部でも第1実施例
と同様なレーザガスからの微粒子の分離と固定が行われ
る。
FIG. 4 shows a schematic configuration of a gas laser device according to a fourth embodiment of the present invention, and members having the same configuration and functions as those in the first embodiment are given the same reference numerals. Here, the particulate adsorbents 1 have a vertical shape, and the curved portions of the circulation path are formed by the vertical particulate adsorbents 1 placed alternately in the laser gas circulation path. The gas flow path between the opposing particulate adsorbents 1 forms a gas flow F that is sharply bent. Even at this bent portion, separation and fixation of particles from the laser gas is performed in the same manner as in the first embodiment.

以上の各実施例において、微粒子吸着材1は、レーザガ
スの一部分が通り抜けながら微粒子を除かれる構造であ
っても、レーザガスが通り抜けないで表面に衝突した微
粒子を捕獲する構造であっても良い、また、循環経路の
曲り部を微粒子吸着材1を含んだ一体構造のユニットに
形成して、循環経路に着脱自由に挿入する構造とするこ
とも可能である。このとき、循環経路の曲り部構造は、
より自由な選択が可能となり、例えば、円筒内側面をコ
イル状に走査する渦状の流れを形成して微粒子を分離す
るような立体的な構造とすることが可能となる。
In each of the above embodiments, the particulate adsorbent 1 may have a structure in which part of the laser gas passes through while removing particulates, or may have a structure in which the particulates that collide with the surface are captured without the laser gas passing through. It is also possible to form a bent part of the circulation path into an integral unit containing the particulate adsorbent 1, and to have a structure that can be freely inserted into and removed from the circulation path. At this time, the structure of the bend in the circulation path is
More free selection is possible, and for example, it is possible to create a three-dimensional structure that separates fine particles by forming a spiral flow that scans the inner surface of the cylinder in a coil shape.

各実施例のガスレーザ装置においては、微粒子吸着材1
によるガス流Fの圧力損失が、従来例に比べて小さいか
ら、ガス循環ファン3の負担が軽減される。また、比較
的小容量のガス循環ファンの場合でも高速のガス循環と
レーザガス中の微粒子の効率的な除去とが両立する。
In the gas laser device of each example, the particulate adsorbent 1
Since the pressure loss of the gas flow F is smaller than that in the conventional example, the burden on the gas circulation fan 3 is reduced. Further, even in the case of a relatively small capacity gas circulation fan, high-speed gas circulation and efficient removal of particulates in the laser gas are both compatible.

さらに、微粒子吸着材1が、装置運転に伴・ない微粒子
による目すまりを起した場合、微粒子の捕磯効率は低下
するものの、従来例のような圧力損失の増大は引き起こ
さない。
Further, when the particulate adsorbent 1 becomes clogged with particulates due to the operation of the apparatus, although the particulate trapping efficiency decreases, the pressure loss does not increase as in the conventional example.

[発明の効果] 本発明に係るガスレーザ装置は、除去手段によりレーザ
ガス中の微粒子を除去してレーザガスの清浄度を保つか
ら、微粒子によるレーザ光の吸収や散乱が抑制され、レ
ーザガス中での異常放電も減り、レーザ出力の長期間安
定した取出しが可能となるとともに、レーザガス寿命も
伸びる。
[Effects of the Invention] Since the gas laser device according to the present invention maintains the cleanliness of the laser gas by removing fine particles in the laser gas using the removing means, absorption and scattering of laser light by the fine particles is suppressed, and abnormal discharge in the laser gas is suppressed. This makes it possible to take out the laser output stably for a long period of time, and the life of the laser gas is also extended.

また、除去手段は、レーザガスの流れを直接妨げない構
造で圧力損失を小さくできるからガス循環手段の小容量
化が可能となる。さらに、循環経路の曲がり部は、レー
ザガスからの微粒子の分離を効率的なものにするから、
除去手段と組み合わせることにより、より効率的−で性
能の高い微粒子除去が可能となる。
In addition, the removal means has a structure that does not directly impede the flow of the laser gas and can reduce pressure loss, making it possible to reduce the capacity of the gas circulation means. Furthermore, the bends in the circulation path make separation of particles from the laser gas efficient.
By combining it with a removal means, it becomes possible to remove particles more efficiently and with higher performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の第1実施例のガスレーザ装置の概略
な構成を示す模式図である。 第2図は、本発明の第2実施例のガスレーザ装置の概略
な構成を示す模式図である。 第3図は、本発明の第3実施例のガスレーザ装置の概略
な構成を示す模式図である。 第4図は、本発明の第4実施例のガスレーザ装置の概略
な構成を示す模式図である。 第5図は、従来例のガスレーザ装置の概略な構成を示す
模式図である。 第6図は、別の従来例のガスレーザ装置の概略な構成を
示す模式図である。 [主要部分の符号の説明]
FIG. 1 is a schematic diagram showing the general configuration of a gas laser device according to a first embodiment of the present invention. FIG. 2 is a schematic diagram showing the general configuration of a gas laser device according to a second embodiment of the present invention. FIG. 3 is a schematic diagram showing the general configuration of a gas laser device according to a third embodiment of the present invention. FIG. 4 is a schematic diagram showing the general configuration of a gas laser device according to a fourth embodiment of the present invention. FIG. 5 is a schematic diagram showing the general configuration of a conventional gas laser device. FIG. 6 is a schematic diagram showing the general configuration of another conventional gas laser device. [Explanation of symbols of main parts]

Claims (1)

【特許請求の範囲】 レーザチャンバ内のレーザガスを循環させるガス循環手
段を有し、 前記レーザガスの循環経路におけるガス流路の曲がり部
の内部壁面に、微粒子を捕獲する除去手段を備えたこと
を特徴とするガスレーザ装置。
[Scope of Claims] The present invention is characterized by comprising a gas circulation means for circulating laser gas in a laser chamber, and a removal means for capturing particulates on an inner wall surface of a curved part of a gas flow path in the laser gas circulation path. gas laser equipment.
JP1175696A 1989-07-10 1989-07-10 Gas laser Pending JPH0341790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1175696A JPH0341790A (en) 1989-07-10 1989-07-10 Gas laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1175696A JPH0341790A (en) 1989-07-10 1989-07-10 Gas laser

Publications (1)

Publication Number Publication Date
JPH0341790A true JPH0341790A (en) 1991-02-22

Family

ID=16000650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1175696A Pending JPH0341790A (en) 1989-07-10 1989-07-10 Gas laser

Country Status (1)

Country Link
JP (1) JPH0341790A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132582A (en) * 1992-10-15 1994-05-13 Komatsu Ltd Excimer laser system
JP2007208183A (en) * 2006-02-06 2007-08-16 Komatsu Ltd Laser device
JP2007531312A (en) * 2004-03-31 2007-11-01 サイマー インコーポレイテッド Gas discharge laser chamber improvement
KR20200075882A (en) * 2017-12-05 2020-06-26 사이머 엘엘씨 Non-woven screen for collecting dust in the laser discharge chamber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132582A (en) * 1992-10-15 1994-05-13 Komatsu Ltd Excimer laser system
JP2007531312A (en) * 2004-03-31 2007-11-01 サイマー インコーポレイテッド Gas discharge laser chamber improvement
JP2007208183A (en) * 2006-02-06 2007-08-16 Komatsu Ltd Laser device
KR20200075882A (en) * 2017-12-05 2020-06-26 사이머 엘엘씨 Non-woven screen for collecting dust in the laser discharge chamber
JP2021505360A (en) * 2017-12-05 2021-02-18 サイマー リミテッド ライアビリティ カンパニー Non-woven screen for dust capture in laser discharge chamber
US11614012B2 (en) 2017-12-05 2023-03-28 Cymer, Llc Nonwoven screens for dust trapping in laser discharge chambers

Similar Documents

Publication Publication Date Title
JP4244022B2 (en) Gas processing equipment
US6251170B1 (en) Electronic dust collector and air conditioner with electronic dust collector
KR20010062165A (en) Exhaust gas filtration apparatus, auxiliary filtration apparatus and trap apparatus
JP2009131829A (en) Charging apparatus, apparatus for treating air, charging method, and method for treating air
US6319299B1 (en) Adjustable cold trap with different stages
JPH0341790A (en) Gas laser
JP2009125653A (en) Air cleaner
JP2000084325A (en) Clean air supply device
CN111408850A (en) Small-size laser cutting is with cooling smoke abatement device
JP2003154229A (en) Exhaust gas recycling and circulating apparatus
JP2012240007A (en) Multiple-pipe filter
JPS6138644A (en) Dust collector
JP2006288938A (en) Chemical filter, and fan filter unit having the same
KR102507802B1 (en) Damper structure and storage chamber including the same
JPH03255680A (en) Oscillation device of excimer laser
CN212299573U (en) Take filter equipment's air-cooled heat pump set
JPH04214137A (en) Clean room, equipped with gas absorbing device, and gas absorbing device
JPH06152170A (en) Dust-removing apparatus from air
JP2006342977A (en) Air conditioner
JPS637683A (en) Gas laser system
JP2008194548A (en) Exhaust gas filtering device
JPH0412582A (en) Co laser apparatus
JPS6138643A (en) Dust collector
JP3144228U (en) Exhaust gas cleaner
JPS6044742A (en) Clean room