JPH0341214A - Non-contact supporting method and device - Google Patents

Non-contact supporting method and device

Info

Publication number
JPH0341214A
JPH0341214A JP17829889A JP17829889A JPH0341214A JP H0341214 A JPH0341214 A JP H0341214A JP 17829889 A JP17829889 A JP 17829889A JP 17829889 A JP17829889 A JP 17829889A JP H0341214 A JPH0341214 A JP H0341214A
Authority
JP
Japan
Prior art keywords
rotor
displacement
electromagnetic
contact support
electromagnetic poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17829889A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ishida
石田 精
Masanori Suematsu
末松 正典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP17829889A priority Critical patent/JPH0341214A/en
Publication of JPH0341214A publication Critical patent/JPH0341214A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To prevent vibration while a rotor is rotated excessively by providing on the internal circumference of a stator electromagnetic poles with exciting coils and displacement detectors opposed with each other through a clearance between the rotor and a stator, and controlling the phase of an output from the detectors to control the suction force of the electromagnetic poles. CONSTITUTION:Two displacement detectors 61 and 62 for detecting vertical and lateral displacements of a rotor 1 are fixed near the poles of electromagnetic poles 41 to 48 with their detecting directions crossed at right angle. When the rotor 1 is rotated at high speed and the whirling is produced, the vibration displacement of the rotor 1 is detected by these displacement detectors 61 and 62. A phase-modified signal is produced in a phase controller 72 by means of the displacement signals, transmitted to a distributor 73, and a current corresponding to the phase-modified signal is applied to exciting coils 51 to 58 through current amplifiers 74 and 75. A magnetic suction force acts between the electromagnetic poles 41 to 48 and the rotor 1, a magnetic suction force, 90 deg. ahead of the displacement of the rotor in phase, acts as a damping force to suppress the vibration displacement magnitude of the rotor 1, and the rotor can be rotated excessively without producing vibration.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高速回転体を非接触で支持する方法および装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for supporting a high-speed rotating body in a non-contact manner.

[従来の技術] 従来、回転機械の高速回転を可能とする軸受として、空
気軸受と磁気軸受が用いられている。
[Prior Art] Conventionally, air bearings and magnetic bearings have been used as bearings that enable high-speed rotation of rotating machines.

空気軸受は軸受隙間に空気を送り、その静圧により回転
体を浮上させ、非接触支持している。したがって、支持
部としての振動を減衰させる、いわゆる支持ダンピング
の作用は殆どない。これは、動圧タイプの空気軸受につ
いても同様である。
Air bearings send air into the bearing gap and use the static pressure to levitate the rotating body and support it in a non-contact manner. Therefore, there is almost no so-called support damping effect, which dampens vibrations as a support part. This also applies to dynamic pressure type air bearings.

また、磁気軸受は磁気吸引力により回転体を非接触に浮
上支持している。この場合、回転体の変位を検出し、そ
れが一定となるようにフィードバック制御するので、制
御器の構成により支持ダンピングを向上させることがで
きる。
Furthermore, the magnetic bearing floats and supports the rotating body in a non-contact manner using magnetic attraction force. In this case, the displacement of the rotating body is detected and feedback control is performed to keep it constant, so that support damping can be improved by the configuration of the controller.

[発明が解決しようとする課題] ところが、空気軸受の場合は、支持ダンピングが作用し
ないので、回転体の高速回転時に振れ回りが生じても、
それを抑制することができないので、それ以上の回転数
に上げると振動が大きくなり、危険速度を越えることも
できないという問題があった。
[Problems to be Solved by the Invention] However, in the case of air bearings, support damping does not work, so even if whirling occurs when the rotating body rotates at high speed,
Since it is not possible to suppress this, there is a problem in that if the rotation speed is increased beyond that, the vibration increases and the critical speed cannot be exceeded.

また、磁気軸受の場合は、浮上のための制御と支持ダン
ピング付加のための制御を合せて持たなければならず、
全体の構成が複雑になるとともに、支持剛性を高めるた
めに、各励磁コイルにバイアス電流を供給してバイアス
磁束を付加すると、高速回転時には渦電流による発熱が
生じるなどの欠点があった。
In addition, in the case of magnetic bearings, it is necessary to have both control for levitation and control for adding support damping.
In addition to complicating the overall structure, in order to increase support rigidity, supplying a bias current to each excitation coil to add bias magnetic flux had the disadvantage of generating heat due to eddy currents during high-speed rotation.

本発明は、空気軸受に磁気ダンパを合せ持つ構成として
、高速回転時の支持ダンピング作用を持たせた精密軸受
を提供することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a precision bearing having a structure in which an air bearing is combined with a magnetic damper, and which has a supporting damping effect during high-speed rotation.

[課題を解決するための手段] 本発明は、強磁性体よりなるロータと、前記ロータの外
周に空隙を介して対向する強磁性体よりなるリング状の
ステータと、前記ステータに前記ロータに向けて放射状
に設けられた流体供給孔とを備え、前記流体供給孔を通
して供給された流体により前記ロータを支持する非接触
支持方法において、前記ステータの内周に励磁コイルを
備えた電磁極と、前記ロータに空隙を介して対向させた
前記ロータの変位を検出する変位検出器とを備え、前記
変位検出器の出力を位相制御して、その信号に応じて前
記電磁極の吸引力を制御するものである。
[Means for Solving the Problems] The present invention includes a rotor made of a ferromagnetic material, a ring-shaped stator made of a ferromagnetic material facing the outer periphery of the rotor with a gap therebetween, and a ring-shaped stator made of a ferromagnetic material that faces the rotor. In a non-contact support method, the rotor is supported by fluid supplied through the fluid supply holes, the rotor being supported by an electromagnetic pole having an excitation coil on an inner circumference of the stator; and a displacement detector that detects the displacement of the rotor, which is opposed to the rotor through a gap, and controls the phase of the output of the displacement detector to control the attractive force of the electromagnetic poles in accordance with the signal. It is.

[作用] ロータが高速回転し、振れ回りが生じると、変位検出器
によってロータの振動変位が検出される。
[Operation] When the rotor rotates at high speed and whirls around, the vibration displacement of the rotor is detected by the displacement detector.

この変位信号を受けて位相制御器は調相信号を発生し、
この信号を分配器に与え、電流増幅器を介して励磁コイ
ルに調相信号に応じた電流を加え、電磁極とロータとの
間に磁気吸引力を作用させる。
In response to this displacement signal, the phase controller generates a phase adjustment signal,
This signal is applied to the distributor, and a current corresponding to the phase adjustment signal is applied to the excitation coil via a current amplifier, thereby exerting a magnetic attraction force between the electromagnetic poles and the rotor.

そして、このロータの変位の位相に対して、900進ん
だ磁気吸引力が磁気ダンパとしての制振力として作用し
、ロータの振動振幅を小さく抑えるのである。
The magnetic attraction force, which is advanced by 900 degrees with respect to the phase of this rotor displacement, acts as a damping force as a magnetic damper, suppressing the vibration amplitude of the rotor.

[実施例] 本発明を図に示す実施例について説明する。[Example] The present invention will be described with reference to embodiments shown in the drawings.

第1図は本発明の実施例を示す正断面図、第2図は側断
面図で、強磁性体よりなるロータlと、ロータlの外周
に空隙を介して対向する強磁性体よりなるリング状のス
テータ2とを備え、ステータ2の外周には図示しない流
体供給装置と連通ずる流体供給管22を備えたフレーム
21が設けられている。ステータ2の内周側にはロータ
lの外周表面に向けて等間隔をおいて開口し、放射状に
配置された4対の流体供給管22に連通ずる流体供給孔
3(31,32,33,34,35,36,37,38
)を設けである。また、ステータ2の流体供給孔3を囲
んで突設させた4対の電磁極4(41,42,43,4
4,45,46,47,48)が設けられ、それぞれの
電磁極4に励磁コイル5(5L52.53.54.55
.56.57.58)が巻回されている。なお、上下方
向の吸引力を発生する電磁極41.42および45.4
6の励磁コイル51,52および55.56はそれぞれ
1対で直列接続され、電磁極41と45が同一方向で、
42と46はこれと逆方向となるように磁気回路が構成
されている。左右方向についても同様に、励磁コイル5
3.54および57.58はそれぞれ1対で直列接続さ
れ、電磁極43と47が同一方向で、44と48はこれ
と逆方向となるよう磁気回路が構成されている。流体供
給孔3には図示しない空気源により空気が供給され、ロ
ータlの表面に向かって吐き出されてロータlの外周と
電磁極4の磁極面との間で空気軸受を形成する。電磁極
4の磁極近傍にはロータlの上下方向と左右方向の変位
を検出する2個の変位検出器6 (6L 62)を検出
方向を直交させてステータ2に固定されている。変位検
出器61は上下方向の検出値に、を出力し、変位検出器
62は左右方向の検出値に、を出力して、検出値に□ 
k8をそれぞれ制御装置7y、7xに入力して電磁極4
の吸引力を制御するようにしである。上下方向の制御装
置7yは*3図に示すように、センサアンプ71で検出
値KYを増幅してロータ1の変位信号り、としている。
Fig. 1 is a front sectional view showing an embodiment of the present invention, and Fig. 2 is a side sectional view, showing a rotor l made of a ferromagnetic material and a ring made of a ferromagnetic material facing the outer periphery of the rotor l with a gap in between. A frame 21 is provided on the outer periphery of the stator 2 and is provided with a fluid supply pipe 22 that communicates with a fluid supply device (not shown). Fluid supply holes 3 (31, 32, 33, 34, 35, 36, 37, 38
) is provided. In addition, four pairs of electromagnetic poles 4 (41, 42, 43, 4
4, 45, 46, 47, 48) are provided, and each electromagnetic pole 4 is provided with an excitation coil 5 (5L52.53.54.55).
.. 56, 57, 58) are wound. In addition, electromagnetic poles 41.42 and 45.4 generate vertical attractive force.
The excitation coils 51, 52, and 55, 56 of No. 6 are each connected in series as a pair, and the electromagnetic poles 41 and 45 are in the same direction.
The magnetic circuits 42 and 46 are constructed in the opposite direction. Similarly, in the left and right directions, the excitation coil 5
3.54 and 57.58 are each connected in series as a pair, and the magnetic circuit is configured such that electromagnetic poles 43 and 47 are in the same direction, and 44 and 48 are in the opposite direction. Air is supplied to the fluid supply hole 3 by an air source (not shown), and is discharged toward the surface of the rotor l to form an air bearing between the outer periphery of the rotor l and the magnetic pole surface of the electromagnetic pole 4. Two displacement detectors 6 (6L 62) are fixed to the stator 2 near the magnetic poles of the electromagnetic pole 4 to detect vertical and horizontal displacements of the rotor l with their detection directions orthogonal to each other. The displacement detector 61 outputs the detected value in the vertical direction, and the displacement detector 62 outputs the detected value in the horizontal direction.
Input k8 to the control devices 7y and 7x, respectively, and connect the electromagnetic pole 4.
It is designed to control the suction power. As shown in Figure *3, the vertical control device 7y amplifies the detected value KY with a sensor amplifier 71 and uses it as a displacement signal of the rotor 1.

変位信号り、は位相制御器72に入力され調相信号Vy
として出力し、分配器73に指令を与える。分配器73
は二つの電流増幅器74.75を介して、上下方向の吸
引力を発生する電磁極41゜42.45.46の励磁コ
イル51,52.55.56の電流を制御するようにし
である。左右方向の制御装置7xも、上下方向の制御装
置7yと同様に構成されて、励磁コイル53.54、お
よび57.58の電流を制御するようにしである。
The displacement signal Vy is input to the phase controller 72 and the phase adjustment signal Vy is inputted to the phase controller 72.
and gives a command to the distributor 73. Distributor 73
is designed to control the current of the excitation coils 51, 52, 55, 56 of the electromagnetic poles 41, 42, 45, 46, which generate vertical attractive forces, through two current amplifiers 74, 75. The left-right direction control device 7x is also configured similarly to the up-down direction control device 7y, and is configured to control the currents of the excitation coils 53, 54 and 57, 58.

以上のような構成において、ロータ1が高速回転し、振
れ回りが生じると、変位検出器6によってロータlの振
動変位としてに、、  K、が検出される。
In the above configuration, when the rotor 1 rotates at high speed and whirls around, the displacement detector 6 detects the vibrational displacement of the rotor 1 as follows.

この信号を受けて位相制御器72は分配器73に指令を
与え、電流増幅器74.75を介して励磁コイル51,
52.55.56に電流が供給され、電磁極41.42
.45.46とロータIMに磁気吸引力が作用する。こ
の4個の電磁極によって生じた磁気吸引力の合力Fがロ
ータlに対し、上下方向の力として作用し、ロータ1の
振動振幅を小さく抑える磁気ダンパの制振力となる。
Upon receiving this signal, the phase controller 72 gives a command to the distributor 73, and the excitation coil 51,
52.55.56 are supplied with current and the electromagnetic poles 41.42
.. A magnetic attraction force acts on 45, 46 and the rotor IM. The resultant force F of the magnetic attraction forces generated by these four electromagnetic poles acts on the rotor 1 as a force in the vertical direction, and becomes a damping force of the magnetic damper that suppresses the vibration amplitude of the rotor 1.

なお、位相制御器72は1回微分器または2回微分器を
主体として構成され、制振させたい振動周波数に関して
変位に対する前記磁気吸引力の合力Fの位相が変位の9
0″進みとなるよう変位速度信号Vを出力するようにし
であるが、この合力Fがロータの振動に対してダンパと
して作用することは力学的に広く知られている。
Note that the phase controller 72 is mainly composed of a one-time differentiator or a two-time differentiator, and the phase of the resultant force F of the magnetic attraction force with respect to the displacement with respect to the vibration frequency to be damped is set to 9 of the displacement.
Although the displacement speed signal V is output so as to lead by 0'', it is widely known from a mechanical standpoint that this resultant force F acts as a damper against rotor vibration.

また、位相制御器72にはバンドパスフィルタを直列接
続し、特定周波数、例えば危険速度の周波数に対しての
み位相制御するものでもよい。
Further, a bandpass filter may be connected in series to the phase controller 72, and the phase may be controlled only for a specific frequency, for example, the frequency of a critical speed.

ここで、回転数に対する振動振幅の関係を空気軸受だけ
の場合と本発明の磁気ダンパを用いた空気軸受の場合の
比較を第4図に示す。すなわち、磁気ダンパを使用せず
、空気軸受のみの場合は点線で示すように、振幅は(a
)、  (b)、  (c)の回転数で大きくなってい
るが、(b)の回転数が危険速度である。従来、空気軸
受だけでは危険速度の回転数を通過して上昇させること
ができなかったが、本発明によれば、第4図の実線で示
すように磁気ダンパの作用により、振動振幅を小さく抑
えられるので、危険速度以上の回転数に上げることがで
きる。
Here, FIG. 4 shows a comparison of the relationship between the vibration amplitude and the rotational speed in the case of only an air bearing and the case of an air bearing using the magnetic damper of the present invention. In other words, when a magnetic damper is not used and only an air bearing is used, the amplitude is (a
), (b), and (c), but the rotation speed of (b) is the critical speed. Conventionally, air bearings alone could not increase the rotation speed past the critical speed, but according to the present invention, the vibration amplitude can be suppressed to a small level by the action of a magnetic damper, as shown by the solid line in Figure 4. The rotation speed can be increased to above the critical speed.

以上、1個のラジアル軸受に4対の電磁極を設け、磁気
ダンパを形成していたが、回転体の振動が水平方向の振
動だけ限定されることは殆ど無いため、必ずしも4対備
える必要はない。例えば第5図に示すように上下方向の
制振力が働く電磁極が少なくとも1対あればロータlの
振動が抑えられる。すなわち、リング状のステータ2の
扇状の一部に一対の電磁極41.42を円周方向に並べ
て設け、変位検出器6を電磁極4Iと42の間に配置し
たものでもよい。
As mentioned above, four pairs of electromagnetic poles were provided in one radial bearing to form a magnetic damper, but since the vibration of a rotating body is almost never limited to vibration in the horizontal direction, it is not necessarily necessary to provide four pairs of electromagnetic poles. do not have. For example, as shown in FIG. 5, if there is at least one pair of electromagnetic poles that exert a vibration damping force in the vertical direction, the vibration of the rotor l can be suppressed. That is, a pair of electromagnetic poles 41 and 42 may be provided in a fan-shaped part of the ring-shaped stator 2 side by side in the circumferential direction, and the displacement detector 6 may be arranged between the electromagnetic poles 4I and 42.

また、リング状のステータ2の扇状の一部に一対の電磁
極41,42をロータ1の軸方向に並べて設けたもので
もよい。この場合、第6図に示すように、一対の電磁極
41,42にそれぞれ対向する部分を含むロータlのリ
ング状表面に、対向する電磁極の極性と同じ極性の永久
磁石8を設け、例えば電磁極41がN極であれば外周が
N極に着磁された永久磁石8を電磁極41に対向させて
、電磁極と永久磁石との間に反発力を作用させて磁気ダ
ンパの効果を持たせてもよい。
Alternatively, a pair of electromagnetic poles 41 and 42 may be provided in a fan-shaped part of the ring-shaped stator 2 in parallel in the axial direction of the rotor 1. In this case, as shown in FIG. 6, permanent magnets 8 having the same polarity as the opposing electromagnetic poles are provided on the ring-shaped surface of the rotor l including the portions facing the pair of electromagnetic poles 41 and 42, for example. If the electromagnetic pole 41 is the north pole, the permanent magnet 8 whose outer periphery is magnetized to the north pole is opposed to the electromagnetic pole 41, and a repulsive force is applied between the electromagnetic pole and the permanent magnet to produce the effect of a magnetic damper. You can have it.

また、電磁極と永久磁石との間の吸引力を利用するよう
にしてもよいことは、前記実施例と同様である。
Further, as in the previous embodiment, the attractive force between the electromagnetic pole and the permanent magnet may be utilized.

[発明の効果] 以上述べたように、本発明によれば空気軸受により静的
非接触支持を行ない、高速回転時の振れ回りにたいして
は磁気ダンパがロータの振動の減衰を与えて、危険速度
における振れ回りが抑制されるので、ロータが大きな振
動を起こすことなく危険速度を越えることができ、回転
体の回転数の上限を大きく向上させる効果がある。
[Effects of the Invention] As described above, according to the present invention, air bearings provide static non-contact support, and magnetic dampers damp rotor vibrations during whirling during high-speed rotation. Since whirling is suppressed, the rotor can exceed the critical speed without causing large vibrations, which has the effect of greatly increasing the upper limit of the rotational speed of the rotating body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す正面図、第2図は側断面
図、第3図は制御装置のブロック図、第4図は振動状態
の説明図、第5図は他の実施例を示す正面図、第6図は
他の実施例を示す側断面図である。 I・・・ロータ、2・・・ステータ、3(3L32.3
3.34.35.36.37.38)・・・流体供給孔
、4(41,42,43,44,45,46,47,4
8)・・・電磁極、5(5L52.53.54.55.
56.57.58)・・・励磁コイル、6(61,62
)・・・変位検出器、7・・・制御装置、71・・・セ
ンサアンプ、72・・・位相制御器、73・・・分配器
、74.75・・・電流増幅器、8・・・永久磁石第 図 第 図 第3図 第4図 回転数 第5図 第6図
Fig. 1 is a front view showing an embodiment of the present invention, Fig. 2 is a side sectional view, Fig. 3 is a block diagram of the control device, Fig. 4 is an explanatory diagram of the vibration state, and Fig. 5 is another embodiment. FIG. 6 is a front view showing another embodiment, and FIG. 6 is a side sectional view showing another embodiment. I... Rotor, 2... Stator, 3 (3L32.3
3.34.35.36.37.38)...Fluid supply hole, 4 (41, 42, 43, 44, 45, 46, 47, 4
8)... Electromagnetic pole, 5 (5L52.53.54.55.
56.57.58)... Excitation coil, 6 (61, 62
)...Displacement detector, 7...Control device, 71...Sensor amplifier, 72...Phase controller, 73...Distributor, 74.75...Current amplifier, 8... Permanent magnet diagram Figure 3 Figure 4 Rotation speed Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、強磁性体よりなるロータと、前記ロータの外周に空
隙を介して対向する強磁性体よりなるリング状のステー
タと、前記ステータに前記ロータに向けて放射状に設け
られた流体供給孔とを備え、前記流体供給孔を通して供
給された流体により前記ロータを支持する非接触支持方
法において、前記ステータの内周に励磁コイルを備えた
電磁極と、前記ロータに空隙を介して対向させた前記ロ
ータの変位を検出する変位検出器とを備え、前記変位検
出器の出力を受けて位相制御を行ない、その信号に応じ
て前記電磁極の吸引力を制御することを特徴とする非接
触支持方法。 2、複数対の前記電磁極をステータ内周に等間隔をおい
て設け、2個の前記変位検出器を検出方向を直交させて
設け、前記変位検出器の出力を受けて位相制御を行ない
、その信号に応じてそれぞれ直交する方向の前記電磁極
の吸引力を制御する請求項1記載の非接触支持方法。 3、前記リング状のステータの扇状の一部に一対の電磁
極を設け、前記変位検出器を前記一対の電磁極の間に配
置し、前記変位検出器の出力を受けて位相制御を行ない
、その信号に応じて前記電磁極の吸引力を制御する請求
項1記載の非接触支持方法。 4、強磁性体よりなるロータと、前記ロータの外周に空
隙を介して対向する強磁性体よりなるリング状のステー
タと、前記ステータに前記ロータに向けて放射状に設け
られた流体供給孔とを備え、前記流体供給孔を通して供
給された流体により前記ロータを支持する非接触支持装
置において、前記流体供給孔を囲んで突設させ、励磁コ
イルを巻回させた電磁極と、前記電磁極間に設けた前記
ロータの変位を検出する少なくとも1個の変位検出器と
、前記変位検出器の出力を受けて位相制御する位相制御
器と、その信号に応じて前記電磁極の吸引力を制御する
制御装置とを備えたことを特徴とする非接触支持装置。 5、前記ロータの変位に対し、電磁極がロータに及ぼす
力が90°進みとなる請求項1、2または4のいずれか
1項に記載の非接触支持装置。 6、前記位相制御器が特定周波数の帯域通過フィルタと
微分器とから構成された請求項4または5に記載の非接
触支持装置。 7、前記電磁極を複数対ステータ内周に等間隔をおいて
設け、2個の前記変位検出器を検出方向を直交させて設
けた請求項4から6までのいずれか1項に記載の非接触
支持装置。8、前記リング状のステータの扇状の一部に
一対の電磁極を設け、前記変位検出器を前記一対の電磁
極の間に配置した請求項4または6に記載の非接触支持
装置。 9、前記リング状のステータの扇状の一部に一対の電磁
極を円周方向に並べて設けた請求項8に記載の非接触支
持装置。 10、前記リング状のステータの扇状の一部に一対の電
磁極を前記ロータの軸方向に並べて設けた請求項8に記
載の非接触支持装置。 11、前記ロータの軸方向に並べて設けられた前記一対
の電磁極にそれぞれ対向する部分を含むロータのリング
状表面に、前記対向する電磁極の極性と同じ極性の永久
磁石を設けた請求項10に記載の非接触支持装置。
[Claims] 1. A rotor made of a ferromagnetic material, a ring-shaped stator made of a ferromagnetic material facing the outer periphery of the rotor with an air gap, and a ring-shaped stator made of a ferromagnetic material provided on the stator radially toward the rotor. A non-contact support method in which the rotor is supported by the fluid supplied through the fluid supply hole, the electromagnetic pole having an excitation coil on the inner periphery of the stator, and an electromagnetic pole connected to the rotor through a gap. and a displacement detector for detecting the displacement of the rotor facing each other, the phase control is performed in response to the output of the displacement detector, and the attractive force of the electromagnetic pole is controlled in accordance with the signal. Non-contact support method. 2. A plurality of pairs of the electromagnetic poles are provided at equal intervals on the inner periphery of the stator, two of the displacement detectors are provided with detection directions perpendicular to each other, and phase control is performed in response to the output of the displacement detector, 2. The non-contact support method according to claim 1, wherein the attractive forces of said electromagnetic poles in orthogonal directions are controlled in accordance with the signals. 3. A pair of electromagnetic poles is provided in a fan-shaped part of the ring-shaped stator, the displacement detector is disposed between the pair of electromagnetic poles, and phase control is performed in response to the output of the displacement detector; 2. The non-contact support method according to claim 1, wherein the attractive force of said electromagnetic pole is controlled in accordance with the signal. 4. A rotor made of a ferromagnetic material, a ring-shaped stator made of a ferromagnetic material facing the outer periphery of the rotor with a gap in between, and fluid supply holes provided in the stator radially toward the rotor. In the non-contact support device for supporting the rotor with fluid supplied through the fluid supply hole, the electromagnetic pole is provided protrudingly surrounding the fluid supply hole and has an excitation coil wound therebetween; at least one displacement detector that detects the displacement of the rotor provided; a phase controller that receives the output of the displacement detector and performs phase control; and a control that controls the attraction force of the electromagnetic poles in accordance with the signal thereof. A non-contact support device comprising: 5. The non-contact support device according to claim 1, wherein the force exerted on the rotor by the electromagnetic pole advances by 90 degrees with respect to the displacement of the rotor. 6. The non-contact support device according to claim 4 or 5, wherein the phase controller comprises a bandpass filter of a specific frequency and a differentiator. 7. The non-contact device according to any one of claims 4 to 6, wherein a plurality of pairs of the electromagnetic poles are provided at equal intervals on the inner periphery of the stator, and two of the displacement detectors are provided with detection directions orthogonal to each other. Contact support device. 8. The non-contact support device according to claim 4 or 6, wherein a pair of electromagnetic poles is provided in a fan-shaped part of the ring-shaped stator, and the displacement detector is disposed between the pair of electromagnetic poles. 9. The non-contact support device according to claim 8, wherein a pair of electromagnetic poles are arranged in a circumferential direction on a fan-shaped part of the ring-shaped stator. 10. The non-contact support device according to claim 8, wherein a pair of electromagnetic poles are arranged in a fan-shaped part of the ring-shaped stator in the axial direction of the rotor. 11. A permanent magnet having the same polarity as that of the opposing electromagnetic poles is provided on a ring-shaped surface of the rotor including a portion facing each of the pair of electromagnetic poles arranged in the axial direction of the rotor. The non-contact support device described in .
JP17829889A 1989-07-10 1989-07-10 Non-contact supporting method and device Pending JPH0341214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17829889A JPH0341214A (en) 1989-07-10 1989-07-10 Non-contact supporting method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17829889A JPH0341214A (en) 1989-07-10 1989-07-10 Non-contact supporting method and device

Publications (1)

Publication Number Publication Date
JPH0341214A true JPH0341214A (en) 1991-02-21

Family

ID=16046029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17829889A Pending JPH0341214A (en) 1989-07-10 1989-07-10 Non-contact supporting method and device

Country Status (1)

Country Link
JP (1) JPH0341214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050011180A (en) * 2003-07-22 2005-01-29 광주과학기술원 Magnetic bearing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050011180A (en) * 2003-07-22 2005-01-29 광주과학기술원 Magnetic bearing system

Similar Documents

Publication Publication Date Title
US6877963B2 (en) Vacuum pump
US5126641A (en) Bidirectional variable reluctance actuator and system for active attenuation of vibration and structure borne noise utilizing same
US3976339A (en) Magnetic suspension apparatus
US4090745A (en) Magnetic suspension with magnetic stiffness augmentation
US4935838A (en) Structural magnetic vibration controller and method for actively controlling vibrations on stationary components of rotary machinery
US4294493A (en) Magnetic bearing assembly
EP0876702A4 (en) Integrated magnetic levitation and rotation system
US4841212A (en) Electromagnetic bearing control apparatus
GB2129582A (en) Controlled magnetic bearing device
JPH01116318A (en) Positively acting magnetic bearing
US6208051B1 (en) Spindle apparatus
US4983869A (en) Magnetic bearing
US3929390A (en) Damper system for suspension systems
JP3259404B2 (en) Vibration suppressor
US20040174080A1 (en) Magnetic bearing
JPH0884454A (en) Damping apparatus for rotary machine
JP4889350B2 (en) Magnetic bearing device
JPH0341214A (en) Non-contact supporting method and device
Hendrickson et al. Application of magnetic bearing technology for vibration free rotating machinery
JPH01182648A (en) Axial vibration reducer for rotary machine
JPS63210414A (en) Magnetic bearing device
JPH04300417A (en) Magnetic bearing device
JPS59731B2 (en) How to avoid resonance of magnetic bearing support rotating body
JPH0534336Y2 (en)
Tsunoda et al. Combination of Oil Film Bearing and Bearingless Motor for High Load Capacity and Stable Rotation