JPH0340865A - Production of offensive smell decomposing yarn - Google Patents

Production of offensive smell decomposing yarn

Info

Publication number
JPH0340865A
JPH0340865A JP1176794A JP17679489A JPH0340865A JP H0340865 A JPH0340865 A JP H0340865A JP 1176794 A JP1176794 A JP 1176794A JP 17679489 A JP17679489 A JP 17679489A JP H0340865 A JPH0340865 A JP H0340865A
Authority
JP
Japan
Prior art keywords
core layer
cloth
skin layer
thermoplastic polymer
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1176794A
Other languages
Japanese (ja)
Inventor
Shigenobu Kasamatsu
笠松 重信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1176794A priority Critical patent/JPH0340865A/en
Publication of JPH0340865A publication Critical patent/JPH0340865A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain cloth for decomposing an offensive smell component in steam by weaving or knitting conjugate type thermoplastic synthetic yarn comprising a specific core layer and a specific skin layer into cloth and etching the cloth by plasma to form dented parts extending from the surface of the skin layer to the core layer. CONSTITUTION:A core layer 15 comprising a thermoplastic polymer containing anatase type titanium oxide particles and metal particles 16 of platinum group is bonded to a skin layer 18 comprising a fiberforming thermoplastic polymer, the prepared conjugate type thermoplastic synthetic yarn is used to form cloth. The cloth is etched by plasma to give cloth suitable for apparel or interior, having preferably 1-10 dented parts 17 extending from the surface of the skin layer to the core layer based on 1mu square, decomposing an offensive smell component such as ammonia by titanium oxide exposed to the dented parts, decomposing and modifying offensive smell substances.

Description

【発明の詳細な説明】 し産業上の利用分野」 本発明は水蒸気中に含まれる悪臭物質の分解または改質
機能を持った悪臭分解性繊維の製a法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing malodor decomposable fibers having the function of decomposing or modifying malodorous substances contained in water vapor.

L発明の目的」 本発明の目的は悪臭物質の分解または改質FR能を持っ
た悪臭分解性繊維の製造法及び複合vA遣た可塑性合成
繊維及び複合構造布を提供するにある。
Object of the Invention The object of the present invention is to provide a method for producing malodor decomposable fibers having the ability to decompose or modify FR of malodorous substances, and to provide a plastic synthetic fiber using composite vA and a composite structural fabric.

し従来の技術J 従来、室内の臭気を消す為に、活性炭を充填したカラム
のなかに室内空気を111fLさせるさせることによっ
て、悪臭成分を活性炭に吸着させる方法をとっていた。
BACKGROUND ART Conventionally, in order to eliminate indoor odors, a method was used in which 111 fL of indoor air was introduced into a column filled with activated carbon so that malodorous components were adsorbed onto the activated carbon.

ll臭成分濃度が、1100PP以下でああっても不快
感を伴うのが一般的である。かかる微量の恩奥戚分は空
気中の水蒸気中に含まれているが、?g性炭は水分はよ
く吸着するが、悪臭物質を含む水蒸気を充分に除去する
ことが出来ないとの欠点があった。
Even if the odor component concentration is less than 1100 PP, discomfort is generally felt. This small amount of water vapor is contained in the water vapor in the air, but? Although g-grade charcoal adsorbs water well, it has the disadvantage that it cannot sufficiently remove water vapor containing malodorous substances.

〔発明の楕或〕[Oval of invention]

本発明は上述の従来の技術の欠点を見事解決したもので
あって、水蒸気中の悪臭物質の分解または改質tR能を
持ったlII物または編物の製造法を発明したのである
。すなわち、アナターゼ型酸化チタン粒子及び白金属金
属粒子を含む熱可塑性ポリマーからなるコア層と繊維形
成性熱可塑性ポリマーからなるスキン層を接合してなる
熱可塑性合成繊維について、該黙可塑性合戊繊維を織物
となし、ついで、該織物にプラズマでエツチングを施す
ことにより、スキン層表面からコア層に達する凹部を形
成することを特徴とする悪臭分解性繊維の製造法である
The present invention successfully solves the above-mentioned drawbacks of the prior art, and has invented a method for producing a III material or knitted material that has the ability to decompose or modify malodorous substances in water vapor. Specifically, regarding a thermoplastic synthetic fiber formed by bonding a core layer made of a thermoplastic polymer containing anatase-type titanium oxide particles and platinum metal particles and a skin layer made of a fiber-forming thermoplastic polymer, the silent plastic synthetic fiber is This is a method for producing malodor decomposable fibers, which is characterized by forming a fabric and then etching the fabric with plasma to form a recess extending from the surface of the skin layer to the core layer.

光半導体被覆の光触媒効果が悪臭物質を分解または改質
することの知見に基ずくものである。
This is based on the knowledge that the photocatalytic effect of a photosemiconductor coating decomposes or modifies malodorous substances.

FILばスパソタプレテイングによって得られた酸化チ
タンは、Xll解析法によってアナターゼ型結晶I′I
II造であることが知られており、このアナターゼ型の
酸化チタンは光エネルギーによって独特の光学的性質を
発揮するものであり、詳しくは、酸化チタンはn型半導
体として作用し、光エネルギによって酸化チタン(Ti
02)の内部には。
The titanium oxide obtained by FIL spasotapreating was analyzed using the Xll analysis method to form anatase crystal I'I.
This anatase-type titanium oxide exhibits unique optical properties when exposed to light energy. Specifically, titanium oxide acts as an n-type semiconductor and can be oxidized by light energy. Titanium
02) inside.

プラスの空間電価層が生じ、電位の勾配ができる。A positive space charge layer is created, creating a potential gradient.

光吸収により下にある電子のつまった電子帯(価電子帯
)から上の開いた電子帯(帯電導帯〉へ電子が励起され
ると、この電位勾配により電子と正孔(あたかも正の電
荷をもった粒子)の分離がおこり電子は奥へ、正孔は表
面へと流れる。この状態にて、臭気が光触媒に接触する
と、光触媒の還元・酸化のニネルギーによって、悪臭物
質の分解または改質が行われると考えられる。
When electrons are excited by light absorption from the lower electron-filled electron band (valence band) to the upper open electron band (charged conduction band), this potential gradient causes electrons and holes (as if they had a positive charge). When the odor comes into contact with the photocatalyst in this state, the odor substance is decomposed or reformed by the energy of reduction and oxidation of the photocatalyst. is considered to be carried out.

アナターゼ型酸化チタンを担持した白金属金属は空気中
の水蒸気と接触することによって酸化チタンの酸化還元
作用を促進するからである。
This is because the platinum metal supporting anatase titanium oxide promotes the redox action of titanium oxide when it comes into contact with water vapor in the air.

本発明は、アナターゼ型酸化チタン粒子及び白金属金属
粒子を含む熱可塑性ポリマーからなるコア層と繊維形成
性熱可塑性ポリマーからなるスキン層を接合してなる複
合繊維を?¥徴とする複合構造熱可塑性合成繊維を使用
する。
The present invention provides a composite fiber formed by bonding a core layer made of a thermoplastic polymer containing anatase-type titanium oxide particles and platinum metal particles and a skin layer made of a fiber-forming thermoplastic polymer. Composite structure using thermoplastic synthetic fibers.

アナターゼ型酸化チタンを酸化チタン粒子の粒径の平均
粒径は5μ以下が一般的であるが0.001〜1.  
Oμ が60重量%を占める粒子が適当である。アナタ
ーゼ型酸化チタン粒子を担持する白金属粒子は、プラチ
ナ、パラジュウム、ロジュウム、イリジウム、ルテニウ
ムの群から選ばれた金属粒子であることを特徴とする。
The average particle size of titanium oxide particles for anatase type titanium oxide is generally 5μ or less, but 0.001 to 1.
Particles in which Oμ accounts for 60% by weight are suitable. The white metal particles supporting the anatase titanium oxide particles are characterized in that they are metal particles selected from the group of platinum, palladium, rhodium, iridium, and ruthenium.

コア層を構成する熱可塑性重合体はポリエステル、ポリ
アミド、ポリビニール、ポリプロピレン、ポリエーテル
、ポリカーボネイト、ポリオレフィン。
The thermoplastic polymers that make up the core layer are polyester, polyamide, polyvinyl, polypropylene, polyether, polycarbonate, and polyolefin.

ポリフェニレンサルファイドなど公知のあらゆる熱可塑
性重合体が使用できる。
Any known thermoplastic polymer such as polyphenylene sulfide can be used.

コア層のポリマーにアナターゼ型酸化チタン粒子及び白
金属金属粒子のほかに分散剤、着色剤、顔料、安定剤そ
の他の添加物を加えることが出来る。
In addition to anatase type titanium oxide particles and white metal particles, a dispersant, a colorant, a pigment, a stabilizer, and other additives can be added to the polymer of the core layer.

スキン層はポリエステル、ポリアミド、ポリビニール、
ポリプロピレン、ポリエーテル、ポリカーボネイト、ポ
リオレフィン、ポリフェニレンサルファイドなど公知の
あらゆる熱可塑性重合体であって、コア層を構成する熱
可塑性重合体と接合性のよい繊維形成性重合体であれば
、公知のあらゆるものが使用できる。
The skin layer is made of polyester, polyamide, polyvinyl,
Any known thermoplastic polymer such as polypropylene, polyether, polycarbonate, polyolefin, polyphenylene sulfide, etc., as long as it is a fiber-forming polymer that has good bonding properties with the thermoplastic polymer constituting the core layer. can be used.

コア層とスキン層の接合はあらゆる形式が可能である。Any type of bonding between the core layer and the skin layer is possible.

第1図から第3図に代表的な例を示す、第1図は芯鞘型
、第2図は環状型、第3ci]は多芯型、である。
Typical examples are shown in FIGS. 1 to 3. FIG. 1 is a core-sheath type, FIG. 2 is an annular type, and FIG. 3 is a multi-core type.

コア層をスキン層よりも低い融点の結晶性ポリマーとし
、延伸をスキン層の結晶性ポリマーの融点とコア層の結
晶性ポリマーの融点の中間の温度領域で行えば、延伸中
にコア層ポリマーは溶融し、粒子がポリマー中に均一に
分散しているが、冷却固化あるいは延伸により結晶化が
すすむと結晶部分から粒子が排除され結晶と結晶の間即
ち非晶領域に粒子が濃縮され粒子は互いに接近または接
触する。またコア層スキン層の各層における、結晶配向
度は各層の中心部程高いことが知られている。
If the core layer is made of a crystalline polymer with a melting point lower than that of the skin layer, and the stretching is carried out at a temperature between the melting points of the crystalline polymer of the skin layer and the melting point of the crystalline polymer of the core layer, the core layer polymer will When melted, the particles are uniformly dispersed in the polymer, but when crystallization progresses by cooling and solidification or stretching, the particles are removed from the crystalline parts and concentrated between the crystals, that is, in the amorphous region, and the particles are separated from each other. approach or come in contact with; Further, it is known that the degree of crystal orientation in each layer of the core layer and skin layer is higher at the center of each layer.

延伸後の粒子の第4図は、第1図の芯鞘型合成繊維を延
伸した後の粒子の埋思的な配置をモデル化したものを示
したものであり、コア層12、スキン層13からなりコ
ア+1112に均一に分散していた粒子は延伸結晶化後
、コア層12の周縁部I3に濃縮される。コア層を構成
する熱可塑性重合体の結晶度は繊維として支障のない強
伸度を有するものであればよいが、好ましくは、結晶度
は40%以上である。好ましい悪臭分解性ll維はコア
層における光半導体被覆を有する酸化チタン粒子の含有
率が50〜85重量%であり、繊維表面からの深さが0
.05〜0.10μの位置に光半導体被覆を有する酸化
チタン粒子を含むコア層が存在する繊維である。
FIG. 4 of the particles after drawing shows a model of the implicit arrangement of the particles after drawing the core-sheath type synthetic fiber shown in FIG. The particles uniformly dispersed in the core +1112 are concentrated in the peripheral portion I3 of the core layer 12 after stretching and crystallization. The thermoplastic polymer constituting the core layer may have a degree of crystallinity as long as it has enough strength and elongation to be used as a fiber, but preferably the degree of crystallinity is 40% or more. Preferred malodor decomposable II fibers have a core layer containing titanium oxide particles having a photosemiconductor coating of 50 to 85% by weight, and a depth of 0 from the fiber surface.
.. It is a fiber in which a core layer containing titanium oxide particles having an optical semiconductor coating is present at a position of 0.05 to 0.10 μm.

本発明は、アナターゼ型酸化チタン粒子及び白金属金属
粒子を含む熱可塑性ポリマーからなるコア層と繊維形状
性熱可塑性ポリマーからなるスキン層を接合してなる複
合繊維をもって構成したろ布を特徴とする複合構造布を
使用する。
The present invention is characterized by a filter cloth composed of composite fibers formed by bonding a core layer made of a thermoplastic polymer containing anatase-type titanium oxide particles and platinum metal particles and a skin layer made of a fiber-shaped thermoplastic polymer. Use composite structural fabrics.

本発明は、かかるコア層スキン層の複合繊維である熱可
塑性合成繊維を布となし、ついで、該IIa物にプラズ
マでエツチングを施ことにより、スキン層表面からコア
層に達する凹部を形状することを特徴とする悪臭分解性
IlIMのIl!jll法を見いだしたのである。
The present invention uses thermoplastic synthetic fibers, which are the composite fibers of the core skin layer, as a cloth, and then etches the IIa material with plasma to form a concave portion reaching from the surface of the skin layer to the core layer. Il!, a malodor-degradable IlIM characterized by He discovered the JLL method.

布は公知のm物編物のRIi織を使用することができる
。光半導体被覆を有する酸化チタン粒子及び導t4性粒
子を含む熱可塑性ポリマーからなるコア層と繊維形成性
熱可塑性ポリマーからなるスキン層を接合してなる熱可
塑性合成繊維と他の公知の繊維との交織や交編も使用す
ることができる。
As the cloth, a known m-knitted RIi weave can be used. A thermoplastic synthetic fiber formed by bonding a core layer made of a thermoplastic polymer containing titanium oxide particles and T4 conductive particles having an optical semiconductor coating and a skin layer made of a fiber-forming thermoplastic polymer and other known fibers. Mixed weaves and knits can also be used.

第6図は、交織したJl物の例である。よこ糸20に第
1図に示した芯鞘型11I維を使用し、縦糸21にテト
ロンフィラメントを使用し平織り組織にした交織した織
物を示しである。かかる布の一面または両面にプラズマ
でエツチングを施こすのである。プラズマでエツチング
する方法には、真空容器中でm物を連続的に巻き取り送
りだしをしながらプラズマでエツチングを施こす方法、
真空容器外でm物を連続的に巻き取り送りだしを行い真
空容器中にll¥@を通過させながらプラズマでエツチ
ングを施こす方法がある。
FIG. 6 is an example of a Jl product with a mixed weave. This figure shows a mixed woven fabric in which the core-sheath type 11I fiber shown in FIG. 1 is used for the weft yarn 20 and Tetoron filament is used for the warp yarn 21 to form a plain weave structure. Plasma etching is applied to one or both sides of the cloth. The method of etching with plasma includes a method of etching with plasma while continuously winding up and feeding out m objects in a vacuum container;
There is a method of continuously winding up and feeding m objects outside a vacuum container, and etching with plasma while passing 11\@ into the vacuum container.

一例として真空容器中で織物を連続的に巻き取り送りだ
しをしながらプラズマでエツチングを施こすH置装置の
概略構成を第7図に示す0図において、30は真空容器
、40は真空容器30内を所定の真空度に排気する真空
排気系、41はガス導入口である。基材61は原反ロー
ル62から繰り出されドラム陰極63に面接触して巻取
りロール61に巻取られる。真空槽内に陽[I51とな
る平板型を極が設置してあり、真空槽を排気し、アルゴ
ンなどの不活性ガスとM素、窒素、炭化水素などの活性
ガスを所定量導入し印加すると、グロー放電がおこり、
高いエネルギーイオンが生成され、基材をエツチングる
。この時、不活性ガスイオンの照射効果、イオンの運動
エネルギー効果、イオンの持つ電荷の効果などが相まっ
て、合成繊維の表面に分子鎖の切頭した変性層が形成さ
れ、II維衣表面g1m凹凸を形成せしめるのである。
As an example, FIG. 7 shows a schematic configuration of an H-setting device that performs plasma etching while continuously winding up and feeding a fabric in a vacuum container. In FIG. 41 is a gas inlet. The base material 61 is unwound from the original fabric roll 62, brought into surface contact with the drum cathode 63, and then wound onto the winding roll 61. A flat plate type electrode is installed in the vacuum chamber, and when the vacuum chamber is evacuated and a predetermined amount of inert gas such as argon and active gas such as M, nitrogen, and hydrocarbons are introduced and applied. , a glow discharge occurs,
High energy ions are generated and etch the substrate. At this time, due to the combination of the irradiation effect of the inert gas ions, the kinetic energy effect of the ions, and the effect of the charge possessed by the ions, a modified layer with truncated molecular chains is formed on the surface of the synthetic fiber, and the II fiber surface g1m is uneven. It causes the formation of

プラズマ処理の条件は、例えば、雰囲気ガスとして酸素
とアルゴンなどの不活性ガスの混合ガスなどが用いられ
る。酸素分圧を2X 10−4〜2×10−3のA r
 2 / 02が80/20で放電を行う、放を電力は
50〜500W、ガス流量は10〜300ミリリツター
、処理時間は0.2〜10分である。つぎに、プラズマ
処理をおこなった織物または絹物を洗浄乾燥することに
よって、R物または絹物表面に付着した不純物を餘去す
る。
As for the plasma processing conditions, for example, a mixed gas of oxygen and an inert gas such as argon is used as the atmospheric gas. Oxygen partial pressure 2X 10-4 to 2x10-3 Ar
2/02 performs discharge at 80/20, the discharge power is 50-500W, the gas flow rate is 10-300 milliliters, and the processing time is 0.2-10 minutes. Next, the plasma-treated fabric or silk material is washed and dried to remove impurities adhering to the surface of the R material or silk material.

この結果、スキン層表面に、凹部が1平方μ当り、1〜
10個形成される。第5図に示すごとく凹部は繊Ili
表面からコア層の深さ及び繊維断面におけるコア層の形
状によって、コア層の表面に達したもの、コア層の内部
に達したもの、コア層の粒子層を貫通するものがあるが
、いずれの場合も本発明の目的を達することができる。
As a result, on the surface of the skin layer, the number of recesses is 1 to 1 per square μ.
10 pieces are formed. As shown in Figure 5, the concave portion is
Depending on the depth of the core layer from the surface and the shape of the core layer in the fiber cross section, some particles reach the surface of the core layer, some reach the inside of the core layer, and some penetrate the particle layer of the core layer. The purpose of the present invention can also be achieved in this case.

本発明の対象となる臭気は、アンモニア、アミン類、チ
オエーテル類、硫化炭素、炭化水素等空気中の水蒸気に
含まれるすべての悪臭成分が対象となる。
Odors to which the present invention is directed include all malodorous components contained in water vapor in the air, such as ammonia, amines, thioethers, carbon sulfide, and hydrocarbons.

本発明は水蒸気の粒子の大きさがはo、oo。In the present invention, the size of water vapor particles is o or oo.

4μ、水分粒子は100μであることに着目するもので
ある。m物または編物にプラズマでエツチングを施こと
により繊維に!2m凹凸を形成することに着目するもの
である。
It is noted that the size of water particles is 4μ, and the size of water particles is 100μ. By etching M or knitted fabrics with plasma, they become fibers! The focus is on forming 2m unevenness.

水蒸気の粒子の大きさは0.0004μ、水分粒子は1
00μであるので防水透湿機能がある。外気中の水蒸気
の粒子はスキン層の凹部を通じて、コア層にいたり、光
半導体被覆を有する酸化チタン粒子及び白金属金属粒子
に感応するのである。
The size of water vapor particles is 0.0004μ, and the size of water particles is 1
00μ, so it has a waterproof and moisture permeable function. Particles of water vapor in the outside air reach the core layer through the recesses of the skin layer, and are sensitive to the titanium oxide particles and platinum metal particles having the optical semiconductor coating.

このような凹部は、水蒸気粒子の径が0.0004μよ
り大であるので、水蒸気を透過することができる。また
、このような凹部は、水分粒子径のlOOμより小であ
るので、水分粒子を透過することができない、対象とな
る臭気は、アンモニア、アミン類、チオエーテル類、硫
化炭素、炭化水素等空気中の水蒸気に含まれるすべての
悪臭成分が対象となる。
Since the diameter of water vapor particles is larger than 0.0004 μm in such a recessed portion, water vapor can pass therethrough. In addition, since such concave portions are smaller than the water particle diameter lOOμ, water particles cannot pass through them.The target odors are ammonia, amines, thioethers, carbon sulfide, hydrocarbons, etc. in the air. This applies to all malodorous components contained in water vapor.

本発明の悪臭分解性繊維は、太陽光またはキセノンラン
プ等の太陽光線類似光のもとで、空気中の水蒸気に含ま
れる悪臭物質を分解するのである。
The malodor decomposable fiber of the present invention decomposes malodorous substances contained in water vapor in the air under sunlight or sunlight-like light such as a xenon lamp.

本発明による織物はアパレル、インテリア、空気フィル
ター等に使用される。
The fabric according to the invention is used for apparel, interior decoration, air filters, etc.

次に、本発明を実施例によって説明する。Next, the present invention will be explained by examples.

〔実施例〕〔Example〕

平均粒径0.05μのアナターゼ型酸化チタン被粒子及
び白金粒子(粒径0,02μ)を4%混合し、かかる混
合粒子を混合率70%でポリエチレンポリマー(分子量
約48000.M点130℃、結晶化度77%)に混合
したるポリマーを芯とし、分子量約16. 000. 
11点215℃、結晶化度45%のナイロンを鞘とし、
複合比1/9にて直径0.25■、275℃のオリフィ
スから紡出し、オイリングして1500m/minで巻
とり80℃で3.15倍に延伸し、更に緊張下で180
℃で熱処理して30デニール/6 フィラメントの延伸
糸を得た。かかるコアスキン型フィラメント糸をよこ糸
に使用し、縦糸に50デニールのポリエステルフィラメ
ント糸を使用した織物をつくり。
4% of anatase-type titanium oxide coated particles with an average particle size of 0.05μ and platinum particles (particle size of 0.02μ) were mixed, and the mixed particles were mixed with a polyethylene polymer (molecular weight approximately 48,000. The core is a polymer mixed with a crystallinity of 77%, and the molecular weight is approximately 16. 000.
11 points 215℃, 45% crystallinity nylon sheath,
It was spun from an orifice with a diameter of 0.25 cm and 275°C at a composite ratio of 1/9, oiled, wound at 1500 m/min, stretched to 3.15 times at 80°C, and further stretched to 180° under tension.
A drawn yarn of 30 denier/6 filaments was obtained by heat treatment at .degree. A woven fabric was made using such a core skin type filament yarn as the weft yarn and a 50 denier polyester filament yarn as the warp yarn.

ブラウスに縫製した後、着用試験を行った。After sewing it into a blouse, a wearing test was conducted.

太陽光の照射するガソリン常用自動車(排気11300
CC5走行距M6800KM、冷房なし、実験直前走行
30分、温度28度、走行時間1時間、走行時の気象は
快晴)のなかで該ブラウスムの着用実験をした。快不快
度の測定は第1表に示すごとく、感覚を9Fi階に分は
測定した。真皮強度は、第2表に示すごとく6段階の感
覚に分は測定した。実験開始時快不快度−2,5、興産
強度2、 0であったが着用実験完了時、快不快度+2
1、真皮強度0.5となり、悪臭を分解または改質する
81能が認められた。
Gasoline-powered car exposed to sunlight (exhaust 11300
Wearing experiment of the blouse was carried out under conditions of CC5 mileage M6800 KM, no air conditioning, 30 minutes of driving just before the experiment, temperature of 28 degrees, driving time of 1 hour, and clear weather at the time of driving). As shown in Table 1, the degree of pleasure and displeasure was measured on a 9-fi scale. Dermal strength was measured on a six-level scale as shown in Table 2. At the beginning of the experiment, the level of comfort and discomfort was -2.5 and the strength of performance was 2 and 0, but at the end of the wearing experiment, the level of comfort and discomfort was +2.
1. Dermal strength was 0.5, and 81 ability to decompose or modify bad odors was observed.

第1表 第2表 〔発明の効果〕 本発明の悪臭分解性繊維の製造法は、アナターゼ型酸化
チタンの悪臭分解または改質機能を生活関連の繊維の形
態、すなわち、アパレル、インテリア空気フィルターな
どで利用することが出来るので、経済的であり効果があ
ることは明かである。
Table 1 Table 2 [Effects of the Invention] The method for producing malodor decomposable fibers of the present invention utilizes the malodor decomposition or modification function of anatase-type titanium oxide in the form of textiles related to daily life, such as apparel, interior air filters, etc. It is clear that it is economical and effective because it can be used in

本発明のコア層スキン層の復合楕逍熱可塑性合成繊維は
悪臭分解の機能を発現する効果があることは明かである
It is clear that the composite elliptic thermoplastic synthetic fiber of the core layer skin layer of the present invention has the effect of exhibiting the function of decomposing bad odors.

本発明のコア層スキン層の複合構造熱可塑性合成繊維は
at物にfII戒することによって悪臭分解の機能を一
段と発現する効果があることは明かである。
It is clear that the thermoplastic synthetic fiber of the composite structure of the core layer skin layer of the present invention has the effect of further developing the function of decomposing bad odors by adding fII to AT materials.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (3)

【特許請求の範囲】[Claims] (1)アナターゼ型酸化チタン粒子及び白金属金属粒子
を含む熱可塑性ポリマーからなるコア層と繊維形成性熱
可塑性ポリマーからなるスキン層を接合してなる熱可塑
性合成繊維について、該熱可塑性合成繊維を布となし、
ついで、該布にプラズマでエッチングを施すことにより
、スキン層表面からコア層に達する凹部を形成すること
を特徴とする悪臭分解性繊維の製造法
(1) Regarding a thermoplastic synthetic fiber formed by bonding a core layer made of a thermoplastic polymer containing anatase-type titanium oxide particles and platinum metal particles and a skin layer made of a fiber-forming thermoplastic polymer, the thermoplastic synthetic fiber is cloth and pears,
A method for producing malodor-decomposable fibers, comprising: then etching the cloth with plasma to form a recess extending from the surface of the skin layer to the core layer.
(2)アナターゼ型酸化チタン粒子及び白金属金属粒子
を含む熱可塑性ポリマーからなるコア層と繊維形成性熱
可塑性ポリマーからなるスキン層を接合してなる複合繊
維を特徴とする複合構造熱可塑性合成繊維
(2) A composite thermoplastic synthetic fiber characterized by a composite fiber formed by bonding a core layer made of a thermoplastic polymer containing anatase-type titanium oxide particles and platinum metal particles and a skin layer made of a fiber-forming thermoplastic polymer.
(3)アナターゼ型酸化チタン粒子及び白金属金属粒子
を含む熱可塑性ポリマーからなるコア層と繊維形成性熱
可塑性ポリマーからなるスキン層を接合してなる複合繊
維をもって構成したる布を特徴とする複合構造布
(3) A composite fabric comprising composite fibers formed by bonding a core layer made of a thermoplastic polymer containing anatase-type titanium oxide particles and platinum metal particles and a skin layer made of a fiber-forming thermoplastic polymer. structural fabric
JP1176794A 1989-07-07 1989-07-07 Production of offensive smell decomposing yarn Pending JPH0340865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1176794A JPH0340865A (en) 1989-07-07 1989-07-07 Production of offensive smell decomposing yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1176794A JPH0340865A (en) 1989-07-07 1989-07-07 Production of offensive smell decomposing yarn

Publications (1)

Publication Number Publication Date
JPH0340865A true JPH0340865A (en) 1991-02-21

Family

ID=16019960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1176794A Pending JPH0340865A (en) 1989-07-07 1989-07-07 Production of offensive smell decomposing yarn

Country Status (1)

Country Link
JP (1) JPH0340865A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08196607A (en) * 1995-01-30 1996-08-06 Komatsu Seiren Kk Deodorizing/sterilizing composition and fiber cloth using the composition
JPH10259521A (en) * 1997-03-21 1998-09-29 Teijin Ltd Deodorant fiber product
CN1088478C (en) * 1996-12-13 2002-07-31 大金工业株式会社 Fibrous materials of fluororesins and deodorant and antibacterial fabrics made by using the same
JP2007513270A (en) * 2003-12-04 2007-05-24 ティコナ・エルエルシー Multicomponent fiber containing polyarylene sulfide component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08196607A (en) * 1995-01-30 1996-08-06 Komatsu Seiren Kk Deodorizing/sterilizing composition and fiber cloth using the composition
CN1088478C (en) * 1996-12-13 2002-07-31 大金工业株式会社 Fibrous materials of fluororesins and deodorant and antibacterial fabrics made by using the same
JPH10259521A (en) * 1997-03-21 1998-09-29 Teijin Ltd Deodorant fiber product
JP2007513270A (en) * 2003-12-04 2007-05-24 ティコナ・エルエルシー Multicomponent fiber containing polyarylene sulfide component

Similar Documents

Publication Publication Date Title
Das et al. Photovoltaic and photocatalytic performance of electrospun Zn2SnO4 hollow fibers
Panthi et al. Immobilization of Ag3PO4 nanoparticles on electrospun PAN nanofibers via surface oximation: Bifunctional composite membrane with enhanced photocatalytic and antimicrobial activities
KR101334294B1 (en) Photocatalyst-graphenes-carbon nano-fiber composite and filter comprising the same
JP4742127B2 (en) Method for producing catalyst-supported fiber structure
Tissera et al. Photocatalytic activity of ZnO nanoparticle encapsulated poly (acrylonitrile) nanofibers
KR101270716B1 (en) Mehod for producing photocatalyst-graphenes-carbon nano-fiber composite
JP2010053470A (en) Photocatalyst-containing ultrafine fiber and method for producing the same
JPH0340865A (en) Production of offensive smell decomposing yarn
JP3306046B2 (en) Method for producing synthetic fiber and method for producing synthetic fiber cloth
KR101216497B1 (en) Method for producing Ag-photocatalyst-carbon nano fiber complex, and filter comprising the same
JPH0679832A (en) Hydrophilic fiber sheet and production thereof
Hastuti et al. Effect of Polymer Concentration on the Photocatalytic Membrane Performance of PAN/TiO2/CNT Nanofiber for Methylene Blue Removal through Cross-Flow Membrane Reactor
Xu et al. Facile preparation of WO3 nanowires by bubble-electrospinning and their photocatalytic properties
Capilli et al. Non-purified commercial multiwalled carbon nanotubes supported on electrospun polyacrylonitrile@ polypyrrole nanofibers as photocatalysts for water decontamination
KR101339721B1 (en) Ag-photocatalyst-carbon nano fiber complex, and filter comprising the same
KR102211674B1 (en) Fiber filtration filter for industrial wastewater and its manufacturing method
KR100476462B1 (en) A non-woven fabric composed of nano fiber with biomimetic like structure, and a process of preparing for the same
RU2408411C1 (en) Filtration material and method of its production
KR101647966B1 (en) Method of making composite fiber filter for degasing and elemination of dilute hamful gas
JP2000136436A (en) Production of synthetic fiber and production of synthetic fiber cloth
CN212708340U (en) Activated carbon non-woven fabric
JP2005226176A (en) Polyamide fiber having photocatalyst function and method for producing the same
KR100563720B1 (en) Filtering component in the form of activated carbon fibres
RU1816483C (en) Filter and method of manufacturing filter
JP2013155464A (en) Method for manufacturing functional fabric, and the functional fabric