JPH0340777A - Liquid electrode type electrostatic motor - Google Patents
Liquid electrode type electrostatic motorInfo
- Publication number
- JPH0340777A JPH0340777A JP17616189A JP17616189A JPH0340777A JP H0340777 A JPH0340777 A JP H0340777A JP 17616189 A JP17616189 A JP 17616189A JP 17616189 A JP17616189 A JP 17616189A JP H0340777 A JPH0340777 A JP H0340777A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- stator
- rotor
- liquid
- liquid electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 50
- 229910052751 metal Inorganic materials 0.000 claims abstract description 35
- 239000002184 metal Substances 0.000 claims abstract description 35
- 239000002344 surface layer Substances 0.000 claims abstract description 26
- 230000007246 mechanism Effects 0.000 abstract description 7
- 239000010410 layer Substances 0.000 abstract description 5
- 239000000314 lubricant Substances 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 18
- 239000010408 film Substances 0.000 description 14
- 229910001338 liquidmetal Inorganic materials 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 10
- 229910052753 mercury Inorganic materials 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 7
- 229920001721 polyimide Polymers 0.000 description 7
- 239000009719 polyimide resin Substances 0.000 description 7
- 239000010687 lubricating oil Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 235000014548 Rubus moluccanus Nutrition 0.000 description 1
- 241001575049 Sonia Species 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Micromachines (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
静電モータの構造に関し、
極めて微小な機械装置に使用され、そのスライド面の摩
擦抵抗が非常に小さい静電モータを提供することを目的
とし、
表面張力の大きい液体電極に濡れない絶縁性表面層の中
に、複数の独立した前記液体電極によく濡れる電極金属
部を設けたステータと、複数の独立した電極金属部とそ
の上を覆って形成された前記液体電極に濡れない絶縁性
表面層を設けたロータと、前記ステータの複数の独立し
た電極金属部に密着固定され、かつ、前記ロータの絶縁
性表面層との間に滑動可能なごと(に挟持された前記液
体電極と、前記ロータとステータのそれぞれの複数の独
立した前記電極金属部の一方または両方に多相パルス電
圧を印加する手段とを少なくとも硝えるように液体電極
型静電モータを構成する。[Detailed Description of the Invention] [Summary] Regarding the structure of an electrostatic motor, the purpose of the present invention is to provide an electrostatic motor that is used in extremely small mechanical devices and whose sliding surface has extremely low frictional resistance. A stator is provided with a plurality of independent electrode metal parts that are well wetted by the liquid electrodes in an insulating surface layer that does not get wet by large liquid electrodes, and a stator that is formed by covering the plurality of independent electrode metal parts and the electrode metal parts that are well wetted by the liquid electrodes. A rotor provided with an insulating surface layer that does not get wet with liquid electrodes, and a rotor that is tightly fixed to a plurality of independent electrode metal parts of the stator and is slidably (sandwiched between) the insulating surface layer of the rotor. The liquid electrode type electrostatic motor is configured to at least connect the liquid electrode and means for applying a multiphase pulse voltage to one or both of the plurality of independent electrode metal parts of each of the rotor and the stator. do.
本発明は極めて小型な静電モータの改良に関する。 The present invention relates to improvements in extremely compact electrostatic motors.
近年、メカトロニクス技術の進歩発展にともない、各種
ロボットや制御機器の応用が益々盛んになってきている
。In recent years, with the advancement and development of mechatronics technology, the applications of various robots and control devices have become more popular.
とくに、最近は生体への応用や宇宙機器など超小形化が
要求される重要な分野が広がってきており、低消費電力
で比較的駆動力が大きく、かつ、超小型化が可能なマイ
クロ静電モータが注巨されるようになってきた。In particular, important fields that require ultra-miniaturization, such as biological applications and space equipment, are expanding recently, and microelectrostatics, which have low power consumption, relatively large driving force, and can be miniaturized, are expanding. Motors are becoming increasingly popular.
しかし、これら超小型の静電モータには未だ多くの改良
すべき点があり、とくにスライド部における摩擦抵抗を
低減する手段の開発が強く求められている。However, there are still many points to be improved in these ultra-small electrostatic motors, and in particular, there is a strong demand for the development of means for reducing frictional resistance in the sliding portion.
超小型のマイクロ静電モータ、たとえば、マイクロ静電
リニアモータとしては、シリコン基板の上にステータを
形成し、ロータは薄膜のポリシリコンで形成して全体を
極めてコンパクトにまとめる構成のものが提案されてい
る(Sensors and Actuators、
vol、14. p269.1988参照)。An ultra-compact micro-electrostatic motor, such as a micro-electrostatic linear motor, has been proposed in which the stator is formed on a silicon substrate and the rotor is formed from a thin film of polysilicon, making the entire structure extremely compact. (Sensors and Actuators,
vol, 14. (See p. 269.1988).
第7図は従来のマイクロ静電リニアモータの例を示す図
で、図中、100は単結晶シリコン基板、103は下部
ステータ電極、104は上部ステータ電極、102はポ
リシリコン薄膜ロータ、105はロータ上部電極、10
1はロータ受台である。FIG. 7 is a diagram showing an example of a conventional micro electrostatic linear motor, in which 100 is a single crystal silicon substrate, 103 is a lower stator electrode, 104 is an upper stator electrode, 102 is a polysilicon thin film rotor, and 105 is a rotor. Upper electrode, 10
1 is a rotor pedestal.
この例の特徴は単結晶シリコン基板100の上に、いわ
ゆる、ICプロセスにより、上記各構成部分を必要に応
じて絶縁膜あるいは選択エツチング性の中間層を介して
積層形成したあと、適当な方法。The feature of this example is that each of the above-mentioned components is laminated on a single crystal silicon substrate 100 by a so-called IC process, with an insulating film or a selectively etched intermediate layer interposed therebetween as necessary, and then a suitable method is used.
たとえば、選択エツチングによりポリシリコン薄膜ロー
タ102の部分だけをステータとなる単結晶シリコン基
板100から切り離して、移動可能なように構成してい
ることである。すなわち、ICプロセス技術を応用する
ことによって小形化を図っている。For example, only the polysilicon thin film rotor 102 is separated from the single crystal silicon substrate 100 serving as the stator by selective etching, and is configured to be movable. That is, miniaturization is being achieved by applying IC process technology.
ロータとステータとのスライド部分は、摩擦抵抗を小さ
くするために巾の狭いロータ受は台101を2個所に設
けている。In the sliding portion between the rotor and the stator, narrow rotor holders are provided with pedestals 101 at two locations in order to reduce frictional resistance.
駆動方法は以下に述べる静電リニアモータの通常法に準
じている。The driving method is based on the normal method for electrostatic linear motors described below.
第6図は静電リニアモータの基本構成を説明する図で、
駆動原理を理解するために最小限必要とする構成部分の
みを示したものである。Figure 6 is a diagram explaining the basic configuration of an electrostatic linear motor.
Only the minimum necessary components are shown to understand the driving principle.
図中、50は下部ステータ、51は上部ステータ、60
a 、 60b 、 60cは下部ステータ電極、61
a、 61b、 61cは上部ステ、−夕電極、20は
ロータ、30a、30b ハ下部ロータ電極、31a、
31bは上部ロータ電極、40.41は誘電体膜であ
る。In the figure, 50 is a lower stator, 51 is an upper stator, and 60 is a lower stator.
a, 60b, 60c are lower stator electrodes, 61
a, 61b, 61c are upper stay electrodes, 20 are rotors, 30a, 30b are lower rotor electrodes, 31a,
31b is an upper rotor electrode, and 40.41 is a dielectric film.
いま、たとえば、ロータ電極を接地電位としてステータ
電極60.61に多相パルス電圧を印加すると、それに
近接したロータ電極には静電誘導により反対符号の電荷
が誘起され、その結果、たとえば、ロータ電極30a、
31aの部分がステータ電極6゜a、61aの下に引き
込まれる。すなわち、ロータ20は右側矢印の方向に移
動することになる。Now, for example, when a multiphase pulse voltage is applied to the stator electrodes 60 and 61 with the rotor electrode at ground potential, charges of opposite sign are induced in the rotor electrodes adjacent to it due to electrostatic induction, and as a result, for example, the rotor electrodes 30a,
The portion 31a is drawn under the stator electrodes 6°a, 61a. That is, the rotor 20 moves in the direction of the right arrow.
以下、同様の過程が繰り返されてロータ20は次々と静
電的に駆動される。一方、パルス電圧の位相を逆にする
ことによって、ロータ20の移動方向を反転させるよう
に制御している。Thereafter, the same process is repeated and the rotors 20 are electrostatically driven one after another. On the other hand, the moving direction of the rotor 20 is controlled to be reversed by reversing the phase of the pulse voltage.
(発明が解決しようとする諜B)
従来の軸受構成、たとえば、平面軸受においては固定部
と移動部の2つの固体面がスライドするときの摩擦抵抗
を、潤滑油を介して緩和低減するのが一般的な方法で、
大型の機械装置から小形の機械装置まで広く実用化され
ている。なお、潤滑油はスライド面に発生した熱を奪う
冷却剤としての働きも大きいことはよ(知られている。(Secret B to be solved by the invention) In a conventional bearing configuration, for example, a flat bearing, the frictional resistance when the two solid surfaces of the fixed part and the moving part slide is alleviated and reduced through lubricating oil. In a general way,
It has been put into practical use in a wide variety of applications, from large to small mechanical devices. It is well known that lubricating oil also acts as a coolant that removes the heat generated on the slide surface.
一方、最近開発が進められている極微小の機械装置、た
とえば、1mmオーダ前後といった極微小のサイズの上
記で説明したようなマイクロ静電リニアモータに対して
、このような−船釣な摩擦低減機構を適用することは実
用的に殆ど不可能である。On the other hand, for extremely small mechanical devices that are being developed recently, such as the micro electrostatic linear motors described above, which are extremely small in size on the order of 1 mm, this kind of friction reduction is necessary. It is practically impossible to apply the mechanism.
したがって、このような極微小の機械装置や機械要素で
は、上記マイクロ静電リニアモータの例に見られるよう
に、特別な軸受機構は設けていないのが現状であり、た
かだかそれらスライド面を小さく構成して摩擦をできる
だけ抑えるといった程度に止まっている。Therefore, at present, such microscopic mechanical devices and mechanical elements do not have special bearing mechanisms, as seen in the example of the micro electrostatic linear motor mentioned above, and their sliding surfaces are configured to be at most small. The current level of friction is limited to suppressing friction as much as possible.
しかし、今後は極微小の静電モータにおいても、比較的
負荷容量の大きいもの、あるいは高速移動のスライド面
を要求されるものが多くなってくるので、前記従来例の
ように単にスライド面を小さくするといった程度の手段
では、安定した信頼性の高い回転あるいはスライド機構
が得られないという問題があり、その解決が必要であっ
た。However, in the future, even microelectrostatic motors will increasingly be required to have a relatively large load capacity or a sliding surface that can move at high speed. There is a problem in that a stable and highly reliable rotation or sliding mechanism cannot be obtained by such means, and a solution to this problem is needed.
上記の課題は、表面張力の大きい液体電極lに濡れない
絶縁性表面層7の中に、複数の独立した前記液体電極1
によく濡れる電極金属部6を設けたステータ5と、複数
の独立した電極金属部3とその上を覆って形成された前
記液体電極1に濡れない絶縁性表面層4を設けたロータ
2と、前記ステータ5の複数の独立した電極金属部6に
密着固定され、かつ、前記ロータ2の絶縁性表面層4と
の間に滑動可能なごとくに挟持された前記液体電極1と
、前記ロータ2とステータ5のそれぞれの複数の独立し
た前記電極金属部3および6の一方または両方に多相パ
ルス電圧を印加する手段とを少なくとも備えた液体電極
型静電モータによって解決することができる。The above problem is solved by forming a plurality of independent liquid electrodes 1 in the insulating surface layer 7 which is not wetted by the liquid electrode 1 having a high surface tension.
a stator 5 provided with an electrode metal part 6 that is well wetted by the liquid; a rotor 2 provided with a plurality of independent electrode metal parts 3 and an insulating surface layer 4 that does not get wet by the liquid electrode 1 formed over the plurality of independent electrode metal parts 3; The liquid electrode 1 is closely fixed to a plurality of independent electrode metal parts 6 of the stator 5 and slidably sandwiched between the insulating surface layer 4 of the rotor 2, and the rotor 2. This problem can be solved by a liquid electrode type electrostatic motor having at least means for applying a multiphase pulse voltage to one or both of the plurality of independent electrode metal parts 3 and 6 of the stator 5.
第1図は本発明の詳細な説明する断面図で、同図(イ)
は低負荷時、同図(ロ)は高負荷時の状態を示したもの
である。FIG. 1 is a cross-sectional view explaining the present invention in detail, and FIG.
shows the state at low load, and (b) shows the state at high load.
図中、lは液体電極で、たとえば、表面張力が大きい水
銀やガリウムである。2はロータで、たとえば、ガラス
またはSiからなる基手反、3はロータ2の中に埋め込
み形成された電極金属部で、たとえば、^Uや^lなど
が用いられる。4は前記液体電極lに濡れない絶縁性表
面層で、たとえば、Singまたはポリイミド樹脂膜、
5はステータでたとえば、ガラスまたはSiからなる基
板、6はステータ5の表面上の複数個所に設けられた独
立した電極金属部で、前記液体電極1によく濡れる。In the figure, l is a liquid electrode, such as mercury or gallium, which has a high surface tension. 2 is a rotor, for example, a base plate made of glass or Si; 3 is an electrode metal part embedded in the rotor 2; for example, ^U, ^l, etc. are used. 4 is an insulating surface layer that does not get wet with the liquid electrode l, for example, Sing or polyimide resin film,
Reference numeral 5 denotes a stator, which is a substrate made of glass or Si, for example. Reference numeral 6 denotes independent electrode metal parts provided at a plurality of locations on the surface of the stator 5, which are well wetted by the liquid electrode 1.
たとえば、NiまたはCrからなる金属パターンが用い
られる。7は電極金属部6を露出させて、他の部分を覆
った前記液体電極lに濡れない絶縁性表面層で、゛たと
えば、SiO2またはポリイミド樹脂膜である。For example, a metal pattern made of Ni or Cr is used. Reference numeral 7 denotes an insulating surface layer which exposes the electrode metal part 6 and covers other parts and which does not get wet with the liquid electrode 1, and is, for example, a SiO2 or polyimide resin film.
同図(イ)に示したように、表面張力の高い液体電極1
.たとえば、水銀は濡れ性の高い電極金属部6.たとえ
ば、円形のNi部分によく濡れて強く密着固定され、ス
テータ5の表面上に半球状に盛り上がっている。一方、
ロータ2の表面は濡れ性を持たない表面、たとえば、ポ
リイミド樹脂膜で覆われているので、側基板を半球状の
水銀を挟んで接触させても、水銀の表面張力によって側
基板の表面が直接接触することはない。As shown in the same figure (a), the liquid electrode 1 with high surface tension
.. For example, mercury has high wettability in the electrode metal part 6. For example, it is well wetted and tightly fixed to a circular Ni portion, and is raised in a hemispherical shape on the surface of the stator 5. on the other hand,
The surface of the rotor 2 is covered with a non-wetting surface, for example, a polyimide resin film, so even if the side substrates are brought into contact with a hemispherical mercury sandwiched between them, the surface tension of the mercury will cause the surface of the side substrates to directly There will be no contact.
しかし、ロータ2に荷重がか\ったり、駆動時の両電極
間に働く静電引力により、周基板間にか\る負荷が大き
くなると、同図(ロ)に示したごとく半球状の水銀は押
しつぶされて、側基板の表面の間の距離が縮まるが、各
水銀粒の直径、すなわち、周囲長が大きくなるので表面
張力による内部圧力が増大して外部からの負荷とバラン
スしたギャップで安定する。However, if a load is applied to the rotor 2 or the load between the peripheral substrates increases due to the electrostatic attraction between the two electrodes during driving, the hemispherical mercury as shown in the figure (b) is crushed and the distance between the surfaces of the side substrates decreases, but as the diameter of each mercury particle, that is, the circumference increases, the internal pressure due to surface tension increases and the gap balances out the external load and becomes stable. do.
この状態で周基板間にすべり力が働くとロータ2の表面
は濡れ性を持たない表面層4で覆われているので、水銀
が付着することなく極めて滑らかに滑動することができ
る。When a sliding force acts between the peripheral substrates in this state, the surface of the rotor 2 is covered with the non-wetting surface layer 4, so it can slide extremely smoothly without mercury adhering.
濡れ性の高い電極金属部6の大きさと、その相互の間隔
の選択により、また、表面張力の高い液体の種類を選ぶ
ことなどによって摩擦抵抗や耐負荷特性、さらには、高
速動作特性などをを制御することができる。By selecting the size of the highly wettable electrode metal parts 6 and their mutual spacing, and by selecting the type of liquid with high surface tension, frictional resistance, load-bearing characteristics, and high-speed operation characteristics can be improved. can be controlled.
すなわち、本発明によれば、液体電極lに濡れないステ
ータ5の表面の所定の複数箇所に、濡れ性のよい独立し
た電極金属部6を形成し、そこに表面張力の大きい液体
電極1を、たとえば、半球状に密着配置し、もう一方の
ロータ2の表面は前記液体電極1に濡れない表面層4で
被覆し、前記ステータ5の電極面と前記ロータ2の表面
層4を前記液体電極1を挟んで接触させると、前記表面
張力の大きい液体電極1の固まりが、丁度従来のころが
り軸受機構のボールと潤滑油のごとき働きをなすととも
に、前記液体電極1の表面がステータ電極として作用す
るので、ロータ電極とステータ電極の電極間距離が絶縁
性表面層4の厚さだけの極めて小さいものとなり、画電
極の電界強度は増加し、それに対応して静電引力が大幅
に増大する。That is, according to the present invention, independent electrode metal parts 6 with good wettability are formed at a plurality of predetermined locations on the surface of the stator 5 that are not wetted by the liquid electrode 1, and the liquid electrode 1 with high surface tension is placed thereon. For example, the surface of the other rotor 2 is covered with a surface layer 4 that does not wet the liquid electrode 1, and the electrode surface of the stator 5 and the surface layer 4 of the rotor 2 are covered with the liquid electrode 1. When brought into contact with each other by sandwiching them, the mass of the liquid electrode 1 having a high surface tension acts just like the balls and lubricating oil of a conventional rolling bearing mechanism, and the surface of the liquid electrode 1 acts as a stator electrode. , the distance between the rotor electrode and the stator electrode becomes extremely small, only the thickness of the insulating surface layer 4, the electric field strength of the picture electrode increases, and the electrostatic attraction force correspondingly increases significantly.
したがって、スライド面の摩擦抵抗が極めて小さく、し
かも、駆動力の大きい静電モータが得られるのである。Therefore, an electrostatic motor with extremely low frictional resistance on the sliding surface and with high driving force can be obtained.
〔実施例]
第2図は本発明の第1実施例の斜視図で、極めて小さい
マイクロ静電リニアモータの例であり、分かりやすくす
るためにハウジングその他一部構成部品を省略して示し
たものである。[Embodiment] Fig. 2 is a perspective view of the first embodiment of the present invention, which is an example of an extremely small micro electrostatic linear motor, and the housing and some other components are omitted for clarity. It is.
図中、la、 lbは液体電極で、たとえば、Si基板
からなるステータ5の上に2列に平行配置されたNiか
らなる電極金属部6に濡れて密着固定されたかまぼこ型
の水銀粒である。2は長方形のロータで、たとえば、同
じ<Si基板からなり、その上に分離独立したl蒸着膜
製の電極金属部3を形成したのち、その表面全体をポリ
イミド樹脂膜で覆ったものである。In the figure, la and lb are liquid electrodes, for example, semicylindrical mercury particles that are wetted and fixed in close contact with the electrode metal parts 6 made of Ni that are arranged in two parallel rows on the stator 5 made of a Si substrate. . Reference numeral 2 designates a rectangular rotor, for example, made of the same <Si substrate, on which a separate electrode metal part 3 made of a vapor-deposited film is formed, and then the entire surface thereof is covered with a polyimide resin film.
なお、ロータ2の電極金属部3の電極間ピッチはステー
タ5の電極金属部6の電極間ピッチに対して1.5倍に
しである。Note that the inter-electrode pitch of the electrode metal portions 3 of the rotor 2 is 1.5 times the inter-electrode pitch of the electrode metal portions 6 of the stator 5.
また、図中に示したR、 S、 Tは3相パルス電圧の
印加端子で、ステータ5の電極金属部6.したがって、
液体電極lにクロスオーバーを介してそれぞれ結線され
ている。Further, R, S, and T shown in the figure are three-phase pulse voltage application terminals, and are connected to the electrode metal portion 6 of the stator 5. therefore,
Each is connected to the liquid electrode l via a crossover.
図ではステータ基板の側面と表面上に配線された状態を
示しであるが、基板内部に配線してもよいし、基板表1
面上に全て配線してもよいし、また別の配線基板を用い
てもよいことは勿論である。The figure shows the wiring on the side and surface of the stator board, but it may also be wired inside the board, or
Of course, all wiring may be done on the surface, or another wiring board may be used.
本実施例の電極配置を前記第6図のそれと比較すると、
第6図のステータ電極60.61を一定の間隔をあけて
一平面上に展開し、ロータをステータ電極列間の中央上
部に配置し、片側のロータ電極列を省略した構成になっ
ている。したがって、本実施例装置の駆動メカニズムは
第6図で説明したものと同様であり、ステータ5の電極
金属部6に端子R,S、Tを経由して3相パルス電圧を
印加することによってロータ2を駆動することができる
。Comparing the electrode arrangement of this example with that of FIG. 6 above,
The stator electrodes 60 and 61 shown in FIG. 6 are spread out on one plane at regular intervals, the rotor is arranged at the upper center between the stator electrode rows, and the rotor electrode row on one side is omitted. Therefore, the driving mechanism of the device of this embodiment is the same as that explained in FIG. 2 can be driven.
なお、本実施例ではステータ5の方に液体金属1を密着
固定するようにしたが、逆にロータ2の方に液体金属■
を密着固定させ、ステータ5のはうに前記液体金属lに
濡れない絶縁性表面層4を形成して、マイクロ静電リニ
アモータを構成してもよいことは勿論である。In this embodiment, the liquid metal 1 was tightly fixed on the stator 5, but on the contrary, the liquid metal 1 was fixed on the rotor 2.
It goes without saying that a micro electrostatic linear motor may be constructed by closely fixing the stator 5 and forming an insulating surface layer 4 on the stator 5 that does not get wet with the liquid metal 1.
さて、上記のごとき本発明装置を実現するための製造工
程を以下工程順に具体的に説明する。Now, the manufacturing process for realizing the device of the present invention as described above will be specifically explained in order of process.
第合図は本発明の第1の実施例装置の製造工程の例を示
す断面図である。The first figure is a sectional view showing an example of the manufacturing process of the device according to the first embodiment of the present invention.
工程(1):厚さ1001!mのシリコン基板の上に、
厚さ0.5μmのAl膜を真空蒸着法で形成し、ホトリ
ソグラフィ法で所定の形状に電極金属部3をパターン形
成する。Process (1): Thickness 1001! on a silicon substrate of
An Al film with a thickness of 0.5 μm is formed by vacuum evaporation, and the electrode metal portion 3 is patterned into a predetermined shape by photolithography.
工程(2):前記処理済み基板のAffi膜の上に、液
体金属1に濡れない絶縁性表面層4として、厚さ0.5
μmのポリイミド樹脂層をスピンコード法により形成し
てロータ2を準備する。Step (2): On the Affi film of the treated substrate, an insulating surface layer 4 that does not get wet with the liquid metal 1 is formed to a thickness of 0.5
The rotor 2 is prepared by forming a .mu.m thick polyimide resin layer by a spin cord method.
工程(3):同じく厚さ100 μmのシリコン基板の
上に、電極金属部6となる厚さ0.5 μmのNi膜を
真空蒸着法で形成し、ホトリソグラフィ法で所定の形状
に電極金属部6をパターン形成する。Step (3): Form a Ni film with a thickness of 0.5 μm, which will become the electrode metal part 6, on the same silicon substrate with a thickness of 100 μm using a vacuum evaporation method, and then form the electrode metal into a predetermined shape using a photolithography method. The portion 6 is patterned.
工程(4)):前記処理済み基板のNi膜の上に、厚さ
0.5μmのポリイミド樹脂層をスピンコード法により
形成する。Step (4): A polyimide resin layer with a thickness of 0.5 μm is formed on the Ni film of the treated substrate by a spin cord method.
工程(5)):前記処理済み基板のポリイミド樹脂層に
、表面張力の大きい液体電極lを密着固定させるための
孔をホトエツチング法あるいはイオンエツチング法で形
成し底面にNi膜を露出させ、さらに、こ\には図示し
てない駆動用の配線パターンと外部リード導出端子を形
成してステータ5を準備する。Step (5)): Form a hole in the polyimide resin layer of the treated substrate by photoetching or ion etching to tightly fix the liquid electrode l having a high surface tension, exposing the Ni film on the bottom surface, and further, The stator 5 is prepared by forming a driving wiring pattern and external lead lead terminals (not shown).
工程(6)):前記処理済み基板のNi膜露出面に、た
とえば、Hg(N(h)z水溶液中でNi膜を陰極にし
て電解めっきを行い、半球状に盛り上がった水銀粒から
なる液体電極1を形成する。Step (6)): Electroplating is performed on the Ni film exposed surface of the treated substrate, for example, in an Hg(N(h)z aqueous solution, using the Ni film as a cathode, and a liquid consisting of hemispherical mercury grains is applied. Electrode 1 is formed.
工程(7)):上記処理によるロータ2と、同じくステ
ータ5を、前記電解析出された水銀粒からなる液体電極
lを挟んで滑動可能なごとくに接触させて、こ\には示
してないハウジングとともに全体を構成すれば本発明の
、たとえば、マイクロ静電リニアモータを形成すること
ができる。Step (7)): The rotor 2 processed above and the stator 5 are brought into sliding contact with each other across the liquid electrode 1 made of the electrolytically deposited mercury particles (not shown here). By constructing the whole together with the housing, for example, a micro electrostatic linear motor of the present invention can be formed.
なお、上記実施例の製造方法は一例であり、本発明の静
電モータを構成するために、適宜他の材料や製造プロセ
スを組み合わせて使用できることは言うまでもない
また、上記説明ではステータ5の方に液体金属lを密着
固定するようにしたが、逆にロータ2の方に液体金属1
を密着固定させ、ステータ5のほうに前記液体金属1に
濡れない絶縁性表面層4を形成するように製造工程を構
成してもよい。It should be noted that the manufacturing method of the above embodiment is just an example, and it goes without saying that other materials and manufacturing processes can be used in combination as appropriate to construct the electrostatic motor of the present invention. The liquid metal 1 was fixed in close contact with the rotor 2, but the liquid metal 1 was placed on the rotor 2.
The manufacturing process may be configured such that the liquid metal 1 is tightly fixed and an insulating surface layer 4 that does not get wet with the liquid metal 1 is formed on the stator 5.
斗
第会図は本発明の第2実施例を示す図で、前記実施例の
マイクロ静電リニアモータに対して回転型の静電モータ
の場合を示したものである。The diagram shows a second embodiment of the present invention, in which a rotary electrostatic motor is used in contrast to the micro electrostatic linear motor of the previous embodiment.
回転軸を中心に放射状に両電極を配置し、その間に液体
電極1が挟持されるようにしている。Both electrodes are arranged radially around the rotation axis, and the liquid electrode 1 is sandwiched between them.
この例ではロータ2の方に液体電極lによく濡れる電極
金属部6を設け、そこに液体金属1を密着固定するよう
にし、ステータ5の表面に液体金属lに濡れない絶縁性
表面層4を設けている点が異なるだけである。逆の構成
にしても勿論かまわないが、保守、製造の難易性その他
部合のよい横型の回転静電モータの場合を示したもので
ある。In this example, an electrode metal part 6 that is well wetted by the liquid electrode 1 is provided on the rotor 2, and the liquid metal 1 is closely fixed there, and an insulating surface layer 4 that does not get wet by the liquid metal 1 is provided on the surface of the stator 5. The only difference is in what is provided. Of course, the configuration may be reversed, but this example shows the case of a horizontal rotary electrostatic motor that is easy to maintain, easy to manufacture, and other aspects.
この場合も前記第2実施例の場合と同様に、a−タ2の
方に液体電極lによく濡れる電極金属部6を設け、そこ
に液体金属1を密着固定するようにし、ステータ5の表
面に液体金属1に濡れない絶縁性表面層4を設けている
。勿論逆の構成にしてもよいことは言うまでもない。In this case as well, as in the case of the second embodiment, an electrode metal part 6 that is well wetted by the liquid electrode 1 is provided on the a-tor 2, and the liquid metal 1 is closely fixed thereto, and the surface of the stator 5 is An insulating surface layer 4 that does not get wet with the liquid metal 1 is provided on the surface. Of course, it goes without saying that the configuration may be reversed.
なお、以上の実施例の構成はいずれも具体的な例を示し
たものであり、本発明はこれらの例に止まらず、他の形
状やデザインに広く適用できることは言うまでもない。It should be noted that the configurations of the above embodiments are all specific examples, and it goes without saying that the present invention is not limited to these examples and can be widely applied to other shapes and designs.
以上説明したように、本発明によれば、液体電8i!1
に濡れないステータ5の表面の所定の複数箇所に、濡れ
性のよい独立した電極金属部6を形威し、そこに表面張
力の大きい液体電極1を、たとえば、半球状に密着配置
し、もう一方のロータ2の表面は前記液体電極1に濡れ
ない表面層4で被覆し、前記ステータ5の電極面と前記
ロータ2の表面層4を前記液体電極1を挟んで接触させ
ると、前記表面張力の大きい液体電極1の固まりが、丁
度従来のころがり軸受機構のボールと潤滑油のごとき働
きをなすとともに、前記液体電極lの表面がステータ電
極として作用するので、ロータ電極とステータ電極の電
極間距離が絶縁性表面層4の厚さだけの極めて小さいも
のとなり、両電極の電界強度は増加し、それに対応して
静電引力が大幅に増大する。As explained above, according to the present invention, the liquid electric 8i! 1
Independent electrode metal portions 6 with good wettability are formed at predetermined multiple locations on the surface of the stator 5 that are not wetted by water, and liquid electrodes 1 with high surface tension are closely arranged therein in a hemispherical shape, and The surface of one rotor 2 is coated with a surface layer 4 that does not wet the liquid electrode 1, and when the electrode surface of the stator 5 and the surface layer 4 of the rotor 2 are brought into contact with the liquid electrode 1 in between, the surface tension The large mass of liquid electrode 1 acts just like the balls and lubricating oil of a conventional rolling bearing mechanism, and the surface of liquid electrode 1 acts as a stator electrode, so the distance between the rotor electrode and stator electrode can be reduced. becomes extremely small, only the thickness of the insulating surface layer 4, the electric field strength at both electrodes increases, and the electrostatic attraction increases accordingly.
したがって、スライド面の摩擦抵抗を極めて小さくし、
かつ、駆動力を大きくするなど静電モータの性能1品質
の向上と小型化に寄与するところが極めて大きい。Therefore, the frictional resistance on the sliding surface is extremely small,
In addition, it greatly contributes to improving the performance and quality of electrostatic motors, such as by increasing the driving force, and to miniaturization.
第1図は本発明の詳細な説明する図、
第2図は本発明の第1実施例の斜視図、第3図は本発明
の第1の実施例装置の製造工程の例を示す断面図、
第4図は本発明の第2実施例を示す図、第5図は本発明
の第3実施例を示す図、第6図は静電リニアモータの基
本構成を説明する図、
第7図は従来のマイクロ静電リニアモータの例を示す図
である。
図において、
Hla、1b)は液体電極、2はロータ、3.6は電極
金属部、5はステータ、
4.7は液体電極に濡れない絶縁性表面層である。
A4ご9月の2中、理をfte’Afろmom木金θ月
り11第1/)実方己イク・j笈巖ρ篭4.迭しネLの
分・]δ才、千漣白′面図ダ
ネ
汀の
J、4ea月の第2実芳已イタ・j乏 ネすC巧I 4
図
シま・食口;1dつ第3実1己イク1211す図% 5
圃
幼覧ソニ了モータ刀苓木内(戚と畜吃日月すう間第 6
図
彩(米刀マイ20静1Lソニアモータ/19゛12示す
図ヌ
図Fig. 1 is a diagram explaining the present invention in detail, Fig. 2 is a perspective view of the first embodiment of the invention, and Fig. 3 is a cross-sectional view showing an example of the manufacturing process of the device of the first embodiment of the invention. , FIG. 4 is a diagram showing a second embodiment of the present invention, FIG. 5 is a diagram showing a third embodiment of the present invention, FIG. 6 is a diagram explaining the basic configuration of an electrostatic linear motor, and FIG. 1 is a diagram showing an example of a conventional micro electrostatic linear motor. In the figure, Hla, 1b) is a liquid electrode, 2 is a rotor, 3.6 is an electrode metal part, 5 is a stator, and 4.7 is an insulating surface layer that does not get wet with the liquid electrode. A4 During the 2nd of September, the reason is fte' Afromom Thursday, Friday, January 11th, 1st/) The actual person is coming. Missed L's minute] δ year old, Senren White's face picture Dane's J, 4ea month's second fruit Yoshimi Ita j poor Nesu C Takumi I 4
Figure stripe/mouth; 1d third fruit 1 self orgasm 1211% 5
Soni Ryōmota Sword Reikiuchi (Relatives and Animals) 6th
Illustration (rice sword Mai 20 static 1L Sonia motor/19゛12 diagram)
Claims (1)
層(7)の中に、複数の独立した前記液体電極(1)に
よく濡れる電極金属部(6)を設けたステータ(5)と
、複数の独立した電極金属部(3)とその上を覆って形
成された前記液体電極(1)に濡れない絶縁性表面層(
4)を設けたロータ(2)と、 前記ステータ(5)の複数の独立した電極金属部(6)
に密着固定され、かつ、前記ロータ(2)の絶縁性表面
層(4)との間に滑動可能なごとくに挟持された前記液
体電極(1)と、 前記ロータ(2)とステータ(5)のそれぞれの複数の
独立した前記電極金属部(3、6)の一方または両方に
多相パルス電圧を印加する手段とを少なくとも備えたこ
とを特徴とする液体電極型静電モータ。[Scope of Claims] A plurality of independent electrode metal parts (6) that are easily wetted by the liquid electrode (1) are provided in an insulating surface layer (7) that cannot be wetted by the liquid electrode (1) having a large surface tension. a stator (5), a plurality of independent electrode metal parts (3), and an insulating surface layer (which does not get wet with the liquid electrode (1) formed covering the stator (5)).
4); and a plurality of independent electrode metal parts (6) of the stator (5).
the liquid electrode (1) tightly fixed to the rotor (2) and slidably sandwiched between the insulating surface layer (4) of the rotor (2); and the rotor (2) and the stator (5). A liquid electrode type electrostatic motor comprising at least means for applying a multiphase pulse voltage to one or both of the plurality of independent electrode metal parts (3, 6).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17616189A JP2814582B2 (en) | 1989-07-07 | 1989-07-07 | Liquid electrode type electrostatic motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17616189A JP2814582B2 (en) | 1989-07-07 | 1989-07-07 | Liquid electrode type electrostatic motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0340777A true JPH0340777A (en) | 1991-02-21 |
JP2814582B2 JP2814582B2 (en) | 1998-10-22 |
Family
ID=16008733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17616189A Expired - Fee Related JP2814582B2 (en) | 1989-07-07 | 1989-07-07 | Liquid electrode type electrostatic motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2814582B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003061107A3 (en) * | 2002-01-11 | 2003-12-18 | Npoint Inc | Dielectric actuator including conductive gap |
EP1580876A2 (en) * | 2004-03-25 | 2005-09-28 | Fanuc Ltd | Electrostatic motor |
CN103715939A (en) * | 2014-01-07 | 2014-04-09 | 中国计量学院 | Liquid metal variable capacitance transducer device |
CN107634675A (en) * | 2017-10-26 | 2018-01-26 | 南京航空航天大学 | A kind of high thrust electrostatic motor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019161256A2 (en) | 2018-02-15 | 2019-08-22 | The Charles Stark Draper Laboratory, Inc. | Electrostatic motor |
-
1989
- 1989-07-07 JP JP17616189A patent/JP2814582B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003061107A3 (en) * | 2002-01-11 | 2003-12-18 | Npoint Inc | Dielectric actuator including conductive gap |
EP1580876A2 (en) * | 2004-03-25 | 2005-09-28 | Fanuc Ltd | Electrostatic motor |
EP1580876A3 (en) * | 2004-03-25 | 2007-05-09 | Fanuc Ltd | Electrostatic motor |
US7304410B2 (en) | 2004-03-25 | 2007-12-04 | Fanuc Ltd | Electrostatic motor including projections providing a clearance between stator and slider electrode members |
CN103715939A (en) * | 2014-01-07 | 2014-04-09 | 中国计量学院 | Liquid metal variable capacitance transducer device |
CN107634675A (en) * | 2017-10-26 | 2018-01-26 | 南京航空航天大学 | A kind of high thrust electrostatic motor |
CN107634675B (en) * | 2017-10-26 | 2019-05-10 | 南京航空航天大学 | A kind of high thrust electrostatic motor |
Also Published As
Publication number | Publication date |
---|---|
JP2814582B2 (en) | 1998-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6670738B2 (en) | Electrostatic actuator and method of driving the same | |
JP3373032B2 (en) | Acceleration sensor | |
US5554304A (en) | Process for producing a micromotion mechanical structure | |
US6507138B1 (en) | Very compact, high-stability electrostatic actuator featuring contact-free self-limiting displacement | |
US5864064A (en) | Acceleration sensor having coaxially-arranged fixed electrode and movable electrode | |
US5180940A (en) | Radial field electrostatic micromotor produced using a photolithographic micromanufacturing technique and a process for producing said micromotor | |
US7197815B2 (en) | Method of manufacturing the electromagnetic actuator | |
US20060055997A1 (en) | Deformable mirror | |
JPS63283459A (en) | Motor circuit apparatus with coil and manufacture of the coil | |
JPH0340777A (en) | Liquid electrode type electrostatic motor | |
JPH1132471A (en) | Semiconductor device, power generator, and electronic equipment provided with them | |
SE451899B (en) | FLEXIBLE BODY FOR A SENSOR TO ATTACH A POWER SENSOR TO AN ASSEMBLY BASE | |
JP3393678B2 (en) | Electrostatic relay | |
JP2817220B2 (en) | Micro bearing mechanism | |
JP2007202231A (en) | Electrostatic motor and timepiece module | |
JP2006040892A (en) | Metal contact electric switch incorporating lorentz actuator | |
JPH06288355A (en) | Micro pump | |
JPH0833361A (en) | Electrostatic actuator | |
JPH11136961A (en) | Electrostatic wobble motor | |
JPS63154073A (en) | Semiconductor motor | |
JPH11136962A (en) | Electrostatic wobble motor | |
JPH11196583A (en) | Electrostatic wobble motor | |
JPH033683A (en) | Micro electrostatic linear motor | |
JPH0365083A (en) | Electrostatic motor | |
JP3038739B2 (en) | Small movable mechanical mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |