JP2817220B2 - Micro bearing mechanism - Google Patents

Micro bearing mechanism

Info

Publication number
JP2817220B2
JP2817220B2 JP17485389A JP17485389A JP2817220B2 JP 2817220 B2 JP2817220 B2 JP 2817220B2 JP 17485389 A JP17485389 A JP 17485389A JP 17485389 A JP17485389 A JP 17485389A JP 2817220 B2 JP2817220 B2 JP 2817220B2
Authority
JP
Japan
Prior art keywords
liquid
substrate
wettability
present
bearing mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17485389A
Other languages
Japanese (ja)
Other versions
JPH0341210A (en
Inventor
圭一 別井
理 伊形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17485389A priority Critical patent/JP2817220B2/en
Publication of JPH0341210A publication Critical patent/JPH0341210A/en
Application granted granted Critical
Publication of JP2817220B2 publication Critical patent/JP2817220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】 〔概要〕 マイクロ軸受機構に関し、 極めて微小な機械装置における各種スライド面に適用
される摩擦低減機構を提供することを目的とし、 液体に対して濡れ性を有しない表面領域の中に前記液
体に対して濡れ性を有する複数の独立した領域が配設さ
れた第1の基体と、前記複数の独立した濡れ性を有する
領域に濡れて密着し前記第1の基体の表面上に表面張力
で盛り上がった前記液体と、前記液体に対して濡れ性を
有しない表面を有する第2の基体とからなり、前記第1
の基体と前記第2の基体とを、前記液体を挟んで接触さ
せたことを特徴とするマイクロ軸受機構を構成する。
DETAILED DESCRIPTION OF THE INVENTION [Summary] Regarding a micro-bearing mechanism, an object of the present invention is to provide a friction reducing mechanism applied to various slide surfaces in an extremely small mechanical device, and a surface area having no wettability to liquid. A first substrate in which a plurality of independent regions having wettability with respect to the liquid are disposed, and a surface of the first substrate which is wet and adheres to the plurality of regions having independent wettability The liquid comprising a liquid raised above by surface tension and a second base having a surface having no wettability with respect to the liquid;
The micro-bearing mechanism is characterized in that the base and the second base are in contact with each other with the liquid interposed therebetween.

〔産業上の利用分野〕[Industrial applications]

本発明は極めて微小な機械装置に適用されるマイクロ
軸受機構に関する。
The present invention relates to a micro bearing mechanism applied to a very small mechanical device.

近年、メカトロニクス技術の進歩発展にともない、各
種ロボットや制御機器の応用が益々盛んになってきてい
る。
In recent years, with the advancement and development of mechatronics technology, applications of various robots and control devices have been increasingly active.

とくに、最近は生体への応用や宇宙機器など超小形化
が要求される重要な分野が広がってきており、これらに
用いられる極微小機械装置のスライド面の摩擦抵抗を如
何に小さくするかゞ大きな問題になっており、超小形の
摩擦低減機構の開発が強く求められている。
In particular, recently, important fields requiring ultra-miniaturization, such as applications to living organisms and space equipment, have been expanding, and how to reduce the frictional resistance of the slide surface of the micro-mechanical device used in these is important. This is a problem, and there is a strong demand for the development of a microminiature friction reduction mechanism.

〔従来の技術〕[Conventional technology]

第6図は従来の平面軸受の構成例を示す図で、極めて
一般的に用いられている2つの固体表面間の摩擦を低減
する方法である。図中、40は固定部、60は移動部、100
は潤滑油などの潤滑剤である。すなわち、固定部40と移
動部60の2つの固体面がスライドするときの摩擦抵抗を
潤滑油を介して緩和低減するもので、大型の機械装置か
ら小形の機械装置まで広く実用化されている。なお、潤
滑油はスライド面に発生した熱を奪う冷却剤としての働
きも大きいことはよく知られている。
FIG. 6 is a diagram showing an example of the configuration of a conventional flat bearing, which is a method of reducing friction between two solid surfaces, which is very commonly used. In the figure, 40 is a fixed part, 60 is a moving part, 100
Is a lubricant such as a lubricating oil. That is, the frictional resistance when the two solid surfaces of the fixed portion 40 and the moving portion 60 slide is reduced through the lubricating oil, and is widely used from large to small mechanical devices. It is well known that lubricating oil also has a great function as a coolant for removing heat generated on the slide surface.

しかし、最近開発が進められている極微小の機械装
置,あるいは機械要素に対して、上記のような摩擦低減
機構を適用することは実用的に殆ど不可能である。
However, it is practically almost impossible to apply the above-described friction reduction mechanism to a micro-mechanical device or a mechanical element which is being developed recently.

現在、特殊用途に応用が考えられているマイクロ機械
装置は1mmあるいは数100μmオーダ以下といった極微小
のサイズのもので、その製造プロセスも,たとえば、IC
プロセス技術を駆使した特殊加工を用いているものもあ
る。
At present, micro-mechanical devices that are considered to be used for special purposes have extremely small sizes of less than 1 mm or less than several 100 μm.
Some use special processing that makes full use of process technology.

第7図は従来のマイクロリンク機構の軸受構成例を示
す断面図である(精密工学会誌,54/9/1988,p11参照)。
FIG. 7 is a cross-sectional view showing an example of a bearing configuration of a conventional microlink mechanism (see Journal of Precision Engineering, 54/9/1988, p11).

同図(イ)は加工の中間工程の、同図(ロ)は完成品
のそれぞれについて断面図を示したものである。すなわ
ち、シリコン基板41上に燐珪酸ガラス71,70とポリシリ
コン42,61の層を交互にパターニングしながら、それぞ
れ気相成長法(CVD法)で成膜していく。このとき、ポ
リシリコンは機構部材の形をとるようにエッチングし、
一方、燐珪酸ガラスは機構部材間の隙間に相当する部分
に埋め込まれるように積層し、次いで、燐珪酸ガラスだ
けが溶解する選択性のあるエッチングを施すことによ
り、シリコン基板41上にポリシリコンの機構、すなわ
ち、軸61′,回転アーム42′が組み上がった形でマイク
ロリンク機構を完成する。
FIG. 1A shows a cross-sectional view of the intermediate process, and FIG. 2B shows a cross-sectional view of each of the finished products. That is, the layers of the phosphosilicate glass 71, 70 and the polysilicon 42, 61 are alternately patterned on the silicon substrate 41, and are each formed by a vapor deposition method (CVD method). At this time, the polysilicon is etched to take the form of a mechanical member,
On the other hand, the phosphosilicate glass is laminated so as to be buried in a portion corresponding to the gap between the mechanism members, and then subjected to selective etching in which only the phosphosilicate glass is dissolved, so that the polysilicon The mechanism, that is, the shaft 61 'and the rotating arm 42' are assembled to complete the microlink mechanism.

この例では回転アーム42′の長さは150μmといった
微小なものである。
In this example, the length of the rotary arm 42 'is as small as 150 μm.

したがって、このような極微小の機械装置や機構要素
では、上記マイクロリンク機構の例に見られるように、
特別な軸受機構は設けていないのが現状であり、たかだ
かそれらスライド面を小さく構成して摩擦をできるだけ
抑えるといった程度に止まっている。
Therefore, in such an extremely small mechanical device or mechanical element, as seen in the above-described example of the microlink mechanism,
At present, no special bearing mechanism is provided, and at most, the sliding surfaces are configured to be small and friction is suppressed as much as possible.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、今後極めて微小な機械装置や機構要素におい
ても、比較的負荷容量の大きいもの,あるいは高速移動
のスライド面を要求されるものが多くなってくるので、
前記従来例のように単にスライド面を小さくするといっ
た程度の手段では、安定した信頼性の高い回転あるいは
スライド機構が得られないという問題があり、その解決
が必要であった。
However, in the future, even with extremely small mechanical devices and mechanical elements, those with relatively large load capacity or those requiring a slide surface for high-speed movement will increase.
The means of simply reducing the slide surface as in the conventional example described above has a problem that a stable and reliable rotation or slide mechanism cannot be obtained.

〔課題を解決するための手段〕[Means for solving the problem]

液体1に対して濡れ性を有しない表面領域2の中に、
液体1に対して濡れ性を有する複数の独立した領域3が
配設された第1の基体4と、複数の独立領域3に濡れて
密着し第1の基体4の表面上に表面張力で盛り上がった
液体1と、液体1に対して濡れ性を有しない表面5を有
する第2の基体6とからなり、第1の基体4と第2の基
体6とを、液体1を挟んで滑動可能なごとく接触させて
構成したマイクロ軸受機構によって解決することができ
る。
In the surface area 2 having no wettability to the liquid 1,
A first substrate on which a plurality of independent regions having wettability with respect to the liquid are disposed; and a first substrate which is wet and adheres to the plurality of independent regions and rises on the surface of the first substrate by surface tension. Liquid 1 and a second substrate 6 having a surface 5 having no wettability with respect to the liquid 1. The first substrate 4 and the second substrate 6 can be slid across the liquid 1. The problem can be solved by a micro-bearing mechanism configured so as to make contact with each other.

〔作用〕[Action]

本発明によれば、第1の基体4の表面領域2の複数箇
所に、液体1に対し濡れ性を有する独立領域3を形成
し、その領域3に表面張力を有する好ましくは表面張力
がなるべく大きい液体1を、たとえば半球状に密着配置
し、もう一方の基体6の表面は液体1に対して濡れ性を
有しない材料で被覆し、液体1を挟んで基体4と6を接
触させると、液体1の複数のかたまりが、丁度従来のこ
ろがり軸受機構のボールと潤滑油のごとき働きをなすの
で、比較的負荷容量が大きく、高速移動を要する極微小
の機械装置や機械要素の軸受機構として安定を動作を可
能とするようになる。
According to the present invention, independent regions 3 having wettability to the liquid 1 are formed at a plurality of locations on the surface region 2 of the first base 4, and the surface tension in the region 3 is preferably as large as possible. When the liquid 1 is placed in close contact with, for example, a hemisphere, the surface of the other substrate 6 is coated with a material having no wettability with respect to the liquid 1, and the substrates 4 and 6 are brought into contact with the liquid 1. Since a plurality of lumps work just like the ball and lubricating oil of a conventional rolling bearing mechanism, they have a relatively large load capacity and are stable as a micromechanical device or a mechanical element that requires high-speed movement. Operation becomes possible.

〔実施例〕〔Example〕

第1図は本発明の第1実施例の構成を示す図である。
同図(イ)は斜視図、同図(ロ)はA−A′断面図(低
負荷時)、同図(ハ)はB−B′断面図(高負荷時)で
ある。
FIG. 1 is a diagram showing a configuration of a first embodiment of the present invention.
2A is a perspective view, FIG. 2B is an AA ′ cross-sectional view (at low load), and FIG. 2C is a BB ′ cross-sectional view (at high load).

図中、1は好ましくは表面張力がなるべく大きい液体
で,たとえば水銀、2は濡れ性を持たない表面領域で,
たとえば、SiO2またはポリイミド樹脂膜、3は濡れ性の
高い領域で,たとえば、NiまたはCrからなる金属パター
ン、4は第1の基体で,たとえば、ガラスまたはSi、5
は濡れ性を持たない表面で,たとえば、SiO2またはポリ
イミド樹脂膜、6は第2の基体で,たとえば、ガラスま
たはSiである。
In the drawing, 1 is preferably a liquid having a surface tension as large as possible, for example, mercury, 2 is a surface area having no wettability,
For example, an SiO 2 or polyimide resin film, 3 is a region having high wettability, for example, a metal pattern made of Ni or Cr, 4 is a first substrate, for example, glass or Si, 5
Is a surface having no wettability, for example, a SiO 2 or polyimide resin film, and 6 is a second substrate, for example, glass or Si.

同図(イ)および同図(ロ)に示したように、表面張
力の高い液体1,たとえば、水銀は濡れ性の高い領域3,た
とえば、円形のNi部分によく濡れて強く密着固定され、
第1の基体4の表面上に半球状に盛り上がっている。一
方、第2の基体6の表面は濡れ性を持たない表面,たと
えば、ポリイミド樹脂膜で覆われているので、両基体を
半球状の水銀を挟んで接触させても、水銀の表面張力に
よって両基体の表面が直接接触することはない。
As shown in FIGS. 2A and 2B, a liquid 1 having a high surface tension, such as mercury, is well wetted and strongly fixed to a region 3 having a high wettability, such as a circular Ni portion.
The first base 4 has a hemispherical swelling on the surface. On the other hand, the surface of the second substrate 6 is covered with a non-wetting surface, for example, a polyimide resin film. There is no direct contact between the surfaces of the substrates.

しかし、両基体間にかゝる負荷が大きくなると、同図
(ハ)に示したごとく半球状の水銀は押しつぶされて、
両基体の表面の間の距離が縮まるが、各水銀粒の直径,
すなわち、周囲長が大きくなるので表面張力による内部
圧力が増大して外部からの負荷とバランスしたギャップ
で安定する。
However, when the load applied between the two substrates increases, the hemispherical mercury is crushed as shown in FIG.
Although the distance between the surfaces of both substrates is reduced, the diameter of each mercury particle,
That is, since the peripheral length is increased, the internal pressure due to the surface tension is increased, and the gap is stabilized at a gap balanced with an external load.

この状態で両基体間にすべり力が働くと第2の基体6
の表面は濡れ性を持たない表面5で覆われているので、
水銀が付着することなく極めて滑らかに滑動することが
できる。
In this state, when a sliding force acts between the two substrates, the second substrate 6
Is covered with a non-wetting surface 5,
It can slide very smoothly without the adhesion of mercury.

濡れ性の高い領域3の大きさと、その相互の間隔の選
択により、また、表面張力の高い液体の種類を選ぶこと
などによって摩擦抵抗や耐負荷特性,さらには高速動作
特性などをを制御することができる。
Controlling the frictional resistance, load-bearing characteristics, and high-speed operation characteristics by selecting the size of the regions 3 having high wettability and the distance between the regions, and by selecting the type of liquid having a high surface tension. Can be.

さて、上記のごとき本発明装置を実現するための製造
工程を以下工程順に具体的に説明する。
Now, the manufacturing steps for realizing the apparatus of the present invention as described above will be specifically described below in the order of steps.

第2図は本発明の第2の実施例装置の製造工程の例を
示す断面図である。
FIG. 2 is a sectional view showing an example of the manufacturing process of the device according to the second embodiment of the present invention.

工程(1):厚さ100μmのシリコン基板の上に、厚さ
0.5μmのポリイミド樹脂層をスピンコート法により形
成して第2の基体6を準備する。
Step (1): Thickness on a 100 μm thick silicon substrate
A second substrate 6 is prepared by forming a 0.5 μm polyimide resin layer by spin coating.

工程(2):同じく厚さ100μmのシリコン基板の上
に、濡れ性の高い領域3となる厚さ0.5μmのNi膜を真
空蒸着法で形成する。
Step (2): On the silicon substrate also having a thickness of 100 μm, a Ni film having a thickness of 0.5 μm to be a region 3 having high wettability is formed by a vacuum evaporation method.

工程(3):前記処理済み基板のNi膜の上に、厚さ0.5
μmのポリイミド樹脂層をスピンコート法により形成す
る。
Step (3): On the Ni film of the processed substrate, a thickness of 0.5
A μm polyimide resin layer is formed by spin coating.

工程(4):前記処理済み基板のポリイミド樹脂層に、
表面張力の大きい液体1を固定させるための孔をホトエ
ッチング法あるいはイオンエッチング法で形成し底面に
Ni膜を露出させて、第1の基体4を準備する。
Step (4): The polyimide resin layer of the processed substrate is
A hole for fixing the liquid 1 having a large surface tension is formed by photoetching or ion etching on the bottom surface.
The first substrate 4 is prepared by exposing the Ni film.

工程(5):前記処理済み基板のNi膜露出面に、たとえ
ば、Hg(NO3水溶液中でNi膜を陰極にして電解めっ
きを行い、半球状に盛り上がった水銀粒からなる液体1
を形成する。
Step (5): A liquid 1 consisting of hemispherically raised mercury particles is formed on the exposed surface of the treated substrate by electroplating, for example, using an Ni film as a cathode in an aqueous Hg (NO 3 ) 2 solution.
To form

工程(6):上記処理による第1の基体4と、同じく第
2の基体6を、前記電解析出された水銀粒からなる液体
1を挟んで滑動可能なごとくに接触させて、こゝには示
してないハウジングとともに全体を構成すれば本発明の
マイクロ軸受機構を形成することができる。
Step (6): The first substrate 4 and the second substrate 6 are brought into contact with each other so as to be slidable with the liquid 1 composed of the electrolytically deposited mercury particles therebetween. If the whole is configured together with a housing not shown, the micro bearing mechanism of the present invention can be formed.

なお、上記実施例の製造方法は一例であり、本発明の
マイクロ軸受機構を構成するために、適宜他の材料や製
造プロセスを組み合わせて使用できることは言うまでも
ない 第3図は本発明の第3の実施例の構成を示す図で、第
1の基体4の上に、先ず濡れ性を持たない表面領域2と
なる層を形成し、その上に複数の独立した濡れ性の高い
領域3を形成し、さらにその上に表面張力が高い液体1
を半球状に固着させたのち、前記第2実施例と同様に形
成した第2の基体6を組み合わせる構成にしたものであ
り、材料,プロサスの組み合わせなどにより、製造が容
易な構成を適宜選べばよい。
It is needless to say that the manufacturing method of the above embodiment is merely an example, and other materials and manufacturing processes can be appropriately used in combination to constitute the micro bearing mechanism of the present invention. FIG. 3 is a view showing the configuration of the embodiment. First, a layer to be a surface region 2 having no wettability is formed on a first base 4, and a plurality of independent regions 3 having high wettability are formed thereon. And a liquid 1 having a high surface tension thereon.
Are fixed in a hemispherical shape, and then the second base 6 formed in the same manner as in the second embodiment is combined. If an easy-to-manufacture configuration can be appropriately selected according to a combination of materials, processes and the like. Good.

第4図は本発明の第4実施例の構成を示す図で、同図
(イ)はA−A′断面図、同図(ロ)は側面図である。
本実施例は,いわゆる、ころがり軸受に適用した場合で
第1の基体4のすべり面は円形に穿たれた円筒内面で、
そこに表面張力の高い液体1が配設されている。一方、
第2の基体6は丸棒でその外面に濡れ性を持たない表面
5を形成して、表面張力の高い液体1と接触するように
構成されている。
FIG. 4 is a view showing the configuration of a fourth embodiment of the present invention. FIG. 4A is a sectional view taken along the line AA ', and FIG. 4B is a side view.
This embodiment is a case where the present invention is applied to a so-called rolling bearing, and the sliding surface of the first base 4 is a circular inner surface of a cylindrical body.
The liquid 1 having a high surface tension is provided there. on the other hand,
The second substrate 6 is configured to form a non-wetting surface 5 on the outer surface thereof with a round bar so as to come into contact with the liquid 1 having a high surface tension.

第5図は本発明の第5実施例の構成を示す図で、いわ
ゆる、ピボット軸受に適用した場合であり、第1の基体
4が固定部で、そこに穿たれた円錐孔の内面に表面張力
の高い液体1が配設されている。一方、第2の基体6は
旋回軸となる丸棒でその先端が円錐状に加工されてお
り、その外面に濡れ性を持たない表面5を形成して、表
面張力の高い液体1と接触するように構成されている。
FIG. 5 is a view showing a configuration of a fifth embodiment of the present invention, in which the present invention is applied to a so-called pivot bearing, in which a first base 4 is a fixed portion, and a surface is formed on an inner surface of a conical hole formed therein. A liquid 1 with high tension is provided. On the other hand, the second substrate 6 is a round bar serving as a turning axis, and the tip is machined in a conical shape. The outer surface of the second substrate 6 forms a surface 5 having no wettability, and comes into contact with the liquid 1 having a high surface tension. It is configured as follows.

なお、以上の実施例の構成はいずれも具体的な例を示
したものであり、本発明はこれらの例に止まらず、他の
形状やデザインに広く適用できることは言うまでもな
い。
It should be noted that the configurations of the above embodiments are all specific examples, and it goes without saying that the present invention is not limited to these examples, but can be widely applied to other shapes and designs.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、第1の基体4
の濡れ性の悪い表面の所定の複数箇所に、濡れ性のよい
独立した部分を形成し、そこに表面張力が大きい液体1
を,たとえば、半球状に密着配置し、もう一方の基体6
の表面は前記液体1に濡れない材料で被覆し、両基体を
前記液体1を挟んで接触させると、前記表面張力の大き
い液体1の固まりが、丁度従来のころがり軸受機構のボ
ールと潤滑油のごとき働きをなすので、比較的負荷容量
が大きく、高速移動を要する極微小の機械装置や機械要
素の軸受機構として極めて有用である。
As described above, according to the present invention, the first base 4
Independent portions having good wettability are formed at a plurality of predetermined places on the surface having poor wettability, and liquid 1 having a large surface tension is formed there.
Are arranged closely in a hemispherical shape, for example, and the other substrate 6
Is coated with a material that does not wet with the liquid 1, and when both substrates are brought into contact with the liquid 1 therebetween, the mass of the liquid 1 having a large surface tension is exactly equal to the ball and lubricating oil of the conventional rolling bearing mechanism. Since it works as described above, it has a relatively large load capacity and is extremely useful as a bearing mechanism for extremely small mechanical devices and mechanical elements requiring high-speed movement.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例の構成を示す図、 第2図は本発明の第2実施例装置の製造工程の例を示す
断面図、 第3図は本発明の第3実施例の構成を示す図、 第4図は本発明の第4実施例の構成を示す図、 第5図は本発明の第5実施例の構成を示す図、 第6図は従来の平面軸受の構成例を示す図、 第7図は従来のマイクロリンク機構の軸受構成例を示す
図である。 図において、 1は表面張力が大きい液体、 2は濡れ性を持たない表面領域、 3は濡れ性の高い領域、 4は第1の基体、 5は濡れ性を持たない表面、 6は第2の基体である。
FIG. 1 is a view showing a configuration of a first embodiment of the present invention, FIG. 2 is a sectional view showing an example of a manufacturing process of an apparatus of a second embodiment of the present invention, and FIG. 3 is a third embodiment of the present invention. FIG. 4 is a diagram showing a configuration of a fourth embodiment of the present invention, FIG. 5 is a diagram showing a configuration of a fifth embodiment of the present invention, and FIG. 6 is a configuration of a conventional flat bearing. FIG. 7 is a diagram showing an example of a bearing configuration of a conventional microlink mechanism. In the figure, 1 is a liquid having a large surface tension, 2 is a surface region having no wettability, 3 is a region having a high wettability, 4 is a first substrate, 5 is a surface having no wettability, and 6 is a second surface. The substrate.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F16C 17/04 F16C 33/10──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) F16C 17/04 F16C 33/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】液体に対して濡れ性を有しない表面領域の
中に、前記液体に対して濡れ性を有する複数の独立した
領域が配設された第1の基体と、 前記複数の独立した濡れ性を有する領域に濡れて密着
し、前記第1の基体の表面上に表面張力で盛り上がった
前記液体と、 前記液体に対して濡れ性を有しない表面を有する第2の
基体とからなり、 前記第1の基体と前記第2の基体とを、前記液体を挟ん
で接触させたことを特徴とするマイクロ軸受機構。
A first substrate provided with a plurality of independent regions having wettability with respect to the liquid in a surface region having no wettability with respect to the liquid; The liquid comprising a liquid which is wet and adhered to a region having wettability and is raised on the surface of the first substrate by surface tension, and a second substrate having a surface having no wettability with respect to the liquid; A micro bearing mechanism, wherein the first base and the second base are brought into contact with the liquid interposed therebetween.
JP17485389A 1989-07-06 1989-07-06 Micro bearing mechanism Expired - Fee Related JP2817220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17485389A JP2817220B2 (en) 1989-07-06 1989-07-06 Micro bearing mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17485389A JP2817220B2 (en) 1989-07-06 1989-07-06 Micro bearing mechanism

Publications (2)

Publication Number Publication Date
JPH0341210A JPH0341210A (en) 1991-02-21
JP2817220B2 true JP2817220B2 (en) 1998-10-30

Family

ID=15985796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17485389A Expired - Fee Related JP2817220B2 (en) 1989-07-06 1989-07-06 Micro bearing mechanism

Country Status (1)

Country Link
JP (1) JP2817220B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2386928A (en) 2002-03-28 2003-10-01 Imp College Innovations Ltd A partially wetted bearing arrangement having a convergent region between surfaces
DE102004060258B3 (en) * 2004-12-15 2006-03-02 Federal-Mogul Deva Gmbh Method for making rolled bearing bushes comprises cutting blank and cutting holes in this which have inwardly-projecting lugs, inserting stoppers made from friction-reducing material into holes and rolling blank to form bush
JP4536667B2 (en) * 2006-02-13 2010-09-01 公立大学法人高知工科大学 Bearing structure with controlled flow correction factor
CN103089816B (en) * 2013-01-17 2015-09-02 浙江大学 Bearing shell matrix surface is with the distributed sliding bearing of micro-hole oil bag
WO2021106094A1 (en) * 2019-11-27 2021-06-03 株式会社東芝 Support device and support unit

Also Published As

Publication number Publication date
JPH0341210A (en) 1991-02-21

Similar Documents

Publication Publication Date Title
US6197610B1 (en) Method of making small gaps for small electrical/mechanical devices
JPS63304636A (en) Solder carrier and manufacture thereof, and method of mounting semiconductor device using same
JP2817220B2 (en) Micro bearing mechanism
JPH0337414A (en) Turning wheel bearing with rolling body inserting cap and processing method thereof
US6299153B1 (en) Wafer latch with a ball bearing assembly
US6191518B1 (en) Microactuator and method of manufacturing the same
JPS61256018A (en) Cross rollerway and manufacture thereof
JP2002206542A (en) Electrolytic corrosion prevention bearing and method of manufacturing outer ring of the bearing
US7815373B2 (en) Symmetric spindle design
US7044459B2 (en) Simplified flexural pivot
JPS616427A (en) Method of manufacturing fluid bearing
JP3297755B2 (en) Micro rotation mechanism
JPH0340777A (en) Liquid electrode type electrostatic motor
US7164200B2 (en) Techniques for reducing bowing in power transistor devices
JP2503966Y2 (en) Rolling bearing
KR100213925B1 (en) Method for forming hydrodynamic groove on fluid bearing
JPH08284960A (en) Thrust ball bearing
JPS61210904A (en) Rotating and jogging mechanism
JPS6128098Y2 (en)
JP3005946B2 (en) Rolling bearings for semiconductor manufacturing equipment
JPS63167125A (en) Rolling bearing
JPS63259215A (en) Thrust bearing device having fluid retaining groove and its manufacture
JPH04364380A (en) Micro-electrostatic motor
JPS6311386Y2 (en)
JP2001214936A (en) Manufacturing method for aerodynamic or hydrodynamic bearing and bearing manufactured thereby

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees