JPH0340686B2 - - Google Patents

Info

Publication number
JPH0340686B2
JPH0340686B2 JP7547583A JP7547583A JPH0340686B2 JP H0340686 B2 JPH0340686 B2 JP H0340686B2 JP 7547583 A JP7547583 A JP 7547583A JP 7547583 A JP7547583 A JP 7547583A JP H0340686 B2 JPH0340686 B2 JP H0340686B2
Authority
JP
Japan
Prior art keywords
vulcanization
degree
time
equivalent
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7547583A
Other languages
Japanese (ja)
Other versions
JPS59199234A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7547583A priority Critical patent/JPS59199234A/en
Publication of JPS59199234A publication Critical patent/JPS59199234A/en
Publication of JPH0340686B2 publication Critical patent/JPH0340686B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/0288Controlling heating or curing of polymers during moulding, e.g. by measuring temperatures or properties of the polymer and regulating the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C2037/90Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/24Condition, form or state of moulded material or of the material to be shaped crosslinked or vulcanised

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はゴム加硫工程の制御方法の改良に関す
る。 (従来の技術) 従来、加硫中のゴムの加硫度を検出する装置と
して、アレニウス式を利用したいわゆる加硫積算
計が用いられている。このような装置は、1つの
加硫反応の活性化エネルギと基準温度とを予め設
定し、加硫中の実測温度−時間履歴を設定基準温
度T0における等価加硫時間t0に換算して出力する
もので、予め設定した等価加硫時間t0に達したと
き、加硫装置に対して信号を発することが可能で
ある。 因に、上記等価加硫時間t0への換算は、アレニ
ウスの式に基く以下の原理によつている。 化学反応の速度を表わすものとして、アレニウ
スの式がよく知られている。 ここで、k:反応速度定数 A:頻度因子 E:活性化エネルギ R:ガス定数 T:反応温度 反応温度T0のときの反応速度定数をk0とする
と、 であり、したがつて反応速度定数の比k/k0は、 となる。 したがつて、(2)式をTにおける反応時間tで積
分すれば、(3)式のようになる。 それによつて得られる値t0はある定められた温
度T0(以下基準温度という)における単位時間当
りの反応量の何倍になつているかを表わし、一般
に等価反応時間と呼ばれる。 (発明が解決しようとする課題) ところが、加硫反応が単一反応機構ではなく、
加硫の進行に伴つて活性化エネルギが変化するの
に対し、1つの加硫度に求めた1つの活性化エネ
ルギを全反応過程に対して適用しているため、等
価加硫時間t0への換算精度が劣り、特に、活性化
エネルギを求めた加硫度から離れた加硫度におけ
る値ほど、その傾向が著しい。また、実際の加硫
度は、等価加硫時間t0に対して直線的に変化しな
いのに、等価加硫時間t0に加硫度が比例するとし
ている点や、前述した如く等価加硫時間t0への換
算精度が低いことから、加硫度の精度も低い。 そこで、そのような問題点を解消するものとし
て、加硫反応を誘導反応期と加硫反応期とに分割
し、各反応期に対応する2個の活性化エネルギを
用いて、ある温度での誘導反応期の時間を算出
し、等価加硫時間t0がこれを越えるとアレニウス
型の化学反応により加硫が進行するとして加硫度
を算出し、これが一定の値になると信号を発生す
るもの(特公昭57−50662号参照)があるが、前
記加硫反応期内においても例えば10%、50%、90
%反応点から求めた活性化エネルギが大幅に異な
るゴム配合物があることから、等価加硫時間t0
の換算精度が不十分であり、また、加硫反応期内
の加硫度と等価加硫時間t0との関数関係はゴム配
合種により異なり、特に厚物加硫において表面層
が過加硫となるときの検出、制御を行う場合など
には、加硫もどり、劣化、硬化などが起こり、一
定の関数で表現できない点や、等価加硫時間t0
の換算精度が低いことから、加硫度の精度も不十
分であるという不具合がある。 本発明は、加硫反応の活性化エネルギを、基準
温度での等価加硫時間の関数として、また、加硫
度を、基準温度における等価加硫時間の関数とし
てそれぞれ取扱うことにより、加硫中のゴムの加
硫度を高精度で検出し、その加硫度に従つて制御
するゴム加硫工程の制御方法を提供することを目
的とする。 (課題を解決するための手段) 本発明は、ゴム加硫工程における加硫度を連続
的に検出して制御する方法であつて、基準温度に
おける加硫時間と加硫反応の活性化エネルギとの
関係に基づき、積算等価加硫時間t0における活性
化エネルギEを積算等価加硫時間t0の連続関数と
して決定する第1のステツプと、加硫中のゴム温
度を温度測定手段にて検出し一定時間Δt間隔で
もつて取り込み、第1のステツプで決定された連
続関数による活性化エネルギを用いて、アレニウ
スの式に基づいて各取り込み温度に対する基準温
度での等価加硫時間Δt0およびその積算値である
積算等価加硫時間t0を算出する第2のステツプ
と、基準温度における加硫時間と加硫度との関係
に基づき、第2のステツプにて算出された積算等
価加硫時間t0での加硫度xを算出する第3のステ
ツプと、上記第2ステツプ及び第3のステツプで
算出された、積算等価加硫時間t0または加硫度x
が、予め設定された積算等価加硫時間tpCおよび
加硫度xc以上であるか否かの比較判定を行い、加
硫工程の完了を判定する第4のステツプとを有す
る構成とする。 (作用) 第1図に示すように、ステツプS1で加硫時のゴ
ム温度を検出し、一定時間△tの間隔で取り込
む。t(i)時における温度をT(i)とする。続いて、ス
テツプS2で演算のために変換処理され、ステツプ
S3で、△tに等価の△t0(i)をアレニウスの式に基
いて演算処理する。 その後、ステツプS4で、△t0(i)の積算値すなわ
ち等価加硫時間t0(i)を演算処理する。 t0(i)ij=1 △t0(j)=T0(i-1)+△t0(i) 一方、ステツプS5で、等価加硫時間t0と活性化
エネルギEとの関係(組データ)を入力し、ステ
ツプS6で等価加硫時間t0(i-1)に対する活性化エネ
ルギE(i-1)を算出する。すなわち、連続関数E=
f1(t0)(多項回帰式)が決定される。 また、ステツプS7で、基準温度T0における加
硫度xと時間t0との関係(組データ)を入力し、
ステツプS8で、連続関数x=f2(t0)が決定される。 なお、ステツプS6およびS8における連続関数E
=f1(t0)、x=f2(t0)の決定の代わりに、スプライン
法、ラグランジエ法などの補間法を用いることも
できる。また、E=f1(t0)、x=f2(t0)の決定を別途
先に行つておき、その回帰係数のみを測定時に入
力するようにしてもよい。 次いで、ステツプS9で、等価加硫時間t0(i)に対
応する加硫度x(i)を算出し、ステツプS10で予め設
定された信号発信を要する加硫度xCとステツプS9
で算出された加硫度x(i)とを、ステツプS11におい
て比較判定し、x(i)≧xCの場合にはステツプS12
信号発信される。また、ステツプS10で信号発信
を要する等価加硫時間t0Cを設定入力し、ステツ
プS11においてt0(i)≧t0Cであるか否かの比較判定を
行い、t0(i)≧t0Cである場合にステツプS12で信号発
信するようにしてもよい。 この信号発信により加硫工程が完了したことが
確認される。 また、ステツプS13で、t(i)、T(i)、t0(i)、x(i)の出
力表示が行われる。 なお、t0(i=0)=0、E(i=0)=f2(0)で、最初の演算
に対してのみ適用される。iは温度の取り込み回
数を示す番号である。 (実施例) 以下、本発明の実施例を説明する。 上記方法を達成する装置の一例を、第2図に示
す。1は加硫中のゴム温度を検出する温度セン
サ、2は温度センサ1よりの電気信号をリニアラ
イズし電力のレベル変換を行う手段(リニアライ
ザ)、3はA/Dコンバータ、4はCPU5に取り
込むI/Oユニツトである。CPU5は、等価加
硫時間t0(i)における活性化エネルギE(i-1)加硫度
x(i-1)の演算、△t0(i)、t0(i)の演算、t0(i)とtC、x(i
)

xCとの比較演算を行い、表示、出力、命令を行
う。 6は表示部で、デイスプレイあるいは、必要に
よりプリンタにてt(i)、T(i)、t0(i)、x(i)の出力表示
を行う。7はキーボード等の入力手段で初期デー
タの入力および入力データの記憶、演算、表示、
信号発信のためのプログラムを入力する。8は外
部記憶装置で、プログラムおよびデータに対する
もので、必要に応じて組み込まれる。9はD/A
コンバータで、CPU5から発信される加硫装置
制御のためのデジタル信号を、I/Oユニツト4
を介して受け入れ、アナログ信号Aに変換する。 以下、本発明の実施例について説明する。 先ず、ゴムの配合を第1表に示す。
(Industrial Application Field) The present invention relates to an improvement in a method for controlling a rubber vulcanization process. (Prior Art) Conventionally, a so-called vulcanization totalizer using the Arrhenius equation has been used as a device for detecting the degree of vulcanization of rubber during vulcanization. In such a device, the activation energy and reference temperature for one vulcanization reaction are set in advance, and the actual temperature-time history during vulcanization is converted into an equivalent vulcanization time t 0 at the set reference temperature T 0 . It is possible to output a signal to the vulcanizer when a preset equivalent vulcanization time t 0 is reached. Incidentally, the conversion to the equivalent vulcanization time t 0 is based on the following principle based on the Arrhenius equation. The Arrhenius equation is well known to express the rate of chemical reactions. Here, k: reaction rate constant A: frequency factor E: activation energy R: gas constant T: reaction temperature If the reaction rate constant at reaction temperature T 0 is k 0 , then Therefore, the ratio of reaction rate constants k/k 0 is becomes. Therefore, if equation (2) is integrated over the reaction time t at T, equation (3) is obtained. The value t 0 obtained thereby represents how many times the reaction amount per unit time is at a certain predetermined temperature T 0 (hereinafter referred to as reference temperature), and is generally called the equivalent reaction time. (Problem to be solved by the invention) However, the vulcanization reaction does not have a single reaction mechanism;
Although the activation energy changes as vulcanization progresses, one activation energy determined for one degree of vulcanization is applied to the entire reaction process, so the equivalent vulcanization time t 0 The accuracy of conversion is poor, and this tendency is particularly pronounced for values at degrees of vulcanization that are far from the degree of vulcanization for which the activation energy was determined. Furthermore, although the actual degree of vulcanization does not change linearly with the equivalent vulcanization time t 0 , the degree of vulcanization is said to be proportional to the equivalent vulcanization time t 0 , and as mentioned above, the equivalent vulcanization Since the accuracy of conversion to time t 0 is low, the accuracy of the degree of vulcanization is also low. Therefore, in order to solve such problems, the vulcanization reaction is divided into an induction reaction period and a vulcanization reaction period, and two activation energies corresponding to each reaction period are used to perform vulcanization at a certain temperature. The time of the induction reaction period is calculated, and when the equivalent vulcanization time t0 exceeds this, vulcanization progresses due to an Arrhenius type chemical reaction, and the degree of vulcanization is calculated, and when this reaches a certain value, a signal is generated. (Refer to Japanese Patent Publication No. 57-50662), but even within the vulcanization reaction period, for example, 10%, 50%, 90%
Since some rubber compounds have significantly different activation energy determined from the % reaction point, the conversion accuracy to the equivalent vulcanization time t 0 is insufficient, and the equivalent degree of vulcanization within the vulcanization reaction period is insufficient. The functional relationship with the vulcanization time t 0 differs depending on the type of rubber compound.Especially when detecting and controlling when the surface layer becomes over-vulcanized during vulcanization of thick materials, it is important to check for re-vulcanization, deterioration, hardening, etc. occurs and cannot be expressed by a fixed function, and the accuracy of conversion to equivalent vulcanization time t 0 is low, so there is a problem that the accuracy of the degree of vulcanization is insufficient. The present invention has been developed by treating the activation energy of the vulcanization reaction as a function of the equivalent vulcanization time at a reference temperature, and the degree of vulcanization as a function of the equivalent vulcanization time at the reference temperature. An object of the present invention is to provide a method for controlling a rubber vulcanization process in which the degree of vulcanization of rubber is detected with high precision and the degree of vulcanization is controlled according to the degree of vulcanization. (Means for Solving the Problems) The present invention is a method for continuously detecting and controlling the degree of vulcanization in a rubber vulcanization process, which is based on the vulcanization time at a reference temperature and the activation energy of the vulcanization reaction. The first step is to determine the activation energy E at the cumulative equivalent vulcanization time t 0 as a continuous function of the cumulative equivalent vulcanization time t 0 based on the relationship, and to detect the rubber temperature during vulcanization using a temperature measuring means. Using the activation energy according to the continuous function determined in the first step, the equivalent vulcanization time Δt 0 and its integration at the reference temperature for each intake temperature are calculated based on the Arrhenius equation. The second step is to calculate the cumulative equivalent vulcanization time t0 , which is the value, and the cumulative equivalent vulcanization time t calculated in the second step based on the relationship between the vulcanization time and the degree of vulcanization at the reference temperature. The third step is to calculate the degree of vulcanization x at 0 , and the cumulative equivalent vulcanization time t0 or degree of vulcanization
The fourth step is to compare and determine whether or not the cumulative equivalent vulcanization time t pC and the degree of vulcanization x c are greater than or equal to a preset cumulative equivalent vulcanization time t pC and to determine whether the vulcanization process is complete. (Function) As shown in FIG. 1, in step S1 , the rubber temperature during vulcanization is detected and taken in at intervals of a predetermined time Δt. Let T (i) be the temperature at time t (i) . Subsequently, it is converted for calculation in step S2 , and then
In S3 , Δt 0(i) , which is equivalent to Δt, is calculated based on the Arrhenius equation. Thereafter, in step S4 , the integrated value of Δt 0(i) , that is, the equivalent vulcanization time t 0(i) is calculated. t 0(i) = ij=1 △t 0(j) = T 0(i-1) + △t 0(i) Meanwhile, in step S5 , the equivalent vulcanization time t 0 and activation energy E The relationship (set data) is input, and in step S6 , the activation energy E ( i-1) for the equivalent vulcanization time t 0 (i- 1) is calculated. That is, continuous function E=
f 1(t0) (polynomial regression equation) is determined. Also, in step S7 , input the relationship (set data) between the degree of vulcanization x at the reference temperature T0 and the time t0 ,
In step S8 , the continuous function x=f 2 (t0) is determined. In addition, the continuous function E in steps S 6 and S 8
Instead of determining =f 1 (t0) and x = f 2 (t0) , an interpolation method such as a spline method or a Lagrange method can also be used. Alternatively, E=f 1(t0) and x=f 2(t0) may be determined separately in advance, and only the regression coefficients thereof may be input at the time of measurement. Next, in step S9 , the degree of vulcanization x(i ) corresponding to the equivalent vulcanization time t0(i) is calculated, and in step S10 , the degree of vulcanization xC which requires a preset signal transmission and step S 9
The degree of vulcanization x (i) calculated in step S11 is compared and determined, and if x (i)xC , a signal is transmitted in step S12 . Further, in step S10 , the equivalent vulcanization time t0C required for signal generation is set and input, and in step S11 , a comparison is made to determine whether t0 (i)t0C , and t0(i) ≧ The signal may be transmitted in step S12 when t 0C . This signal transmission confirms that the vulcanization process has been completed. Furthermore, in step S13 , t (i) , T (i) , t 0 (i) , and x (i) are output and displayed. Note that t 0 (i=0) = 0, E (i = 0) = f 2 (0) , and is applied only to the first operation. i is a number indicating the number of times the temperature is taken. (Example) Hereinafter, an example of the present invention will be described. An example of an apparatus for accomplishing the above method is shown in FIG. 1 is a temperature sensor that detects the rubber temperature during vulcanization, 2 is a means (linearizer) for linearizing the electrical signal from temperature sensor 1 and converting the power level, 3 is an A/D converter, and 4 is input to the CPU 5. It is an I/O unit. CPU5 is the activation energy E (i-1) vulcanization degree at equivalent vulcanization time t 0 (i)
Calculation of x (i-1) , △t 0(i) , calculation of t 0(i ), t 0(i) and t C , x (i
)
and
x Performs comparison operations with C and performs display, output, and commands. Reference numeral 6 denotes a display unit, which outputs and displays t (i) , T (i) , t 0 (i) , and x (i) on a display or, if necessary, on a printer. 7 is an input means such as a keyboard for inputting initial data, storing input data, calculating, displaying,
Enter the program for signal transmission. 8 is an external storage device for programs and data, which is installed as necessary. 9 is D/A
The converter converts digital signals sent from the CPU 5 to control the vulcanizer to the I/O unit 4.
and converts it into an analog signal A. Examples of the present invention will be described below. First, the rubber formulation is shown in Table 1.

【表】 次いで、キユラストメータを用いて測定した、
160℃での等価加硫時間t0、加硫度x、および135
℃〜190℃の範囲で設定した活性化エネルギEの
関係を、第2表に示す。
[Table] Next, we measured using a cuylastometer,
Equivalent vulcanization time t 0 at 160 °C, degree of vulcanization x, and 135
Table 2 shows the relationship between activation energy E set in the range of 190°C to 190°C.

【表】【table】

【表】 上記*は加硫戻りがあつた。
第2表より、活性化エネルギEが、等価加硫時
間t0、加硫度xとともに変化していることがわか
る。 第3図には、170℃で缶加硫を行つた場合の実
際の加硫時間に対する温度変化を△t=0.5分毎
に本発明方法に基づいて求めた結果を、第4図お
よび第5図に示す。なお、この場合、E(i-1)、x(i)
の算出はスプライン補間法を用いている。第4図
には、基準温度にて1mm厚のゴムシートのプレス
加硫を行つた試料のトルエン膨潤率、ゲル分率
と、実施例にて加硫を行つた試料のトルエン膨潤
率、ゲル分率との比較により、t−t0の関係を求
めた結果を、○印にて示している。また、比較例
として、i)加硫度x=85%でもつて求めた活性
化エネルギEを全加硫過程に対して適用した例を
破線で、)誘導期の活性化エネルギE
(17.4kcal/mole)と加硫期の活性化エネルギE
(19.1cal/mole:x=85%のときにおける値とを
それぞれの期間に適用した例を一点鎖線で示す。
さらに、第4図、第5図より、加硫度xを等価加
硫時間t0に対してプロツトした結果を、第6図に
示す。図中、太線はキユラストメータのトルク値
に基づく加硫度(F−Fnio)/(Fnax−Fnio
(F:トルク値、Fnio:最低トルク値、Fnax:最
大トルク値)を示している。 第4図において、○印の実測値に対して極めて
近い値を示していることがわかる。また、当然の
ことながら、第6図においては、キユラストメー
タ加硫曲線による結果と良好に一致している。 なお、上述したほか、本発明は、反応期間全体
を通じて、あるいは部分的な期間を取り上げた場
合、その反応速度定数と温度との関係がアレニウ
スの式で表現される化学反応工程の制御にも適用
できる。 (発明の効果) 本発明は上記のように構成したから、加硫中の
ゴムの加硫度の制御および管理を極めて精度よく
行うことができ、また、加硫度に基づく加硫条件
(温度、圧力など)の制御を精度よく、加硫装置
の制御部と接続することにより自動的に行うこと
が可能となり、さらに加硫装置の温度管理精度の
レベルを落とすこともできる。
[Table] In the case of * above, reversion occurred.
From Table 2, it can be seen that the activation energy E changes with the equivalent vulcanization time t 0 and the degree of vulcanization x. Figure 3 shows the results obtained based on the method of the present invention at intervals of △t = 0.5 minutes for the temperature change with respect to the actual vulcanization time when can vulcanization was performed at 170°C. As shown in the figure. In this case, E (i-1) , x (i)
The calculation uses spline interpolation. Figure 4 shows the toluene swelling ratio and gel fraction of the sample obtained by press vulcanization of a 1 mm thick rubber sheet at the standard temperature, and the toluene swelling ratio and gel fraction of the sample vulcanized in the example. The results of determining the t−t 0 relationship by comparison with the ratio are indicated by circles. In addition, as a comparative example, i) An example in which the activation energy E obtained at a degree of vulcanization x = 85% is applied to the entire vulcanization process is shown by the broken line, and the activation energy E in the induction period is
(17.4kcal/mole) and activation energy E during vulcanization
(19.1 cal/mole: the value when x = 85%) is applied to each period, and the dashed line shows an example.
Further, from FIGS. 4 and 5, the degree of vulcanization x is plotted against the equivalent vulcanization time t 0 and the results are shown in FIG. In the figure, the thick line is the degree of vulcanization (F − F nio ) / (F nax − F nio ) based on the torque value of the culastometer.
(F: Torque value, F nio : Minimum torque value, F nax : Maximum torque value). In FIG. 4, it can be seen that the values are extremely close to the actual measured values marked with a circle. Further, as a matter of course, the results shown in FIG. 6 are in good agreement with the results obtained by the cuelastomer vulcanization curve. In addition to the above, the present invention can also be applied to the control of chemical reaction processes where the relationship between the reaction rate constant and temperature is expressed by the Arrhenius equation during the entire reaction period or when a partial period is taken up. can. (Effects of the Invention) Since the present invention is constructed as described above, it is possible to control and manage the degree of vulcanization of rubber during vulcanization with extremely high accuracy, and the vulcanization conditions based on the degree of vulcanization (temperature , pressure, etc.) can be controlled accurately and automatically by connecting to the control section of the vulcanizer, and it is also possible to lower the level of temperature control accuracy of the vulcanizer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明制御方法の流れを示すブロツク
図、第2図は本発明制御方法を達成する装置の一
例を示すブロツク図、第3図ないし第6図はそれ
ぞれ実施例についてのグラフである。 1……温度センサ、5……CPU。
Fig. 1 is a block diagram showing the flow of the control method of the present invention, Fig. 2 is a block diagram showing an example of a device for achieving the control method of the present invention, and Figs. 3 to 6 are graphs for respective embodiments. . 1...Temperature sensor, 5...CPU.

Claims (1)

【特許請求の範囲】 1 ゴム加硫工程における加硫度を連続的に検出
して制御する方法であつて、 基準温度における加硫時間と加硫反応の活性化
エネルギとの関係に基づき、積算等価加硫時間t0
における活性化エネルギEを積算等価加硫時間t0
の連続関数として決定する第1のステツプと、 加硫中のゴム温度を温度測定手段にて検出し一
定時間Δt間隔でもつて取り込み、第1のステツ
プで決定された連続関数による活性化エネルギを
用いて、アレニウスの式に基づいて各取り込み温
度に対する基準温度での等価加硫時間Δt0および
その積算値である積算等価加硫時間t0を算出する
第2のステツプと、 基準温度における加硫時間と加硫度との関係に
基づき、第2のステツプにて算出された積算等価
加硫時間t0での加硫度xを算出する第3のステツ
プと、 上記第2ステツプ及び第3のステツプで算出さ
れた、積算等価加硫時間t0または加硫度xが、予
め設定された積算等価加硫時間tpcおよび加硫度xc
以上であるか否かの比較判定を行い、加硫工程の
完了を判定する第4のステツプとを有することを
特徴とするゴム加硫工程の制御方法。
[Scope of Claims] 1. A method for continuously detecting and controlling the degree of vulcanization in a rubber vulcanization process, which comprises: Equivalent vulcanization time t 0
Integrate the activation energy E at the equivalent vulcanization time t 0
The first step is to determine the temperature of the rubber during vulcanization as a continuous function of The second step is to calculate the equivalent vulcanization time Δt 0 at the reference temperature for each intake temperature and the cumulative equivalent vulcanization time t 0 which is the integrated value thereof based on the Arrhenius equation; and the vulcanization time at the reference temperature. a third step of calculating the degree of vulcanization x at the cumulative equivalent vulcanization time t 0 calculated in the second step based on the relationship between the degree of vulcanization and the degree of vulcanization; The cumulative equivalent vulcanization time t 0 or degree of vulcanization x calculated in
A method for controlling a rubber vulcanization process, comprising a fourth step of comparing and determining whether or not the above is true, and determining whether the vulcanization process is completed.
JP7547583A 1983-04-28 1983-04-28 Control of rubber vulcanizing process Granted JPS59199234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7547583A JPS59199234A (en) 1983-04-28 1983-04-28 Control of rubber vulcanizing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7547583A JPS59199234A (en) 1983-04-28 1983-04-28 Control of rubber vulcanizing process

Publications (2)

Publication Number Publication Date
JPS59199234A JPS59199234A (en) 1984-11-12
JPH0340686B2 true JPH0340686B2 (en) 1991-06-19

Family

ID=13577359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7547583A Granted JPS59199234A (en) 1983-04-28 1983-04-28 Control of rubber vulcanizing process

Country Status (1)

Country Link
JP (1) JPS59199234A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3549552B2 (en) * 1993-06-29 2004-08-04 株式会社ブリヂストン Vulcanization control method and vulcanization system
EP1068941B1 (en) * 1999-07-14 2004-08-25 PIRELLI PNEUMATICI S.p.A. Method for vulcanizing a tyre by predetermining its degree of vulcanization

Also Published As

Publication number Publication date
JPS59199234A (en) 1984-11-12

Similar Documents

Publication Publication Date Title
JP2000278990A (en) Motor controlling device
JPH06323985A (en) Method and apparatus for measuring basic viscoelasticity
WO2017211071A1 (en) Temperature prediction method and apparatus thereof
JPH0340686B2 (en)
JP3809527B2 (en) Eigendeformation calculation device, computer program, recording medium, and method of calculating intrinsic deformation during welding
WO2021157541A1 (en) Decarburization end-point determination method, decarburization end-point determination device, secondary refining operation method for steel making, and method for producing molten steel
Brauner et al. Identifying and removing sources of imprecision in polynomial regression
JP4663400B2 (en) Container inspection method and apparatus
JP4658531B2 (en) Thermal displacement estimation method for machine tools
CN112487637A (en) Method for detecting ambient temperature by self-heating equipment
JPS62235529A (en) Automatically calibrating induction type sodium level meter
JPH0593684A (en) Method and apparatus for measuring estimated moisture content in infrared moisture meter
CN111504849B (en) Error calibration method for transmission type black-and-white densitometer
US20220011100A1 (en) Accuracy diagnostic device and accuracy diagnostic method for machine tool
CN114062167B (en) Method for accurately controlling constant strain rate of normal-temperature sample of universal testing machine in stretching process
JP5351508B2 (en) Polynomial generator for estimation, estimation apparatus, polynomial generation method for estimation, and estimation method
KR100371685B1 (en) Measuring device for reaction rate during manufacturing process with mold and measuring method thereof
WO2020261492A1 (en) Temperature estimation device and temperature estimation method
JPH0384496A (en) Method and instrument for measuring temperature coefficient of moderator of nuclear reactor
JPH08132506A (en) Heat transfer coefficient calculating method for injection molding mold
JPH0241700B2 (en)
JP2919891B2 (en) Power system monitoring and control system
JPH0515201B2 (en)
SU603850A1 (en) Rate-of-flow meter
CN117490912A (en) Method, device and system for calibrating pressure of pushing handle of injection pump and storage medium