JPH0340499Y2 - - Google Patents

Info

Publication number
JPH0340499Y2
JPH0340499Y2 JP11359383U JP11359383U JPH0340499Y2 JP H0340499 Y2 JPH0340499 Y2 JP H0340499Y2 JP 11359383 U JP11359383 U JP 11359383U JP 11359383 U JP11359383 U JP 11359383U JP H0340499 Y2 JPH0340499 Y2 JP H0340499Y2
Authority
JP
Japan
Prior art keywords
drill
head
tip
cutting
cutting edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11359383U
Other languages
Japanese (ja)
Other versions
JPS6022211U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11359383U priority Critical patent/JPS6022211U/en
Publication of JPS6022211U publication Critical patent/JPS6022211U/en
Application granted granted Critical
Publication of JPH0340499Y2 publication Critical patent/JPH0340499Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、鋼製シヤンクの先端に超硬合金製の
ヘツドを鑞付け接合した深穴加工用のドリルに関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a drill for drilling deep holes in which a cemented carbide head is brazed to the tip of a steel shank.

〔従来の技術とその課題〕[Conventional technology and its issues]

穿孔作業の高能率化、ドリルの長寿命化のため
に鋼製シヤンクの先端に超硬合金製のヘツドを鑞
付けしたドリルは、よく知られている。
Drills with a cemented carbide head brazed to the tip of a steel shank are well known in order to improve drilling efficiency and extend the life of the drill.

ところで、加工孔深さがドリル径の3倍以上と
なる深孔切削では、ツイストドリルを使用した場
合切屑が詰まり易く、その円滑な排出が望めな
い。
By the way, in deep hole cutting where the depth of the machined hole is three times or more the diameter of the drill, when a twist drill is used, chips are likely to become clogged, and smooth discharge of chips cannot be expected.

そこで、通常はドリルの使用条件(回転数、送
り速度)を下げたり、或いは加工中に数度のステ
ツプフイードをかけたりして切屑排出性の悪さを
カバーしているが、これでは切削能率を高めるこ
とができない。
Therefore, the poor chip evacuation is usually compensated for by lowering the operating conditions of the drill (rotation speed, feed rate) or applying step feed several times during machining, but this does not improve cutting efficiency. I can't.

切屑の排出性は、ねじれ溝を深くする、つま
り、芯厚(ウエブ厚)を薄くするほど良くなる
が、超硬ドリルは鋼製ドリルに比べて脆く、折れ
易いため、芯厚を薄くしようとすれば条件として
切削動力を下げることが必要になる。この切削動
力の低減のために、ドリルにおいてはシンニング
処理で先端芯厚を薄くする方法が採られる。
The chip evacuation performance improves as the helical groove becomes deeper, that is, the core thickness (web thickness) becomes thinner, but since carbide drills are more brittle and break easily than steel drills, attempts are made to reduce the core thickness. If so, it becomes necessary to lower the cutting power as a condition. In order to reduce this cutting power, a method of thinning the tip of the drill is used to reduce the thickness of the tip.

ところが、一般に広く行なわれているシンニン
グ処理のみによつてドリルの先端芯厚を薄くする
方法(例えば特開昭56−82105号の第2図或いは
第3図に示される方法)では、次のような問題が
生じる。
However, in the generally widely used method of thinning the core thickness of the drill tip using only thinning treatment (for example, the method shown in Fig. 2 or 3 of JP-A-56-82105), the following A problem arises.

即ち、今、仮に、スラスト力低減のため、一般
の刃先構成思想に基づく第6図に示すようなシン
ニング処理(図の斜線部がシンニング溝)を行な
つて先端芯厚を薄くすることを考えた場合、シン
ニング溝に沿つた部分では切刃6の軸方向すくい
角(アキシヤルレーキ)(第7図のβ)が負のす
くい角(一般にその角度は約−25°)となり、当
該部位における切削形態が、チゼル刃11と同じ
塑性加工の形態に近づく。このため、シンニング
溝に沿つた負角切刃の長さが全長の約半分程度に
抑えられたとしても切削動力(トルク・スラス
ト)は非常に大きくなり、芯厚の薄肉化による切
削動力の低減効果が殺されてしまう。従つて、そ
れだけ余分に強度(ねじれ及び曲げ剛性)を必要
とする。
That is, let's assume that in order to reduce the thrust force, we would perform a thinning process as shown in Figure 6 based on the general concept of cutting edge construction (the shaded area in the figure is the thinning groove) to reduce the tip core thickness. In this case, the axial rake angle (β in Fig. 7) of the cutting edge 6 in the part along the thinning groove becomes a negative rake angle (generally, the angle is about -25°), and the cutting form in that part However, it approaches the same plastic working form as the chisel blade 11. For this reason, even if the length of the negative angle cutting edge along the thinning groove is suppressed to about half of the total length, the cutting power (torque/thrust) will be extremely large, and the reduction in cutting power due to the thinning of the core thickness will result. is killed. Therefore, extra strength (torsional and bending rigidity) is required.

また、その余分な強度は芯厚を厚くして確保せ
ざるを得ないが、切刃の芯上り量W1/2が大き
くなるにつれて負のラジアルレーキ角−γが大き
くなり、これにより、切屑Aは外側に流れる力が
強まつて切削穴の内面に押し付けられ、また、ド
リル外周と穴面との間にも入り込み易くなるため
トルクは更に上昇する。このため、従来の超硬ド
リルは芯厚をある程度厚くせざるを得ず、切屑の
排出性を高めることができなかつた。
In addition, the extra strength must be secured by increasing the core thickness, but as the center rise amount W 1/2 of the cutting edge increases, the negative radial rake angle -γ increases, which causes the chip The force of A flowing outward increases and it is pressed against the inner surface of the cut hole, and it also becomes easier to enter between the outer periphery of the drill and the hole surface, so the torque further increases. For this reason, conventional carbide drills have had to have a core thickness that is somewhat thick, and it has been impossible to improve chip evacuation.

また、深穴の切削で従来行なわれているように
切削油を外部供給した場合、油が刃先部分迄充分
に届かず、切削熱が穴内部にこもり、首記した如
き超硬ヘツド鑞付式のドリルにおいては、その熱
と切屑詰まりとが合いまつて、超硬ヘツドの脱落
事故を生じ易い。
In addition, when cutting oil is supplied externally as is conventionally done when cutting deep holes, the oil does not reach the cutting edge sufficiently and the cutting heat is trapped inside the hole. In such drills, the heat and chip clogging combine to easily cause the carbide head to fall off.

〔課題を解決するための手段〕[Means to solve the problem]

本考案は、上述した課題を解決するため、鋼製
本体2の先端に1.0D〜2.5D(D=ドリル径)の長
さの超硬合金製ヘツド3を鑞付け接合してある2
枚刃のツイストドリルにおいて、ヘツド3の先端
部を除く個所の芯厚W1をほぼ0.35D〜0.45Dとし、
ヘツド3の先端部には、切刃6の直線部の全域の
軸方向すくい角βを0〜15°の範囲で一定にし、
かつ、先端芯厚W2を0.15D〜0.25Dにする平坦な
すくい面7と、このすくい面7の内端から立ち上
がつてドリルの中心側にねじれ溝のねじれ方向に
傾いたコーナを作り出すブレーカ壁8と、回転中
心近傍に位置してチゼル刃11の巾W3を0.05D〜
0.10Dにするシンニング溝10を設け、上記すく
い面7はドリル軸方向の巾が切刃6の内端側から
外端側に向かつて次第に狭くなり、切刃外端部で
その巾aが0.05D〜0.10Dとなる大きさとし、ま
た、本体2とヘツド3の内部にヘツド3内で分岐
して分岐孔5aの各々が2個所ある逃げ面9に中
心対称に抜ける給油孔5を設け、その孔の分岐前
の径を0.2D以下、分岐後の径を0.15D以下にした
構成となす。
In order to solve the above-mentioned problems, the present invention has a cemented carbide head 3 having a length of 1.0D to 2.5D (D = drill diameter) joined to the tip of a steel body 2 by brazing.
In a single-blade twist drill, the core thickness W 1 of the part excluding the tip of the head 3 is approximately 0.35D to 0.45D,
The tip of the head 3 has a constant axial rake angle β in the range of 0 to 15° over the entire straight section of the cutting edge 6.
In addition, a flat rake face 7 with a tip core thickness W 2 of 0.15D to 0.25D and a corner rising from the inner end of this rake face 7 and tilted in the twisting direction of the helical groove on the center side of the drill are created. The width W3 of the breaker wall 8 and the chisel blade 11 located near the center of rotation is 0.05D~
A thinning groove 10 with a diameter of 0.10D is provided, and the width of the rake face 7 in the drill axis direction gradually becomes narrower from the inner end of the cutting blade 6 toward the outer end, and the width a becomes 0.05 at the outer end of the cutting blade. D to 0.10D, and oil supply holes 5 are provided inside the main body 2 and the head 3 to branch within the head 3 and exit symmetrically on the flank 9, each having two branch holes 5a. The diameter of the hole before branching is 0.2D or less, and the diameter after branching is 0.15D or less.

〔作用〕[Effect]

ヘツド先端部にねじれ溝のねじれ角を溝巾の全
域にわたつて小さくする平坦なすくい面(第8図
の7)を設けると、切刃6の刃先角を極端に鈍ら
せずに、つまり、切刃直線部の軸方向のすくい角
β(第5図及び第10図)を全域において0〜15°
の範囲で一定にしてドリル先端の芯厚を第6図の
W1から第8図のW2まで減少させることができ
る。この状態からチゼル刃11の巾を第8図の
W3まで減少させるシンニング溝10は深さの浅
いものでよく、この浅いシンニング溝10を切刃
6の内端近傍に設けているため、シンニング溝に
よつて切刃が負角になる領域が非常に少なくなる
(浅い溝でも切刃6の外端側に広がつていると刃
先の鈍化領域は増える。)従つて、従来のシンニ
ング処理に比べて切味低下が少なく、切削動力が
小さくなる。
By providing a flat rake face (7 in Fig. 8) at the tip of the head to reduce the helix angle of the helical groove over the entire groove width, the cutting edge angle of the cutting edge 6 can be prevented from becoming extremely blunt. The rake angle β in the axial direction of the straight part of the cutting edge (Figs. 5 and 10) is 0 to 15° over the entire area.
The core thickness of the drill tip is kept constant within the range shown in Figure 6.
It can be reduced from W 1 to W 2 in FIG. From this state, change the width of the chisel blade 11 as shown in Figure 8.
The thinning groove 10 for reducing W to 3 may have a shallow depth, and since the shallow thinning groove 10 is provided near the inner end of the cutting edge 6, the area where the cutting edge becomes a negative angle is reduced by the thinning groove. (Even if the groove is shallow, if it spreads toward the outer end of the cutting edge 6, the blunted area of the cutting edge will increase.) Therefore, compared to conventional thinning treatment, there is less deterioration in cutting quality and the cutting power is reduced. .

また、第8図に示す切刃6の芯上り量もW2
2となつてラジアルレーキ角−γ′が−γ′<−γと
なるため、切屑Aが孔内面に押し付けられる力が
弱まるだけなくドリル外周部にも入り込み難くな
る。これ等に加えて、すくい面7がドリル先端部
における切屑の排出スペースを広げ、また、ブレ
ーカ壁8がドリル中心部に向かう切屑の流れ方向
を変化させて溝4内に円滑に流れ込ませる働きを
する。また、本体内部の給油孔5(第5図)より
逃げ面9側に切削油を給油するので、戻り油によ
つて切屑が強制排出され、従つて、切屑の流れも
安心し、そのためにトルクは更に小さくなる。こ
のように、この考案のドリルはすくい面7とブレ
ーカ壁8があるが故に切削動力の増加が最小限に
抑えられ、そのため、芯厚W1を従来よりも薄く
して(ねじれ溝4が深くなる)切屑排出性を高め
ることができる。また、切削動力が小さく、切屑
の排出も円滑になるため、切削熱と切屑詰まりに
起因したヘツドの脱落も起こらない。
In addition, the amount of center rise of the cutting blade 6 shown in Fig. 8 is also W 2 /
2, and the radial rake angle -γ' becomes -γ'<-γ, which not only weakens the force with which the chips A are pressed against the inner surface of the hole but also makes it difficult for them to enter the outer periphery of the drill. In addition, the rake face 7 widens the space for discharging chips at the tip of the drill, and the breaker wall 8 works to change the flow direction of chips toward the center of the drill so that they flow smoothly into the groove 4. do. In addition, since cutting oil is supplied from the oil supply hole 5 (Fig. 5) inside the main body to the side of the flank 9, the chips are forcibly discharged by the return oil, and therefore the flow of chips is also safe, which makes it possible to increase the torque. becomes even smaller. In this way, since the drill of this invention has the rake face 7 and the breaker wall 8 , the increase in cutting power is minimized. ) can improve chip evacuation. In addition, since the cutting power is small and chips are smoothly discharged, the head does not fall off due to cutting heat and chip clogging.

ヘツドの長さ(第2図のl0)は、短か過ぎると
本体との鑞付け接合部に切削熱が伝わり易く、ま
た、長くなるほど強度面から厚い芯厚を必要とす
る。一方、芯厚W1は、薄過ぎるとヘツドの曲げ
剛性(これが低いといわゆるビビリを生じて刃先
が欠け易くなる)とねじれ剛性が不足し、厚過ぎ
ると切屑の排出性が悪くなる。そこでこれ等の兼
合いを考えてヘツド長さl0を1D〜2.5D、芯厚W1
をほぼ0.35D〜0.45Dに規定した。
If the length of the head (l 0 in FIG. 2) is too short, cutting heat will easily be transferred to the brazed joint with the main body, and the longer the head, the greater the core thickness is required from the viewpoint of strength. On the other hand, if the core thickness W1 is too thin, the bending rigidity of the head (if it is low, so-called chatter will occur and the cutting edge is likely to chip) and torsional rigidity will be insufficient, and if it is too thick, the chip evacuation will be poor. Therefore, considering these factors, the head length l 0 is 1D to 2.5D, and the core thickness W 1
was defined as approximately 0.35D to 0.45D.

また、すくい面7がねじれ溝4のねじれ角α
(第5図)を大きく戻すほどヘツド3の先端芯厚
W2は小さくなり、スラストが低減されるが、W2
を小さくし過ぎるとヘツド先端が不必要に減肉さ
れて強度不足を招き、切刃6の軸方向すくい角β
(第5図)も鈍くなつて切味も落ちる。切刃6は
βが0〜15°あれば良好な切味を発揮するのでこ
れ等を考えて切刃の軸方向すくい角βを0〜15°、
ヘツドの先端芯厚W2を0.15〜0.25Dに定めた。
Also, the rake face 7 has a helix angle α of the helical groove 4.
(Fig. 5) The larger the return, the thicker the tip of head 3.
W 2 becomes smaller and the thrust is reduced, but W 2
If it is made too small, the tip of the head will be unnecessarily thinned, resulting in insufficient strength, and the axial rake angle β of the cutting edge 6 will decrease.
(Figure 5) also becomes dull and loses its sharpness. The cutting edge 6 exhibits good cutting quality if β is 0 to 15 degrees, so taking this into consideration, the axial rake angle β of the cutting blade is set to 0 to 15 degrees,
The tip core thickness W2 of the head was set at 0.15 to 0.25D.

さらに、チゼル刃11の巾W3はスラスト力低
減のために上限を0.1Dとし、下限はチゼル刃の
機能維持を考えて0.05Dを選んだ。
Furthermore, the upper limit of the width W 3 of the chisel blade 11 was set to 0.1D in order to reduce the thrust force, and the lower limit was selected to be 0.05D in consideration of maintaining the function of the chisel blade.

このほか、すくい面7のドリル外周部における
ドリル軸方向巾aを0.05D〜0.10Dに限定したの
は、切刃6の性状をほぼ全域(シンニング部を除
く切刃直線部)において一定させるためと、ヘツ
ドが無駄に削られて強度面で不利になることを避
けるためである。
In addition, the drill axial width a at the drill outer circumference of the rake face 7 is limited to 0.05D to 0.10D in order to keep the properties of the cutting edge 6 constant over almost the entire area (the straight part of the cutting edge excluding the thinning part). This is to avoid unnecessary cutting of the head, which would be disadvantageous in terms of strength.

なお、芯厚W1をいかに大きくしても、給油孔
5の径が大きくなればドリル断面積が減少し、本
体のねじれ、曲げ剛性が低下するので、孔5の分
岐前の径d1(第4図)は上限を0.2Dにする。下限
は切削油の供給量不足を招かないために0.1D程
度に止めるのが望ましい。同様の理由から孔5先
端の分岐孔5aも径d2を0.1〜0.5D程度にしてお
く。
Note that no matter how large the core thickness W 1 is, if the diameter of the oil supply hole 5 increases, the drill cross-sectional area will decrease, and the torsional and bending rigidity of the main body will decrease, so the diameter d 1 of the hole 5 before branching ( Figure 4) sets the upper limit to 0.2D. It is desirable to keep the lower limit at around 0.1D to avoid a shortage of cutting oil supply. For the same reason, the diameter d2 of the branch hole 5a at the tip of the hole 5 is set to about 0.1 to 0.5D.

〔実施例〕〔Example〕

以下、添付図に基づいて、本考案ドリルの一実
施例を説明する。
Hereinafter, one embodiment of the drill of the present invention will be described based on the attached drawings.

第1図、第2図、第4図における符号1は、本
考案のドリルである。このドリル1は、鋼製本体
2の先端に超硬合金製のヘツド3を鑞付け接合し
て成る(14が接合部)。本体2とヘツド3の外
周部には2本のねじれ溝4が形成され、さらに、
その本体とヘツドの内部には第4図を見てわかる
ように、ヘツド3内で分岐して各分岐孔5aがド
リルの逃げ面9に抜ける供給孔5が設けられてい
る。
Reference numeral 1 in FIGS. 1, 2, and 4 indicates the drill of the present invention. This drill 1 is constructed by brazing and joining a cemented carbide head 3 to the tip of a steel body 2 (14 is the joint). Two twisted grooves 4 are formed on the outer peripheries of the main body 2 and the head 3, and furthermore,
As can be seen from FIG. 4, supply holes 5 are provided inside the main body and head, which are branched within the head 3 and each branch hole 5a passes through the flank 9 of the drill.

また、ヘツド3の先端部、即ち、各ねじれ溝4
の先端部には、ねじれ溝4のねじれ角α(第5図
参照)を、切刃6の軸方向すくい角がβ=0〜
15°の値となるように小さくする平坦なすくい面
7と、この面の内端側から立ち上がるブレーカ壁
8と、チゼル厚(巾)調整のためのシンニング溝
10が形成されている。
In addition, the tip of the head 3, that is, each helical groove 4
The tip of the helical groove 4 has a helix angle α (see Fig. 5), and the axial rake angle of the cutting edge 6 is β=0 to
A flat rake face 7 that is reduced to a value of 15°, a breaker wall 8 rising from the inner end of this face, and a thinning groove 10 for adjusting the chisel thickness (width) are formed.

このドリルのヘツド3の長さl0(第2図)は、
ドリル径Dの1〜2.5倍あり、また、ドリルのヘ
ツド先端部を除く部分の芯厚W1(第3図)は、所
要のねじれ、曲げ剛性確保のため0.35〜0.45Dと
され、さらに、回転中心部を除くヘツド先端部の
芯厚W2とチゼル刃11の巾W3は、W2=0.15D〜
0.25D、W3=0.05D〜0.1Dとされている。
The length l 0 of the head 3 of this drill (Fig. 2) is:
It is 1 to 2.5 times the drill diameter D, and the core thickness W 1 (Fig. 3) of the part of the drill excluding the head tip is set to 0.35 to 0.45 D to ensure the required torsional and bending rigidity. The core thickness W 2 of the tip of the head excluding the center of rotation and the width W 3 of the chisel blade 11 are W 2 = 0.15D ~
0.25D, W 3 =0.05D to 0.1D.

また、すくい面7のドリル外周部における軸方
向巾aは0.05D〜0.1Dとされ、ブレーカ壁8はそ
の延び方向をねじれ溝4のねじれ方向に傾けてあ
る。
Further, the axial width a of the rake face 7 at the outer periphery of the drill is set to 0.05D to 0.1D, and the extending direction of the breaker wall 8 is inclined toward the twisting direction of the twisting groove 4.

さらに、給油孔5は、分岐する前の径d1(第4
図)を0.1D〜0.2Dとし、分岐孔5aの径d2も0.1D
〜0.15Dにしてある。
Furthermore, the oil supply hole 5 has a diameter d 1 (fourth diameter) before branching.
(Fig.) is 0.1D to 0.2D, and the diameter d2 of the branch hole 5a is also 0.1D.
It is set to ~0.15D.

このドリルは、今、第11図において、芯厚
W2が限定されると切刃6の内端位置Qが決まり、
すくい面7の外端の巾aと切刃6の軸方向すくい
角βの限定で切刃6の外端位置Sが決まり、これ
によつて切刃6の全体の位置が定まる。
This drill now has a core thickness of
When W 2 is limited, the inner end position Q of the cutting edge 6 is determined,
The outer end position S of the cutting edge 6 is determined by the width a of the outer end of the rake face 7 and the axial rake angle β of the cutting edge 6, and thereby the overall position of the cutting edge 6 is determined.

また、上記のaとβが決まれば、すくい面7の
後端縁はねじれ溝4と交わるのですくい面7の全
体の巾及び形も決まる。必然的に切刃6の内端側
ほど巾が広くなるが、内端側の巾は溝4のねじれ
角や溝のコーナRの大きさ等が影響するので、a
とβが同じであつても変わることがある。
Furthermore, once the above a and β are determined, the rear end edge of the rake face 7 intersects with the helical groove 4, so the overall width and shape of the rake face 7 is also determined. Naturally, the width becomes wider toward the inner end of the cutting edge 6, but the width at the inner end is affected by the helix angle of the groove 4, the size of the corner radius of the groove, etc.
Even if and β are the same, they may change.

さらに、切刃6の軸方向すくい角βも直線部の
全域において一定する。すくい面7が第10図に
鎖線で示すようなねじれた面であればβの値は切
刃の各部で変わつてくるが面7は平坦であるの
で、このような変化は起こらない。
Furthermore, the axial rake angle β of the cutting edge 6 is also constant throughout the straight portion. If the rake face 7 is a twisted surface as shown by the chain line in FIG. 10, the value of β will change at each part of the cutting edge, but since the face 7 is flat, such a change does not occur.

なお、分岐孔5aの第3図に示す逃げ面9上の
開口位置は、切刃6及びドリル中心部に近づくに
つれてオイルクリアランス(被削面との間の〓
間)が小さくなつて油の出が悪化することのない
ように基準線(2つの切刃の中心を通る線)に対
する角度θが30〜40°で両孔のピツチPが0.6〜
0.8Dとなる個所に設けるのがよい。
Note that the opening position of the branch hole 5a on the flank 9 shown in FIG. 3 changes as it approaches the cutting edge 6 and the drill center.
The angle θ to the reference line (the line passing through the center of the two cutting edges) should be 30 to 40 degrees, and the pitch P of both holes should be 0.6 to 0.6 to prevent the oil flow from worsening due to a decrease in the distance between the two holes.
It is best to install it at a location that is 0.8D.

また、孔5の分岐部は、鑞付け接合時の鑞材に
よる孔詰まり防止のため、ヘツド3の接合面から
の距離l1(第4図)が1〜5mm程度となる位置に
形成するのがよい。
In addition, the branching part of the hole 5 should be formed at a position where the distance l 1 (Fig. 4) from the joint surface of the head 3 is about 1 to 5 mm to prevent the hole from being clogged by the solder material during soldering. Good.

さらに、シンニング溝10と逃げ面9との交線に
よつて形成される刃が切刃6の直線部につながる
部分の交線6a(第3図)は小円弧の丸味を付し
て強化しておくとよい。この円弧処理による切刃
の欠け防止効果は良く知られたことである。さら
に、これも良く知られたことであるが、ヒール部
12を0.2D程度のR面13にて丸めることによ
り切屑排出性をより高めることが出来る。
Furthermore, the intersection line 6a (Fig. 3) where the blade formed by the intersection line of the thinning groove 10 and the flank face 9 connects to the straight part of the cutting edge 6 is rounded with a small arc to strengthen it. It's good to keep it. The effect of this circular arc treatment on preventing chipping of the cutting edge is well known. Further, as is also well known, by rounding the heel portion 12 with an R surface 13 of approximately 0.2D, chip evacuation performance can be further improved.

なお、第3図と第8図は、芯厚の関係を判り易
くするためにねじれ溝4のねじれを無くした状態
にしてあり、そのためにすくい面7が図中に表わ
れているが、実際に見た端面図では、βが0のと
きにはすくい面7が切刃6上に完全に重なる。ま
た、βが正の値になるとすくい面7は逃げ面9に
隠される位置に来て全く見えない。
In addition, in FIGS. 3 and 8, the twisted groove 4 is not twisted in order to make it easier to understand the relationship between the core thicknesses, and therefore the rake face 7 is shown in the figures, but in reality In the end view shown in FIG. 2, the rake face 7 completely overlaps the cutting edge 6 when β is 0. Furthermore, when β becomes a positive value, the rake face 7 is hidden by the flank face 9 and cannot be seen at all.

以上の如く構成された例示のドリルは前項で述
べた作用により芯厚W1を従来よりも薄くするこ
とができるため、深穴加工でも切屑詰まりが起こ
らない。
The exemplary drill configured as described above can have a core thickness W1 smaller than that of the conventional drill due to the effect described in the previous section, so that chip clogging does not occur even when drilling deep holes.

また、切屑が詰まらない。切削動力が下が
る。内部給油により発熱が抑制される。により
超硬ヘツドの脱落事故も起こらず、さらに、切削
トルクが安定することに加え、ドリル芯厚W1も、
ねじれ、曲げ剛性の要求される部分では不足なく
確保されており、かつ、ねじれ溝4先端のすくい
面7は切刃6の刃先角を大きくして刃先強度を高
め、切削動力は逆に低下されるため切刃の欠けも
防止され、これ等の効果によつて深穴加工におい
ても安定した切削を行うことができる。
Also, chips do not get clogged. Cutting power decreases. Internal oil supply suppresses heat generation. As a result, there is no accident of the carbide head falling off, and in addition to stabilizing the cutting torque, the drill core thickness W 1 has also been reduced.
Torsional and bending rigidity is sufficiently ensured in parts where rigidity is required, and the rake face 7 at the tip of the helical groove 4 increases the cutting edge angle of the cutting edge 6 to increase the strength of the cutting edge, and the cutting power is conversely reduced. This prevents chipping of the cutting edge, and these effects enable stable cutting even in deep hole machining.

第9図に、第6図の従来ドリルと、本考案の構
成要件を満たした第8図のドリルによつて切削テ
ストを行なつた結果の比較グラフを示す。テスト
条件は、いずれも下記の通りである。
FIG. 9 shows a comparison graph of the results of a cutting test conducted using the conventional drill shown in FIG. 6 and the drill shown in FIG. 8 which satisfies the structural requirements of the present invention. The test conditions are as follows.

ドリル径:12 使用機械:6.5マシニングセンター 被削材 :FCD45 切削条件:V(回転速度)=40m/min f(送り)=0.3mm/rev このグラフから分かるように、この考案のドリ
ルは、トルク100Kg・cmスラスト175Kgであつた
が、従来ドリルは、切削開始直後にトルク・スラ
スト共急激に上昇し、動力オーバーのため使用機
械がストツプした。なお、第8図のドリルは、シ
ンニング溝10の形状が第1図のそれと多少異な
るが、逃げ面9の回転方向後部に延びたシンニン
グ溝面は性能に影響を及ぼさないので、実質的に
第1図のドリルと変わりがない。
Drill diameter: 12 Machine used: 6.5 machining center Work material: FCD45 Cutting conditions: V (rotational speed) = 40 m/min f (feed) = 0.3 mm/rev As you can see from this graph, the drill of this invention has a torque of 100 kg・The cm thrust was 175Kg, but with the conventional drill, both torque and thrust increased rapidly immediately after cutting started, and the machine used stopped due to excessive power. Although the shape of the thinning groove 10 in the drill shown in FIG. 8 is somewhat different from that in FIG. It is no different from the drill in Figure 1.

〔効果〕〔effect〕

以上説明した本考案のドリルは、ねじれ溝の先
端にその溝のねじれ角を小さくする平坦なすくい
面7を設けて切刃6の直線部の軸方向すくい角β
を全域において0〜15°の範囲で一定値に保ちな
がらヘツド3の先端芯厚をまずW1からW2に減少
させ、次に回転中心部の僅かな領域をシンニング
処理してチゼル刃11の巾をW2からW3にしたの
で、芯厚をW1からW3に一気に落とす従来のドリ
ルと違つてシンニングによる切刃の切味低下領域
が非常に少なく、切削動力が小さくて済む。従つ
て、必要なねじれ、曲げ剛性を従来よりも芯厚
W1を薄くして確保することができ、このことと
ブレーカ壁8を設けたこと、及び給油孔5を付加
して内部給油方式としたことにより、切屑排出性
も満足させることができる。
The drill of the present invention described above has a flat rake face 7 at the tip of the helical groove that reduces the helix angle of the groove, so that the axial rake angle β of the straight portion of the cutting edge 6 is
First, the thickness of the tip of the head 3 is reduced from W 1 to W 2 while keeping it at a constant value in the range of 0 to 15 degrees over the entire area, and then a small area at the center of rotation is thinned to thin the chisel blade 11. Since the width has been changed from W 2 to W 3 , unlike conventional drills that reduce the core thickness from W 1 to W 3 all at once, there is very little area where the cutting edge loses sharpness due to thinning, and cutting power can be reduced. Therefore, the required torsional and bending rigidity can be achieved with a core thickness that is better than before.
W 1 can be made thinner and secured, and by providing the breaker wall 8 and adding the oil supply hole 5 to adopt an internal oil supply system, it is possible to satisfy the chip discharge performance.

また、切屑が詰まらないこと、切削動力が下が
ること、内部給油で発熱が抑えられることにより
ヘツドの脱落が防止される。さらに、平坦なすく
い面の設置で切刃も強化され、これ等の効果で高
精度の深穴を効率的に加工できるようになる。例
えば、従来ドリルの約4倍となる切削速度80m程
度の高速度回転による深穴の高能率加工も可能に
なる。
In addition, the head is prevented from falling off because it does not become clogged with chips, the cutting power is reduced, and heat generation is suppressed by internal oil supply. Additionally, the flat rake face strengthens the cutting edge, making it possible to efficiently machine deep holes with high precision. For example, it is possible to drill deep holes with high efficiency by rotating at a cutting speed of about 80 m, which is about four times faster than conventional drills.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案のドリルの一例を示す斜視図、
第2図はその装置、第3図は正面図(この図は芯
厚の関係を判り易くするため溝のねじれを無くし
た状態にして表わしてある)、第4図は縦断側面
図、第5図は第2図のX−X線に沿つた断面図、
第6図はシンニング処理で先端芯厚を薄くした従
来ドリルの正面図、第7図はそのY−Y線に沿つ
た断面図、第8図は切削テストに用いたこの考案
のドリルの正面図(第3図と同じ表わし方をして
いる)、第9図は切削テストの結果を比較したグ
ラフ、第10図は切刃の直線部の軸方向すくい角
が全域において一定であることを説明するための
図、第11図は切刃の位置、平坦なすくい面の大
きさ、形状等が定まる理由を説明するための図で
ある。 1……ドリル、2……鋼製本体、3……超硬合
金製のヘツド、4……ねじれ溝、5……給油孔、
5a……分岐孔、6……切刃、7……すくい面、
8……ブレーカ壁、9……逃げ面、10……シン
ニング溝、11……チゼル刃、12……ヒール
部、13……R面、14……接合部。
FIG. 1 is a perspective view showing an example of the drill of the present invention;
Fig. 2 shows the device, Fig. 3 is a front view (this figure shows the grooves without twisting to make it easier to understand the relationship between the core thicknesses), Fig. 4 is a longitudinal side view, and Fig. 5 The figure is a cross-sectional view taken along the line X-X in Figure 2.
Figure 6 is a front view of a conventional drill whose tip core thickness has been reduced by thinning treatment, Figure 7 is a cross-sectional view along the Y-Y line, and Figure 8 is a front view of the drill of this invention used for cutting tests. (The same representation as in Fig. 3), Fig. 9 is a graph comparing the cutting test results, and Fig. 10 explains that the axial rake angle of the straight part of the cutting edge is constant over the entire area. FIG. 11 is a diagram for explaining the reason why the position of the cutting edge, the size, shape, etc. of the flat rake face are determined. 1...Drill, 2...Steel body, 3...Cemented carbide head, 4...Twisted groove, 5...Oil supply hole,
5a... Branch hole, 6... Cutting edge, 7... Rake face,
8... Breaker wall, 9... Flank surface, 10... Thinning groove, 11... Chisel blade, 12... Heel portion, 13... R surface, 14... Joint portion.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 鋼製本体2の先端に1.0D〜2.5D(D=ドリル
径)の長さの超硬合金製ヘツド3を鑞付け接合し
てある2枚刃のツイストドリル1において、ヘツ
ド3の先端部を除く個所の芯厚W1をほぼ0.35D〜
0.45Dとし、ヘツド3の先端部には、切刃6の直
線部の全域の軸方向すくい角βを0〜15°の範囲
で一定にし、かつ先端芯厚W2を0.15D〜0.25Dに
する平坦なすくい面7と、このすくい面7の内端
から立ち上がつてドリルの中心側にねじれ溝4の
ねじれ方向に傾いたコーナを作り出すブレーカ壁
8と、切刃6の内端近傍に位置してチゼル刃11
の巾W3を0.05D〜0.10Dにするシンニング溝10
を設け、上記すくい面7はドリル軸方向の巾が切
刃6の内端側から外端側に向かつて次第に狭くな
り、切刃外端部でその巾aが0.05D〜0.10Dとな
る大きさとし、また本体2とヘツド3の内部にヘ
ツド3内で分岐して分岐孔5aの各々が2個所あ
る逃げ面9に中心対称に抜ける給油孔5を設け、
その孔の分岐前の径を0.2D以下、分岐後の径を
0.15D以下にして構成される深穴加工用鑞付け接
合ドリル。
In a two-blade twist drill 1, in which a cemented carbide head 3 with a length of 1.0D to 2.5D (D = drill diameter) is brazed to the tip of a steel body 2, the tip of the head 3 is The core thickness W 1 of the excluded part is approximately 0.35D ~
0.45D, and at the tip of the head 3, the axial rake angle β of the entire straight section of the cutting edge 6 is constant in the range of 0 to 15 degrees, and the tip core thickness W 2 is set to 0.15D to 0.25D. a flat rake face 7, a breaker wall 8 that rises from the inner end of the rake face 7 and creates a corner inclined in the torsional direction of the helical groove 4 toward the center of the drill; Position chisel blade 11
Thinning groove 10 that changes the width W3 from 0.05D to 0.10D
The width of the rake face 7 in the axial direction of the drill gradually becomes narrower from the inner end to the outer end of the cutting blade 6, and the width a is 0.05D to 0.10D at the outer end of the cutting blade 6. Furthermore, inside the main body 2 and the head 3, oil supply holes 5 are provided which branch within the head 3 and extend symmetrically to the flanks 9, each having two branch holes 5a.
The diameter of the hole before branching is 0.2D or less, and the diameter after branching is 0.2D or less.
A brazing joint drill for deep hole drilling configured with a diameter of 0.15D or less.
JP11359383U 1983-07-19 1983-07-19 Brazed joint drill for deep hole drilling Granted JPS6022211U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11359383U JPS6022211U (en) 1983-07-19 1983-07-19 Brazed joint drill for deep hole drilling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11359383U JPS6022211U (en) 1983-07-19 1983-07-19 Brazed joint drill for deep hole drilling

Publications (2)

Publication Number Publication Date
JPS6022211U JPS6022211U (en) 1985-02-15
JPH0340499Y2 true JPH0340499Y2 (en) 1991-08-26

Family

ID=30262891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11359383U Granted JPS6022211U (en) 1983-07-19 1983-07-19 Brazed joint drill for deep hole drilling

Country Status (1)

Country Link
JP (1) JPS6022211U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5103076B2 (en) * 2007-07-12 2012-12-19 本田技研工業株式会社 drill

Also Published As

Publication number Publication date
JPS6022211U (en) 1985-02-15

Similar Documents

Publication Publication Date Title
US6916139B2 (en) Drill
RU2452597C2 (en) Drill bit point
JP6086170B2 (en) drill
US7018143B2 (en) Reduced energy consuming, lateral cutting twist drill
JPH07237020A (en) Gun drill
JP4529383B2 (en) Drill
JP3988659B2 (en) Drill
JPH05154709A (en) Hole cutter
JPH0340499Y2 (en)
JPH07237018A (en) Drill
JPH10291115A (en) Throw-away end mill
JPH0258042B2 (en)
JPH08229720A (en) Gun drill
JP6994166B1 (en) Cutting tools
JP2003275913A (en) Drill
JP6902284B2 (en) Cutting tools
JPH03142117A (en) Boring tool
JP2005177891A (en) Drill
JPH11245119A (en) Drill tap
JP2535644Y2 (en) Drill
JPH02237711A (en) Twist drill
JPH0890323A (en) Drill
JP4954044B2 (en) drill
JP2003094220A (en) Drilling tool
JPH0825120A (en) Gun drill