JPH0340438A - Manufacture of field-effect transistor - Google Patents

Manufacture of field-effect transistor

Info

Publication number
JPH0340438A
JPH0340438A JP17411689A JP17411689A JPH0340438A JP H0340438 A JPH0340438 A JP H0340438A JP 17411689 A JP17411689 A JP 17411689A JP 17411689 A JP17411689 A JP 17411689A JP H0340438 A JPH0340438 A JP H0340438A
Authority
JP
Japan
Prior art keywords
film
layer
insulating film
mask
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17411689A
Other languages
Japanese (ja)
Inventor
Junko Sato
順子 佐藤
Yoshito Ikeda
義人 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17411689A priority Critical patent/JPH0340438A/en
Publication of JPH0340438A publication Critical patent/JPH0340438A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To contrive the stable manufacture of a field-effect transistor by a method wherein a gate length is controlled by the thickness of a second insulating film using a multiple deposition method. CONSTITUTION:A first insulating film 3 is applied on a semi-insulative GaAs substrate 2 with an N-type layer 1 formed in it by ion implantation and a window is opened in the photoresist. Then, a second insulating film 4 dissimilar to the film 3 is deposited by a multiple deposition method in such a way as to cover the opening part. The film 4 is etched by an RIE method to provide an opening part on the layer 1. A metal layer 5 formed by normal deposition of a high-melting point metal is formed, the surface of the layer 5 is flattened by a resist 6 and the layer 5 is etched using the resist 6 as a mask and is used as a gate electrode 7. The film 3 is removed by a wet etching method and an ion implantation is performed using the electrode 7 and the film 4 as masks to form n<+> layers 8 which are impurity regions. Then, the film 4 is removed by wet etching and an ion-implantation is performed using the electrode 7 as a mask to form n' layers 9, which are thinner than the layers 8 and have an impurity concentration stronger than that of the layer 1. Lastly, the whose surface is covered with an insulating film 10 and an annealing is performed to activate. By such a way, an LDD structure can stably be formed.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は、ショットキゲート電極を有する電界効果トラ
ンジスタ(以下、FETと略す)の自己整合的な製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a self-aligned manufacturing method of a field effect transistor (hereinafter abbreviated as FET) having a Schottky gate electrode.

(従来の技術) 一般に極めて短ゲート長でかつLDD構造を有するFE
Tは自己整合的な方法を用いてゲート部分を形成する。
(Prior art) Generally, an FE with an extremely short gate length and an LDD structure
T forms the gate portion using a self-aligned method.

基本的な従来例を第2図に基づいて説明する。A basic conventional example will be explained based on FIG.

第2図は従来のFETの製造方法を示す工程断面図であ
る。同図において、半絶縁性GaAs基板11にイオン
注入法を用いてnNl2を形成し、その上にタングステ
ンなど高融点金属13を蒸着する。そして高融点全屈1
3上にフォトレジスト膜14を塗布し、露光を施してゲ
ート電極を形成する部分を残してフォトレジスト膜を除
去する(第2図(a))。
FIG. 2 is a process sectional view showing a conventional FET manufacturing method. In the figure, nNl2 is formed on a semi-insulating GaAs substrate 11 by ion implantation, and a high melting point metal 13 such as tungsten is deposited thereon. and high melting point total bending 1
A photoresist film 14 is coated on the photoresist film 14 and exposed to light, and the photoresist film is removed leaving a portion where a gate electrode will be formed (FIG. 2(a)).

つぎにRIE法を用いてフォトレジスト膜14をマスク
に高融点金属13をエツチングする。このときオーバー
エツチング気味にすると、ゲート?I[の側面がエツチ
ングされ、フォトレジスト膜14でパターニングしたゲ
ート長よりも短いゲート′l′!!極15を得ることが
できる(第2図(b))。そしてフォトレジスト膜14
を除去したのち、全面に絶縁膜16を塗布して、イオン
注入法を用いて、絶縁膜16越しにスルー注入を行い、
ソース、ドレイン領域となる不純物領域、n0層17を
形成する(第2図(C))。
Next, the high melting point metal 13 is etched using the photoresist film 14 as a mask using the RIE method. At this time, if you make it slightly overetched, it will become a gate? The side surface of I[ is etched, and the gate 'l'! is shorter than the gate length patterned with the photoresist film 14. ! A pole 15 can be obtained (FIG. 2(b)). And photoresist film 14
After removing the insulating film 16, an insulating film 16 is applied to the entire surface, and through implantation is performed through the insulating film 16 using an ion implantation method.
An impurity region and an n0 layer 17, which will become source and drain regions, are formed (FIG. 2(C)).

そののち絶縁膜16を除去して、ゲート電極15をマス
クにイオン注入を行い、n層12とn“)!17との中
間的な濃度を有する不純物領域、n’PFfJ18をn
112とn+層17の間に形成する(第2図(d))。
After that, the insulating film 16 is removed, and ions are implanted using the gate electrode 15 as a mask to form an impurity region n'PFfJ18 having an intermediate concentration between the n layer 12 and n'')!17.
112 and the n+ layer 17 (FIG. 2(d)).

(発明が解決しようとする問題点) 上記、従来のように形成されたFETはRIE法で高融
点金属を過剰にエツチングする際、基板表面にダメージ
を与える欠点があった。このダメージはn′層表面の表
面空乏躬の原因になるなどしてソース抵抗の増大等FE
T特性を劣化させる原因となりFET作製上好ましくな
かった。また、きわめて線幅の細いゲート電極が単独で
形成されるため、工程中に倒れてしまう欠点もあった。
(Problems to be Solved by the Invention) The conventionally formed FET described above has the drawback that the substrate surface is damaged when the high melting point metal is excessively etched by the RIE method. This damage causes surface depletion on the surface of the n' layer, increasing source resistance, etc.
This was not preferable in terms of FET fabrication because it caused deterioration of T characteristics. Furthermore, since a gate electrode with an extremely narrow line width is formed singly, there is also the drawback that it collapses during the process.

本発明の目的は、従来の欠点を解消し、極めて短ゲート
長のFETを、たとえばフォトリソグラフィ等の容易な
露光技術を用いて安定に、しかも表面にダメージを与え
ることなく形成することのできるFETの製造方法を提
供することである。
An object of the present invention is to solve the drawbacks of the conventional FET and to form an FET with an extremely short gate length stably using an easy exposure technique such as photolithography without damaging the surface. An object of the present invention is to provide a manufacturing method.

(問題点を解決するための手段) 本発明のFETの製造方法は、半導体導電層上に、新型
の第一の開口部を有する第一の膜を形成する工程と、第
一の開口部および、第一の膜上に第二の膜を多重堆積す
る工程と、この第二の膜をエツチングし、第一の開口部
上に、第一の開口部よりも小さい第二の開口部を設ける
工程と、この第二の開口部をマスクに電極を形成する工
程と、第一の膜を除去し、電極および第二の膜をマスク
にイオン注入を行い、ソース、ドレイン領域となる第一
の不純物領域を形成する工程と、第二の膜を除去し、電
極をマスクにイオン注入を行い、導電層よりも濃く第一
の不純物領域よりもうすい濃度の第二の不純物領域を形
成する工程と、全面を第三の膜でおおってアニールを施
し活性化を行う工程を備えたものである。
(Means for Solving the Problems) The method for manufacturing an FET of the present invention includes the steps of forming a first film having a new type of first opening on a semiconductor conductive layer; , multiple depositing a second film on the first film, and etching the second film to form a second opening smaller than the first opening above the first opening. The first step is to form an electrode using the second opening as a mask.The first film is removed, and ions are implanted using the electrode and second film as a mask. a step of forming an impurity region; a step of removing the second film and performing ion implantation using the electrode as a mask to form a second impurity region having a higher concentration than the conductive layer and a lower concentration than the first impurity region; , which includes a step of covering the entire surface with a third film and performing annealing and activation.

(作 用) 本発明は上記構成により、多重堆積法を用いることで、
フォトリングラフィを用いながら極めて短いゲート長の
ゲート電極を形成することができる。このとき、ゲート
電極は両側を第二の膜で支えられているので工程中に倒
れることが防がれ。
(Function) With the above configuration, the present invention uses a multiple deposition method to achieve
A gate electrode with an extremely short gate length can be formed using photolithography. At this time, since the gate electrode is supported by the second film on both sides, it is prevented from falling during the process.

安定である。また第一の膜、第二の膜を除去する際、た
とえば、ウェットエツチング法を用いるなど、基板表面
のダメージの少ない方法を用いることができるのでFE
T特性の劣化を防ぐこともできる。
It is stable. Furthermore, when removing the first film and the second film, a method that causes less damage to the substrate surface, such as wet etching, can be used, so FE
It is also possible to prevent deterioration of T characteristics.

(実施例) 本発明の一実施例を第1図に基づいて説明する。(Example) An embodiment of the present invention will be described based on FIG.

第工図は本発明のFETの製造方法を示す断面図である
。同図において、FETのチャネルとなるnバエをイオ
ン注入で形成した半絶縁性G a A s基板2上に第
一の絶縁膜3を塗布し、フォトレジストを用いて500
0Åから7000人の長さの窓をあける(第1図(a)
)。つぎに、第一の絶縁膜3と材質の異なる第二の絶縁
膜4を第一の絶縁膜3とその開口部をおおうように多重
堆積法を用いて堆積する(第1図(b))、そして、R
IE法などの異方性エツチング法を用いて上方から第二
の絶縁膜4をエツチングし、n層1上に長さ1500人
程度0開口部をもうける(第1図(C))。つぎに、タ
ングステン等の高融点金属を法線蒸着した金属層5を形
成し、レジスト6で平坦化する(第1図(d))。その
のち。
The second drawing is a cross-sectional view showing the method for manufacturing the FET of the present invention. In the same figure, a first insulating film 3 is coated on a semi-insulating GaAs substrate 2 on which an n-type conductor, which will become a channel of an FET, is formed by ion implantation, and a 500 nm film is coated using a photoresist.
Open a window with a length of 7,000 people from 0 Å (Figure 1 (a)
). Next, a second insulating film 4 made of a different material from the first insulating film 3 is deposited using a multiple deposition method so as to cover the first insulating film 3 and its opening (FIG. 1(b)). , and R
The second insulating film 4 is etched from above using an anisotropic etching method such as the IE method to form an opening approximately 1500 mm in length on the n-layer 1 (FIG. 1(C)). Next, a metal layer 5 is formed by normal vapor deposition of a high melting point metal such as tungsten, and is flattened with a resist 6 (FIG. 1(d)). after that.

レジストをマスクにRIE法を用いて上方から金属層5
をエツチングし、ゲート電VFA7を形成する(第1図
(e))。そして第一の絶縁膜3をウェットエツチング
法を用いて除去し、ゲートな極7および第二の絶縁膜4
をマスクにイオン注入を行い、ソース、ドレイン領域と
なる不純物領域、n0層8を形成する(第1図(f))
。つぎに、第二の絶縁膜4をウェットエツチングで除去
し、ゲート電極7をマスクにイオン注入を行い、n′″
M8よりもうすく、n層1よりも濃い中間的な濃度のn
′f19を形成する(第1図(g))。そして、最後に
全面を絶縁膜10でおおい、アニールを施して活性化す
る(第1図(h))。
The metal layer 5 is formed from above using the RIE method using the resist as a mask.
is etched to form a gate electrode VFA7 (FIG. 1(e)). Then, the first insulating film 3 is removed using a wet etching method, and the gate electrode 7 and the second insulating film 4 are removed.
Ion implantation is performed using the mask as a mask to form impurity regions that will become the source and drain regions, and the n0 layer 8 (Fig. 1(f)).
. Next, the second insulating film 4 is removed by wet etching, and ions are implanted using the gate electrode 7 as a mask.
An intermediate concentration of n that is thinner than M8 and thicker than n layer 1.
'f19 is formed (Fig. 1(g)). Finally, the entire surface is covered with an insulating film 10 and activated by annealing (FIG. 1(h)).

以上のように構成された本実施例のFETによれば、多
重堆積法を用いることでゲート長を地積する第二の絶縁
膜4の膜Jlスで制御することができ、容易な露光技術
で1500A前後の短ゲート長を実現できる。また、L
DD構造を自己整合的に形成しており、ショートチャネ
ル効果を防止することもできる。また、基板表面の処理
は従来例のようにダメージの大きいRIE法などを用い
ないで、ダメージの少ないウェットエツチング法を用い
ているのでFET特性の劣化が少ない。さらに、ゲート
電極7の両側をn ’ 周9注入時だけを除いて。
According to the FET of this embodiment configured as described above, by using the multiple deposition method, the gate length can be controlled by the layer thickness of the second insulating film 4, which is layered, and by easy exposure technology. A short gate length of around 1500A can be achieved. Also, L
The DD structure is formed in a self-aligned manner, and short channel effects can also be prevented. Furthermore, since the surface of the substrate is processed by wet etching, which causes less damage, instead of using RIE, which causes more damage, as in the conventional example, there is little deterioration in FET characteristics. Furthermore, both sides of the gate electrode 7 are filled with n' circles except when implanting 9.

常に絶縁膜が支えているので、機械的強度が強く、工程
中に倒れることが防止され、安定性もよい。
Since it is always supported by an insulating film, it has strong mechanical strength, is prevented from falling during the process, and has good stability.

(発明の効果) 本発明によれば、フォトリングラフィ等の容易な露光技
術で短いゲート長が実現でき、しかもショートチャネル
効果を防止するLDD構造をゲート加工時に基板表面に
ダメージを与えることなく、安定に形成することができ
るので、その実用上の効果は大である。
(Effects of the Invention) According to the present invention, a short gate length can be achieved using a simple exposure technique such as photolithography, and an LDD structure that prevents short channel effects can be created without damaging the substrate surface during gate processing. Since it can be formed stably, its practical effects are great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるFETの製造方法の
工程断面図、第2図は従来のFETの製造方法の工程断
面図である。 1 ・・・ nFt4、2・・・半絶縁性G a A 
s基板、3・・・第一の絶縁膜、 4 ・・・第二の絶
縁膜、 5 ・・・金属層、 6 ・・・ レジスト、
7 ・・・ゲート電極、 8 ・・・ n4層、 9・
・・n″磨、10・・・絶縁膜。
FIG. 1 is a process sectional view of a method for manufacturing an FET according to an embodiment of the present invention, and FIG. 2 is a process sectional view of a conventional method for manufacturing an FET. 1... nFt4, 2... Semi-insulating Ga A
s substrate, 3... first insulating film, 4... second insulating film, 5... metal layer, 6... resist,
7... Gate electrode, 8... N4 layer, 9.
...n'' polishing, 10...insulating film.

Claims (1)

【特許請求の範囲】[Claims] 半導体導電層上に、所望の第一の開口部を有する第一の
膜を形成する工程と、前記第一の開口部および、前記第
一の膜上に第二の膜を多重堆積する工程と、前記第二の
膜をエッチングし、前記第一の開口部上に、前記第一の
開口部よりも小さい第二の開口部を設ける工程と、前記
第二の開口部をマスクに電極を形成する工程と、前記第
一の膜を除去し、前記電極および、前記第二の膜をマス
クにイオン注入を行い、ソース、ドレイン領域となる第
一の不純物領域を形成する工程と、前記第二の膜を除去
し、前記電極をマスクにイオン注入を行い、前記導電層
よりも濃く、前記第一の不純物領域よりもうすい濃度の
第二の不純物領域を形成する工程と、全面を第三の膜で
おおってアニールを施し活性化を行う工程を備えたこと
を特徴とする電界効果トランジスタの製造方法。
forming a first film having a desired first opening on the semiconductor conductive layer; and depositing a second film in multiple layers on the first opening and the first film. , etching the second film to provide a second opening smaller than the first opening above the first opening, and forming an electrode using the second opening as a mask. a step of removing the first film and performing ion implantation using the electrode and the second film as a mask to form a first impurity region that will become a source and drain region; step of removing the film and performing ion implantation using the electrode as a mask to form a second impurity region having a higher concentration than the conductive layer and a lower concentration than the first impurity region; 1. A method for manufacturing a field effect transistor, comprising a step of covering with a film, annealing, and activating.
JP17411689A 1989-07-07 1989-07-07 Manufacture of field-effect transistor Pending JPH0340438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17411689A JPH0340438A (en) 1989-07-07 1989-07-07 Manufacture of field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17411689A JPH0340438A (en) 1989-07-07 1989-07-07 Manufacture of field-effect transistor

Publications (1)

Publication Number Publication Date
JPH0340438A true JPH0340438A (en) 1991-02-21

Family

ID=15972921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17411689A Pending JPH0340438A (en) 1989-07-07 1989-07-07 Manufacture of field-effect transistor

Country Status (1)

Country Link
JP (1) JPH0340438A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0501428A2 (en) * 1991-02-25 1992-09-02 Sumitomo Electric Industries, Ltd. Production methods for a compound semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0501428A2 (en) * 1991-02-25 1992-09-02 Sumitomo Electric Industries, Ltd. Production methods for a compound semiconductor device
EP0501428A3 (en) * 1991-02-25 1995-01-18 Sumitomo Electric Industries Production methods for a compound semiconductor device

Similar Documents

Publication Publication Date Title
KR920002090B1 (en) Method of manufacturing field effect transistor
US6329230B1 (en) High-speed compound semiconductor device having an improved gate structure
JPH0817184B2 (en) Method for manufacturing compound semiconductor device
JP3420301B2 (en) Method for manufacturing thin film transistor
JPH0340438A (en) Manufacture of field-effect transistor
JPS5856470A (en) Manufacture of semiconductor device
JPS63287072A (en) Manufacture of semiconductor device
JP3035969B2 (en) Method for manufacturing compound semiconductor device
JP2835398B2 (en) Manufacturing method of field effect transistor
JPH06232168A (en) Field effect transistor and its manufacture
JP2906856B2 (en) Method for manufacturing field effect transistor
JPS6057980A (en) Manufacture of semiconductor device
JP3139208B2 (en) Method for manufacturing field effect transistor
JPS63142872A (en) Manufacture of self-alignment type field-effect transistor
JPS63291476A (en) Manufacture of semiconductor device
JPH028454B2 (en)
JPH0156537B2 (en)
JPH04352333A (en) Manufacture of semiconductor device
JPS5893290A (en) Manufacture of schottky barrier field effect transistor
JPH0758131A (en) Method of manufacturing field efect transistor and its integrated circuit
JPH02181440A (en) Manufacture of field-effect transistor
JPH03108325A (en) Manufacture of ohmic electrode
JPH03196574A (en) Semiconductor device and manufacture thereof
JPS6037176A (en) Manufacture of field effect transistor
JPH08162477A (en) Manufacture of semiconductor device