JPH0340413A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPH0340413A
JPH0340413A JP17579289A JP17579289A JPH0340413A JP H0340413 A JPH0340413 A JP H0340413A JP 17579289 A JP17579289 A JP 17579289A JP 17579289 A JP17579289 A JP 17579289A JP H0340413 A JPH0340413 A JP H0340413A
Authority
JP
Japan
Prior art keywords
solid electrolytic
electrolytic capacitor
resin
capacitor element
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17579289A
Other languages
Japanese (ja)
Inventor
Hideki Imai
秀樹 今井
Hiroshi Shimada
博司 島田
Takeshi Oba
健 大庭
Wataru Sakurai
渡 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17579289A priority Critical patent/JPH0340413A/en
Publication of JPH0340413A publication Critical patent/JPH0340413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To prevent deterioration of a solid electrolytic capacitor due to a leakage current by a method wherein the internal coating resin, with which a capacitor element will be coated, is formed with ultraviolet curing epoxy modified acrylic resin containing non-compatible monomer consisting of rubber- like powder. CONSTITUTION:The whole circumference of a solid electrolytic capacitor element 11 is coated with internal coating resin 16 composed of ultraviolet curing epoxy modified acrylic resin. Said ultraviolet curing epoxy denatured acrylic resin contains a non-compatible monomer 17 consisting of rubber-like powder. Also, the entire outer circumference of the internal coating resin 16 is coated with external coating resin consisting of thermosetting hard epoxy resin. As a result, the cure shrinkage stress and thermal-expansion stress of the internal and external coating resin can be absorbed, and as a result, the stress given to the coated solid electrolytic capacitor element can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は樹脂外装型の固体電解コンデンサに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a resin-clad solid electrolytic capacitor.

従来の技術 従来の樹脂外装型の固体電解コンデンサは、第4図に示
すように、固体電解コンデンサ素子1を種々の物理的ス
トレスや湿気等から保護するために、固体電解コンデン
サ素子lの外側を硬質の樹脂材で被覆し、かつ加熱硬化
させることにより、外装樹脂層2を形成していた。なお
、3は陽極リード部材、4は陽極リード部材3に接続さ
れた陽極端子、5は陰極端子である。
BACKGROUND OF THE INVENTION Conventional resin-clad solid electrolytic capacitors, as shown in FIG. The exterior resin layer 2 was formed by covering with a hard resin material and heating and curing it. Note that 3 is an anode lead member, 4 is an anode terminal connected to the anode lead member 3, and 5 is a cathode terminal.

発明が解決しようとする課題 しかしながら、上記のようにして固体電解コンデンサ素
子1を樹脂で被覆して外装樹脂層2を形成した場合、樹
脂硬化時の収縮ストレスによって内部の固体電解コンデ
ンサ素子1がストレスを受けるため、漏れ電流が大きく
なり、歩留りが低下するという問題点を有していた。
Problems to be Solved by the Invention However, when the solid electrolytic capacitor element 1 is coated with resin to form the exterior resin layer 2 as described above, the internal solid electrolytic capacitor element 1 is subjected to stress due to shrinkage stress during resin curing. Therefore, there was a problem in that the leakage current increased and the yield decreased.

また上記のようにコンデンサ素子1を樹脂で被覆して外
装樹脂層2を形成した固体電解コンデンサをプリント基
板に半田付けする際に、半田による熱が固体電解コンデ
ンサ本体に加わり、そして樹脂の熱膨張ストレスが内部
の固体電解コンデンサ素子1にストレスを与えるため、
漏れ電流不良が発生するという問題点を有していた。
Furthermore, when soldering a solid electrolytic capacitor in which the capacitor element 1 is coated with resin to form the exterior resin layer 2 to a printed circuit board as described above, heat from the solder is applied to the solid electrolytic capacitor body, and the resin expands thermally. Since the stress applies stress to the internal solid electrolytic capacitor element 1,
There was a problem in that leakage current failure occurred.

さらに、プリント基板に実装された固体電解コンデンサ
は、使用される周囲温度の変化による樹脂の熱膨張スト
レスを受けるため、漏れ電流が大きくなり、固体電解コ
ンデンサの信頼性を損うという問題点を有していた。
Furthermore, solid electrolytic capacitors mounted on printed circuit boards are subject to thermal expansion stress due to changes in the ambient temperature in which they are used, which increases leakage current and impairs the reliability of solid electrolytic capacitors. Was.

本発明はこのような問題点を解決するもので、極めて耐
ストレス性に優れた固体電解コンデンサを提供すること
を目的とするものである。
The present invention solves these problems and aims to provide a solid electrolytic capacitor with extremely excellent stress resistance.

課題を解決するための手段 上記課題を解決するために本発明の固体電解コンデンサ
は、陽極端子と陰極端子を有する固体電解コンデンサ素
子と、この固体電解コンデンサ素子を被覆する内装樹脂
と、この内装樹脂を被覆する外装樹脂とを備え、前記内
装樹脂を、ゴム状粉末からなる非相溶性モノマー、ある
いは弾力性を有する非相溶性ポリマー、さらにはゴム状
粉末からなる非相溶性モノマーと弾力性を有する非相溶
性ポリマーとを含有した紫外線硬化型エポキシ変性アク
リル樹脂で構成したものである。
Means for Solving the Problems In order to solve the above problems, the solid electrolytic capacitor of the present invention includes a solid electrolytic capacitor element having an anode terminal and a cathode terminal, an interior resin covering this solid electrolytic capacitor element, and this interior resin. and an exterior resin that covers the interior resin, and the interior resin is an incompatible monomer made of rubbery powder, or an immiscible polymer having elasticity, or an incompatible monomer made of rubbery powder and elasticity. It is made of an ultraviolet curable epoxy-modified acrylic resin containing an incompatible polymer.

作用 上記構成によれば、ゴム状粉末からなる非相溶性モノマ
ーや弾力性を有する非相溶性ポリマーを含有した紫外線
硬化型エポキシ変性アクリル樹脂で構成した内装樹脂に
よって固体電解コンデンサ素子を被覆しているため、内
装樹脂や外装樹脂の硬化収縮ストレスや熱膨張ストレス
を吸収することができ、これにより被覆された固体電解
コンデンサ素子に与えるストレスを低減することができ
るため、固体電解コンデンサの漏れ電流劣化を確実に防
止することができるものである。
Effect According to the above structure, the solid electrolytic capacitor element is covered with the interior resin made of an ultraviolet-curable epoxy-modified acrylic resin containing an incompatible monomer made of rubbery powder and an elastic incompatible polymer. Therefore, it is possible to absorb the curing shrinkage stress and thermal expansion stress of the interior resin and exterior resin, thereby reducing the stress applied to the covered solid electrolytic capacitor element, thereby reducing leakage current deterioration of the solid electrolytic capacitor. This is something that can be reliably prevented.

実施例 以下、本発明の実施例を添付図面にもとづいて説明する
。第1図において、11は固体電解コンデンサ素子で、
この固体電解コンデンサ素子11は、まずタンタルから
なる弁作用金属で構成した陽極リード部材12を、タン
タルからなる弁作用金属で構成した陽極体に埋め込んで
焼結し、そしてこの陽極体上に酸化皮膜層からなる誘電
体層、二酸化マンガン層からなる半導体層、陰極層を順
次積層して構成したものである。その後、前記陰極層に
陰極端子13を半田部材14で接続し、方、前記陽極リ
ード部材12にL字状に形成された陽極端子15を溶接
し、そしてこの陽極端子15は前記陰極端子13ととも
に固体電解コンデンサ素子11より外部に引き出される
Embodiments Hereinafter, embodiments of the present invention will be described based on the accompanying drawings. In FIG. 1, 11 is a solid electrolytic capacitor element,
This solid electrolytic capacitor element 11 is manufactured by first embedding and sintering an anode lead member 12 made of a valve metal made of tantalum in an anode body made of a valve metal made of tantalum, and then coating an oxide film on the anode body. It is constructed by sequentially laminating a dielectric layer consisting of a layer, a semiconductor layer consisting of a manganese dioxide layer, and a cathode layer. Thereafter, the cathode terminal 13 is connected to the cathode layer with a solder member 14, and the anode terminal 15 formed in an L-shape is welded to the anode lead member 12. It is drawn out from the solid electrolytic capacitor element 11.

またこのようにして製造された固体電解コンデンサ素子
11は、全外周が紫外線硬化型エポキシ変性アクリル樹
脂で構成した内装樹脂16によっ、て被覆され、そして
前記紫外線硬化型エポキシ変性アクリル樹脂はゴム状粉
末からなる非相溶性モノマーまたは弾力性を有する非相
溶性ポリマー17を含有している。そしてまた内装樹脂
16の全外周は、熱硬化型の硬質エポキシ樹脂からなる
外装樹脂18によって被覆されている。
Further, the solid electrolytic capacitor element 11 manufactured in this way is covered with an interior resin 16 made of an ultraviolet-curable epoxy-modified acrylic resin on the entire outer periphery, and the ultraviolet-curable epoxy-modified acrylic resin is rubber-like. It contains an incompatible monomer made of powder or an elastic incompatible polymer 17. The entire outer periphery of the interior resin 16 is covered with an exterior resin 18 made of thermosetting hard epoxy resin.

実施例 次に本発明の具体的な実施例について説明する。Example Next, specific examples of the present invention will be described.

(実施例1) 本発明の固体電解コンデンサにおいて、前記内装樹脂1
6の構成は、ビスフェノールAジグリシジルエーテルア
クリル酸エステル(例えば大阪有機化学工業製ビスコー
ト#540)25重量部とジメタクリル酸1・3ブチレ
ングリコール(例えば三菱レイヨン製BDMA)25重
量部とを60℃〜70℃で、1時間加熱混練してポリマ
一部を形成し、次に充填材として水酸化アルミニウム(
例えば昭和軽金属型ハイシライトH−32)3重量部を
添加し、さらに増粘剤としてシリカ(例えば日本エアロ
ジル製エロジール9300)1重量部を添加し、また粒
径5001.tmのゴム状粉末からなる非相溶性モノマ
ー(例えばエチレンプロピレンジエンモノマー〉15重
量部を添加してフィラ一部分を形成し、そしてまた光硬
化剤としてベンゾインイソプロピルエーテル(例えば大
阪有機化学工業性BIP)1重量部と、熱硬化触媒とし
てt−ブチルクミルパーオキサイド(例えば日本油脂製
バーブチルC)0.5重量部を添加して、常温で3時間
混練することにより形成されている。
(Example 1) In the solid electrolytic capacitor of the present invention, the interior resin 1
The composition of No. 6 is as follows: 25 parts by weight of bisphenol A diglycidyl ether acrylate (e.g. Viscoat #540 manufactured by Osaka Organic Chemical Industry) and 25 parts by weight of 1,3-butylene glycol dimethacrylate (e.g. BDMA manufactured by Mitsubishi Rayon) at 60°C. Heat and knead for 1 hour at ~70°C to form a part of the polymer, then add aluminum hydroxide (
For example, 3 parts by weight of Showa light metal type Hisilite H-32) is added, 1 part by weight of silica (for example, Erosil 9300 manufactured by Nippon Aerosil) is added as a thickener, and the particle size is 5001. 15 parts by weight of an incompatible monomer (e.g. ethylene propylene diene monomer) consisting of a rubbery powder of TM is added to form a portion of the filler, and also benzoin isopropyl ether (e.g. Osaka Organic Chemical Industry BIP) as a photocuring agent. part by weight, and 0.5 part by weight of t-butylcumyl peroxide (for example, Barbutyl C manufactured by NOF Corporation) as a thermosetting catalyst, and kneaded at room temperature for 3 hours.

本実施例においては、25V10μFのタンタル固体電
解コンデンサ素子を第1図のように組み立てた後、前記
内装樹脂中に浸漬し、80w/anの高圧水銀ランプよ
りioamの距離から20秒間紫外線を照射して内装樹
脂16を形成した後、硬質のエポキシ樹脂中に浸漬し、
120℃で2時間加熱し、かつ硬化させて外装樹脂18
を形成して、タンタル固体電解コンデンサを作成した。
In this example, after a 25V 10μF tantalum solid electrolytic capacitor element was assembled as shown in Figure 1, it was immersed in the interior resin and irradiated with ultraviolet rays from a distance of ioam from an 80W/an high pressure mercury lamp for 20 seconds. After forming the interior resin 16, it is immersed in a hard epoxy resin.
Heating at 120°C for 2 hours and curing the exterior resin 18
A tantalum solid electrolytic capacitor was created by forming a tantalum solid electrolytic capacitor.

第2図は前記内装樹脂16の構成を示す概念図で、実施
例1は第2図(b)で示し、これは従来例である第2図
(a)のエポキシ変性アクリル樹脂21にゴム状粉末か
らなる非相溶性モノマー22を添加したものである。
FIG. 2 is a conceptual diagram showing the structure of the interior resin 16. Example 1 is shown in FIG. An incompatible monomer 22 made of powder is added.

上記したゴム状粉末からなる非相溶性モノマー22は、
その粒径が300〜500μmの範囲、また添加量が1
0〜15重量部の範囲を最適条件とし、さらに粉末表面
をタルクコーティング処理したもので構成しているもの
で、このことは、以下に示す第1表、第2表、第3表の
実験結果がら明らかなものとなるものである。
The incompatible monomer 22 made of the rubbery powder described above is
The particle size is in the range of 300 to 500 μm, and the amount added is 1
The optimum condition is 0 to 15 parts by weight, and the surface of the powder is coated with talc. However, it becomes clear.

(以  下  余  白  ) 第1表はゴム状粉末からなる非相溶性モノマー22の粒
径を100〜900μmの範囲の5条件とし、かつその
添加量は15重量部で一定とし、従来例(添加能)と比
較して、固体電解コンデンサ素子を樹脂中に浸漬する場
合の樹脂塗布性、紫外線を照射する場合の樹脂硬化性、
そして樹脂硬化後の表面の凹凸およびピンホールなどの
外観形状、さらには樹脂物性としてストレスの大小に影
響を与える弾性率およびゴム状粉末の収率(コスト)に
ついて評価したもので、この第1表からも明らかなよう
に、粒径は300〜500μmの範囲で最適条件を得る
ことができた。
(Margin below) Table 1 shows five conditions in which the particle size of the incompatible monomer 22 made of rubbery powder is in the range of 100 to 900 μm, and the amount added is constant at 15 parts by weight. Compared to the conventional method, resin coating properties when solid electrolytic capacitor elements are immersed in resin, resin curing properties when irradiated with ultraviolet rays,
Then, the appearance shape such as surface irregularities and pinholes after resin curing, as well as the elastic modulus and yield (cost) of rubbery powder, which affect the magnitude of stress as resin physical properties, were evaluated. As is clear from the above, the optimum conditions could be obtained for the particle size in the range of 300 to 500 μm.

(以  下  余  白  ) 第2表はゴム状粉末からなる非相溶性モノマー22の添
加量を5〜25重量部の範囲の5条件とし、かつ粒径は
500μmで一定とし、従来例(添加能)と比較して、
固体電解コンデンサ素子を樹脂中に浸漬する場合の樹脂
塗布性、紫外線を照射する場合の樹脂硬化性、そして樹
脂硬化後の表面の凹凸およびピンホールなどの外観形状
、さらには難燃性および樹脂物性としてストレスの大小
に影響を与える弾性率について評価したもので、この第
2表からも明らかなように、添加量は10〜15重量部
の範囲で最適条件を得ることができた。
(Margins below) Table 2 shows five conditions in which the amount of incompatible monomer 22 made of rubbery powder is added in the range of 5 to 25 parts by weight, and the particle size is constant at 500 μm. ) compared to
Resin coating properties when solid electrolytic capacitor elements are immersed in resin, resin curing properties when irradiated with ultraviolet rays, external appearance such as surface irregularities and pinholes after resin curing, as well as flame retardancy and resin physical properties. The elastic modulus, which affects the magnitude of stress, was evaluated, and as is clear from Table 2, the optimum conditions could be obtained when the amount added was in the range of 10 to 15 parts by weight.

第3表はゴム状粉末からなる非相溶性モノマー22の表
面をタルク(マグネシウム含水ケイ酸塩)でコーティン
グし、モして粒径500μmで一定とし、さらに添加量
は15重量部として、タルクコーティングしていないも
のと比較して、樹脂塗布性、外観形状および弾性率につ
いて評価したもので、この第3表からも明らかなように
、タルクコートを実施することにより、著しい効果があ
ることを確認することができた。
Table 3 shows that the surface of the incompatible monomer 22 made of rubbery powder is coated with talc (magnesium hydrated silicate), the particle size is kept constant at 500 μm, and the amount added is 15 parts by weight. The resin coating properties, appearance shape, and elastic modulus were evaluated in comparison with those without talc coating, and as is clear from Table 3, it was confirmed that talc coating had a significant effect. We were able to.

(実施例2) 本実施例は第1図に示すような樹脂外装型の固体電解コ
ンデンサを作成し、前記内装樹脂16の構成を第2図(
C)のように形成したもので、すなわち、第2図(a)
で示した従来例のエポキシ変性アクリル樹脂21に弾力
性を有する非相溶性ポリマー23(ポリブタジェン〉5
量量部を添加して、実施例1と同様に25V10μFの
タンタル固体電解コンデンサを作成したものである。
(Example 2) In this example, a resin-clad solid electrolytic capacitor as shown in FIG.
C), that is, Fig. 2(a)
An elastic incompatible polymer 23 (polybutadiene) 5 is added to the conventional epoxy-modified acrylic resin 21 shown in
A tantalum solid electrolytic capacitor of 25 V and 10 μF was prepared in the same manner as in Example 1 by adding a certain amount.

〈実施例3) 本実施例は第1図に示すような樹脂外装型の固体電解コ
ンデンサを作成し、前記内装樹脂16の構成を第2図(
d)のように形成したもので、すなわち、第2図(a)
で示した従来例のエポキシ変性アクリル樹脂21にゴム
状粉末からなる非相溶性モノマー22(エチレンプロピ
レンジエンモノマーの添加量15重量部22径径00μ
m)を添加し、かつ弾力性を有する非相溶性ポリマー2
3〈ポリブタジェン5重量部〉を添加して、両者を混合
し、実施例1と同様に25V10μFのタンタル固体電
解コンデンサを作成したものである。
<Example 3> In this example, a resin-clad solid electrolytic capacitor as shown in FIG.
d), that is, Fig. 2(a)
An incompatible monomer 22 made of rubbery powder (addition amount of ethylene propylene diene monomer 15 parts by weight 22 diameter 00μ
m) and has elasticity, an incompatible polymer 2
3 (5 parts by weight of polybutadiene) was added and the two were mixed to produce a 25V 10 μF tantalum solid electrolytic capacitor in the same manner as in Example 1.

上記実施例1.2.3と従来例の4条件で形成したタン
タル固体電解コンデンサの電気特性を測定し、半田耐熱
(260℃、10秒間浸漬)試験、ヒートサイクル(−
55℃/+125℃、各30分、100サイクル)試験
を行った。
The electrical characteristics of tantalum solid electrolytic capacitors formed under the four conditions of Example 1.2.3 and the conventional example were measured, and the soldering heat resistance (260°C, 10 second immersion) test, heat cycle (-
55° C./+125° C., 30 minutes each, 100 cycles).

第3図は上記試験後の漏れ電流値変化を示したもので、
この第3図のa〜dが第2図のa−dに対応しているも
のである。
Figure 3 shows the change in leakage current value after the above test.
A to d in FIG. 3 correspond to a to d in FIG. 2.

第3図に示した漏れ電流変化の結果、従来例aと比較し
て、b、c、dの条件が漏れ電流値のレベル、バラツキ
とも良くなっており、特にdの条件が最も安定している
という結果を得た。また、静電容量、tanδの変化も
確認したが、各条件とも全く差は見られなかった。
As a result of the change in leakage current shown in Figure 3, compared to conventional example a, conditions b, c, and d have improved both the level and variation of leakage current values, and in particular, condition d is the most stable. The result was that there was. Changes in capacitance and tan δ were also confirmed, but no differences were observed under each condition.

発明の効果 上記実施例の説明から明らかなように本発明によれば、
ゴム状粉末からなる非相溶性モノマーや弾力性を有する
非相溶性ポリマーを含有する内装樹脂により固体電解コ
ンデンサ素子を被覆しているため、内装樹脂や外装樹脂
の硬化収縮ストレスや熱膨張ストレスを吸収することが
でき、その結果、被覆された固体電解コンデンサ素子に
与えるストレスを低減することができるため、固体電解
コンデンサの漏れ電流劣化を確実に防止することができ
るものである。
Effects of the Invention As is clear from the description of the above embodiments, according to the present invention,
The solid electrolytic capacitor element is coated with an interior resin containing an incompatible monomer made of rubbery powder or an elastic incompatible polymer, so it absorbs the curing shrinkage stress and thermal expansion stress of the interior resin and exterior resin. As a result, the stress applied to the covered solid electrolytic capacitor element can be reduced, so that leakage current deterioration of the solid electrolytic capacitor can be reliably prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す固体電解コンデンサの
断面図、第2図(a)は従来の内装樹脂構成を示す概念
図、第2図(b)〜(d)は本発明の各実施例における
内装樹脂の構成を示す概念図、第3図は従来の製品と本
発明の実施例で用いた製品の初期値、半田耐熱試験、ヒ
ートサイクル試験後の漏れ電流値変化を示す特性図、第
4図は従来例を示す固体電解コンデンサの断面図である
。 11・・・・・・固体電解コンデンサ素子、13・・・
・・・陰極端子、15・・・・・・陽極端子、■6・・
・・・・内装樹脂、17・・・・・・ゴム状粉末からな
る非溶性モノマーまたは弾力性を有する非溶性ポリマー
 18・・・・・・外装樹脂。
FIG. 1 is a sectional view of a solid electrolytic capacitor showing an embodiment of the present invention, FIG. 2(a) is a conceptual diagram showing a conventional interior resin structure, and FIGS. 2(b) to (d) are A conceptual diagram showing the composition of the interior resin in each example. Figure 3 shows the characteristics of the conventional product and the product used in the example of the present invention, showing initial values, changes in leakage current values after soldering heat resistance test and heat cycle test. 4 are sectional views of a solid electrolytic capacitor showing a conventional example. 11... Solid electrolytic capacitor element, 13...
...Cathode terminal, 15...Anode terminal, ■6...
... Interior resin, 17 ... Insoluble monomer made of rubbery powder or insoluble polymer having elasticity 18 ... Exterior resin.

Claims (4)

【特許請求の範囲】[Claims] (1)陽極端子と陰極端子を有する固体電解コンデンサ
素子と、この固体電解コンデンサ素子を被覆する内装樹
脂と、この内装樹脂を被覆する外装樹脂とを備え、前記
内装樹脂を、ゴム状粉末からなる非相溶性モノマーを含
有した紫外線硬化型エポキシ変性アクリル樹脂で構成し
たことを特徴とする固体電解コンデンサ。
(1) A solid electrolytic capacitor element having an anode terminal and a cathode terminal, an interior resin covering the solid electrolytic capacitor element, and an exterior resin covering the interior resin, wherein the interior resin is made of rubbery powder. A solid electrolytic capacitor characterized by being constructed from an ultraviolet-curable epoxy-modified acrylic resin containing an incompatible monomer.
(2)陽極端子と陰極端子を有する固体電解コンデンサ
素子と、この固体電解コンデンサ素子を被覆する内装樹
脂と、この内装樹脂を被覆する外装樹脂とを備え、前記
内装樹脂を、弾力性を有する非相溶性ポリマーを含有し
た紫外線硬化型エポキシ変性アクリル樹脂で構成したこ
とを特徴とする固体電解コンデンサ。
(2) A solid electrolytic capacitor element having an anode terminal and a cathode terminal, an interior resin covering the solid electrolytic capacitor element, and an exterior resin covering the interior resin; A solid electrolytic capacitor characterized by being constructed from an ultraviolet curable epoxy-modified acrylic resin containing a compatible polymer.
(3)陽極端子と陰極端子を有する固体電解コンデンサ
素子と、この固体電解コンデンサ素子を被覆する内装樹
脂と、この内装樹脂を被覆する外装樹脂とを備え、前記
内装樹脂を、ゴム状粉末からなる非相溶性モノマーと弾
力性を有する非相溶性ポリマーとを含有した紫外線硬化
型エポキシ変性アクリル樹脂で構成したことを特徴とす
る固体電解コンデンサ。
(3) A solid electrolytic capacitor element having an anode terminal and a cathode terminal, an interior resin covering the solid electrolytic capacitor element, and an exterior resin covering the interior resin, wherein the interior resin is made of rubbery powder. A solid electrolytic capacitor comprising an ultraviolet curable epoxy-modified acrylic resin containing an incompatible monomer and an elastic incompatible polymer.
(4)非相溶性モノマーのゴム状粉末は、粒径が300
μm〜500μmで、かつ粉末表面がタルクコートして
あり、さらに粉末の含有量が10〜15重量部である特
許請求の範囲第1項記載の固体電解コンデンサ。
(4) The rubbery powder of the incompatible monomer has a particle size of 300
2. The solid electrolytic capacitor according to claim 1, which has a particle diameter of 1 to 500 .mu.m, the surface of the powder is coated with talc, and the powder content is 10 to 15 parts by weight.
JP17579289A 1989-07-07 1989-07-07 Solid electrolytic capacitor Pending JPH0340413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17579289A JPH0340413A (en) 1989-07-07 1989-07-07 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17579289A JPH0340413A (en) 1989-07-07 1989-07-07 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0340413A true JPH0340413A (en) 1991-02-21

Family

ID=16002332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17579289A Pending JPH0340413A (en) 1989-07-07 1989-07-07 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0340413A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1536441A1 (en) * 1999-10-29 2005-06-01 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor
US20100246100A1 (en) * 2009-03-31 2010-09-30 Sanyo Electric Co., Ltd. Solid electrolytic capacitor
WO2021171866A1 (en) * 2020-02-26 2021-09-02 パナソニックIpマネジメント株式会社 Capacitor element, electrolytic capacitor, insulating material, and method for manufacturing mounting substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1536441A1 (en) * 1999-10-29 2005-06-01 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor
US20100246100A1 (en) * 2009-03-31 2010-09-30 Sanyo Electric Co., Ltd. Solid electrolytic capacitor
US8437117B2 (en) * 2009-03-31 2013-05-07 Sanyo Electric Co., Ltd. Solid electrolytic capacitor with improved stress resistance in the vicinity of the anode lead and the anode terminal
WO2021171866A1 (en) * 2020-02-26 2021-09-02 パナソニックIpマネジメント株式会社 Capacitor element, electrolytic capacitor, insulating material, and method for manufacturing mounting substrate

Similar Documents

Publication Publication Date Title
US4001655A (en) Compressible intermediate layer for encapsulated electrical devices
US5130889A (en) Integrated circuit protection by liquid encapsulation
US5707407A (en) Method of forming chip-formed solid electrolytic capacitor without an anode lead projecting from anode member
US5243756A (en) Integrated circuit protection by liquid encapsulation
KR960025876A (en) Heat-resistant conductive polymer, solid electrolytic capacitor using same, and method of manufacturing such capacitor
TWI225501B (en) Packaging material used for a display device and method of forming thereof
JP6110964B2 (en) Solid electrolytic capacitor with improved ESR stability
JPH0340413A (en) Solid electrolytic capacitor
US4166286A (en) Encapsulated plannar chip capacitor
CN101556947B (en) Basal plate for reducing warpage degree and chip packaging structure provided with same
JP2003168855A (en) Electrical appliance
JPH0945592A (en) Solid capacitor
JPH03123013A (en) Solid electrolytic capacitor
JPS5910749Y2 (en) chip capacitor
JP3631771B2 (en) Aluminum electrolytic capacitor and manufacturing method thereof
JP3291044B2 (en) Solid electrolytic capacitors
JPH07201502A (en) Board mounding type electronic component
JPH07201679A (en) Aluminum electrolytic capacitor
WO2024070529A1 (en) Capacitor element
CN201853583U (en) Solid-state electrolytic capacitor
JP2001023869A (en) Conductive paste for solid electrolytic capacitor
JPS6011637Y2 (en) Electrolytic capacitor
JP2000114112A (en) Solid electrolytic capacitor and its manufacture
JPH0428214A (en) Manufacture of solid electrolytic capacitor
JP2001250746A (en) Electrolytic capacitor