JPH034028Y2 - - Google Patents

Info

Publication number
JPH034028Y2
JPH034028Y2 JP15023387U JP15023387U JPH034028Y2 JP H034028 Y2 JPH034028 Y2 JP H034028Y2 JP 15023387 U JP15023387 U JP 15023387U JP 15023387 U JP15023387 U JP 15023387U JP H034028 Y2 JPH034028 Y2 JP H034028Y2
Authority
JP
Japan
Prior art keywords
crystal
substrate
quartz tube
heat sink
internal heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15023387U
Other languages
Japanese (ja)
Other versions
JPS6457637U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15023387U priority Critical patent/JPH034028Y2/ja
Publication of JPS6457637U publication Critical patent/JPS6457637U/ja
Application granted granted Critical
Publication of JPH034028Y2 publication Critical patent/JPH034028Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) この考案は半導体結晶の結晶成長装置に関する
ものである。
[Detailed description of the invention] (Industrial application field) This invention relates to a crystal growth apparatus for semiconductor crystals.

(従来の技術) 従来のこの種結晶成長装置は、第2図に示した
ように、Aのように棒状の石英をヒートシンク1
0として用いたもの、Bのように石英管1の下端
に外部ヒートシンク11を取付けて基板3上にエ
ピタキシヤル成長させている。
(Prior Art) In this conventional seed crystal growth apparatus, as shown in FIG.
As shown in Figure 0 and B, an external heat sink 11 is attached to the lower end of the quartz tube 1 and epitaxial growth is performed on the substrate 3.

また、この場合の成長温度は850℃以上とし、
温度差は最大が3〜4℃/cmとなつている。
In addition, the growth temperature in this case should be 850℃ or higher,
The maximum temperature difference is 3-4°C/cm.

(考案が解決しようとする問題点) しかしながら、従来のZnSeエピタキシヤル成
長においては、外部ヒートシンク11や石英ヒー
トシンク10を用いて成長させた場合に熱伝導率
が悪いため、結晶析出時に生じる生成熱を短時間
に効率よく逃がすことが困難である。
(Problem to be solved by the invention) However, in conventional ZnSe epitaxial growth, thermal conductivity is poor when the external heat sink 11 or quartz heat sink 10 is used for growth. It is difficult to release it efficiently in a short time.

また、このために、結晶成長時にアンプルの結
晶析出部とその上部との間の温度差も余り多くと
ることができないため、結晶成長速度の低下につ
ながつている。
Furthermore, for this reason, it is not possible to maintain a large temperature difference between the crystal precipitation part of the ampoule and its upper part during crystal growth, which leads to a decrease in the crystal growth rate.

さらに、外部ヒートシンクを用いた場合には、
基板結晶の底部とヒートシンクの頭部とが必ずし
も密着しないため、この部分が熱抵抗を大きく
し、ために結晶成長速度の低下原因の一つになつ
ている。
Furthermore, when using an external heat sink,
Since the bottom of the substrate crystal and the head of the heat sink do not necessarily come into close contact with each other, this portion increases thermal resistance, which is one of the causes of a decrease in the crystal growth rate.

そこで、本考案は上記欠点を除去した結晶成長
装置の提供を目的としている。
Therefore, an object of the present invention is to provide a crystal growth apparatus that eliminates the above-mentioned drawbacks.

(問題点を解決するための手段) 上記目的を達成するため、この考案は、−
族化合物の結晶成長装置に関し、有底石英管1内
に棒状の熱伝導率の高い物質からなる内部ヒート
シンク2を収納し、該内部ヒートシンク2の上面
に基板結晶3を当接させる態様で配置し、この基
板結晶3を基板止め4で保持し、この基板止め4
の上端に位置する石英管1の溶着部5を軟化溶着
して基板結晶3を固定した後前記石英管1にメル
ト6を充填して高真空とした後前記石英管1の開
口部を閉じて密封構造とした構成とし、上下に温
度差が形成された溶液により基板結晶上に結晶を
エピタキシヤル成長させる構成にされている。
(Means for solving the problem) In order to achieve the above purpose, this invention -
Regarding a crystal growth apparatus for group compounds, an internal heat sink 2 made of a rod-shaped material with high thermal conductivity is housed in a bottomed quartz tube 1, and a substrate crystal 3 is arranged in a manner that it is in contact with the upper surface of the internal heat sink 2. , hold this substrate crystal 3 with a substrate stopper 4, and hold this substrate crystal 3 with a substrate stopper 4.
After fixing the substrate crystal 3 by soft welding the welded part 5 of the quartz tube 1 located at the upper end, the quartz tube 1 is filled with melt 6 and made into a high vacuum, and then the opening of the quartz tube 1 is closed. The structure is a sealed structure, and a crystal is epitaxially grown on a substrate crystal using a solution in which a temperature difference is formed between the upper and lower sides.

(実施例) 以下本考案の一実施例をあらわした図面によつ
て説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings.

第1図において、aは石英管1を密封構造とし
た成長用アンプルである。この石英管1は有底で
あり、この石英管1内には棒状の熱伝導率の高い
物質からなる内部ヒートシンク2が収納されてい
る。
In FIG. 1, a is a growth ampoule in which a quartz tube 1 has a sealed structure. This quartz tube 1 has a bottom, and an internal heat sink 2 made of a rod-shaped material with high thermal conductivity is housed inside the quartz tube 1.

この熱伝導率の高い物質として用いられる物質
は、緻密質SiC、多孔質SiC、石英ガラス、グラ
フアイト、PBN“a”軸、PBN“c”軸等であ
る。
Materials used as this material with high thermal conductivity include dense SiC, porous SiC, quartz glass, graphite, PBN "a" axis, PBN "c" axis, and the like.

この内部ヒートシンク2の基板結晶設置面とな
る上端面は、# 1500前後でラツピングし、次に#
4000前後でポリツシングして鏡面状態とされるの
がよい。
The upper end surface of this internal heat sink 2, which will be the substrate crystal installation surface, is wrapped around #1500, and then wrapped around #1500.
It is best to polish it at around 4000 to give it a mirror finish.

また、内部ヒートシンク2として純度の低いカ
ーボンを使用する場合は、このカーボン表面に
SiCやPBNの薄い層を形成すると有効となる。
In addition, when using low-purity carbon as internal heat sink 2, the surface of this carbon
Forming a thin layer of SiC or PBN is effective.

基板止め4は円筒状に形成され、基板結晶3が
溶液6上に浮上らないように溶着部5は外側から
熱を与えて軟化溶着されている。
The substrate stopper 4 is formed in a cylindrical shape, and the welded portion 5 is softened and welded by applying heat from the outside so that the substrate crystal 3 does not float above the solution 6.

さらに、内部ヒートシンク2と基板結晶3の接
触状態は結晶成長に大きな影響を与えるので、両
者の接触面をラツピング及びポリツシング処理す
ると有効であり、第2図の従来例のAの場合も基
板結晶と石英ヒートシンクとの接触面をラツピン
グ、ポリツシング処理工程は本考案の場合と同様
に適用できる。
Furthermore, since the contact state between the internal heat sink 2 and the substrate crystal 3 has a great influence on crystal growth, it is effective to treat the contact surfaces between the two by lapping and polishing. The lapping and polishing process for the contact surface with the quartz heat sink can be applied in the same manner as in the present invention.

次に結晶成長法は、アンプルaは温度分布の決
められた炉中に垂直に設置し、成長前には予め
Te/Se溶媒とソース結晶とを混合させたものを
用いる。
Next, in the crystal growth method, ampoule a is placed vertically in a furnace with a determined temperature distribution, and before crystal growth,
A mixture of Te/Se solvent and source crystal is used.

また、エピタキシヤル成長時の成長温度は650
℃以上とし、温度差は最大でも10℃/cm前後とす
るのがよい。
In addition, the growth temperature during epitaxial growth is 650
℃ or more, and the temperature difference should be around 10℃/cm at maximum.

なお、内部ヒートシンク2としてカーボンを用
いた場合と石英を用いた場合における同一条件下
での単位時間当りの成長速度を比較すると、カー
ボンの場合は3.0〜5.0μm/hrであり、石英の場
合は1.0〜2.0μm/hrである。
In addition, when comparing the growth rate per unit time under the same conditions when carbon is used as the internal heat sink 2 and when quartz is used, it is 3.0 to 5.0 μm/hr in the case of carbon and 3.0 to 5.0 μm/hr in the case of quartz. It is 1.0 to 2.0 μm/hr.

さらに、本考案の場合の結晶成長速度は、例え
ば成長温度800〜850℃、温度差4.0〜5.0℃/cmで
は3.0〜5μm/hrの均一でフラツトなエピタキシ
ヤル成長面を得ることができる。
Furthermore, the crystal growth rate in the case of the present invention is, for example, 3.0 to 5 .mu.m/hr at a growth temperature of 800 to 850.degree. C. and a temperature difference of 4.0 to 5.0.degree. C./cm, and a uniform and flat epitaxial growth surface can be obtained.

(考案の効果) 以上のように構成した本考案によれば、内部ヒ
ートシンクとして棒状で熱伝導率の高い物質を用
いたため、結晶析出時に生じる生成熱をスムーズ
に逃してやることができる。
(Effects of the invention) According to the invention configured as described above, since a rod-shaped material with high thermal conductivity is used as the internal heat sink, the generated heat generated during crystal precipitation can be smoothly dissipated.

また、アンプルの結晶析出部分と上部との温度
差も比較的多くとることが可能なため、成長結晶
の結晶性を損なわず、加えて成長速度を増加させ
ることが可能となつた。
Furthermore, since it is possible to have a relatively large temperature difference between the crystal precipitation part and the upper part of the ampoule, it has become possible to increase the growth rate without impairing the crystallinity of the growing crystal.

さらに、内部ヒートシンクの頭部をラツピン
グ、ポリツシングするため、基板結晶との密着性
は増大し、このため結晶成長速度の増加を助長さ
せることができる。
Furthermore, since the head of the internal heat sink is lapped and polished, its adhesion to the substrate crystal increases, which can help increase the crystal growth rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る結晶成長装置の断面図、
第2図A及びBは従来の結晶成長装置の断面図で
ある。 符号の説明、a……アンプル、1……石英管、
2……内部ヒートシンク、3……基板結晶、4…
…基板止め、5……溶着部、6……メルト。
FIG. 1 is a cross-sectional view of a crystal growth apparatus according to the present invention;
FIGS. 2A and 2B are cross-sectional views of a conventional crystal growth apparatus. Explanation of symbols, a... Ampoule, 1... Quartz tube,
2... Internal heat sink, 3... Substrate crystal, 4...
... Board fixing, 5... Welding part, 6... Melt.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 有底石英管内に棒状の熱伝導率の高い物質から
なる内部ヒートシンクを収納し、この内部ヒート
シンクの上面に基板結晶を当接させる態様で配置
し、この基板結晶を基板止めで保持し、この基板
止めの上端に位置する石英管の溶着部を軟化溶着
して基板結晶を固定した後前記石英管にメルトを
充填して高真空とした後前記石英管の開口部を閉
じて密封した構成とし、上下に温度差が形成され
た溶液により基板結晶上に結晶をエピタキシヤル
成長させることを特徴としてなる半導体結晶の結
晶成長装置。
An internal heat sink made of a rod-shaped material with high thermal conductivity is housed in a bottomed quartz tube, a substrate crystal is placed in contact with the top surface of the internal heat sink, and this substrate crystal is held with a substrate stopper. After softening and welding the welded part of the quartz tube located at the upper end of the stopper to fix the substrate crystal, the quartz tube is filled with melt and created a high vacuum, and then the opening of the quartz tube is closed and sealed, A semiconductor crystal crystal growth apparatus characterized by epitaxially growing a crystal on a substrate crystal using a solution in which a temperature difference is formed between the upper and lower sides.
JP15023387U 1987-09-30 1987-09-30 Expired JPH034028Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15023387U JPH034028Y2 (en) 1987-09-30 1987-09-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15023387U JPH034028Y2 (en) 1987-09-30 1987-09-30

Publications (2)

Publication Number Publication Date
JPS6457637U JPS6457637U (en) 1989-04-10
JPH034028Y2 true JPH034028Y2 (en) 1991-02-01

Family

ID=31423190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15023387U Expired JPH034028Y2 (en) 1987-09-30 1987-09-30

Country Status (1)

Country Link
JP (1) JPH034028Y2 (en)

Also Published As

Publication number Publication date
JPS6457637U (en) 1989-04-10

Similar Documents

Publication Publication Date Title
JPH0157078B2 (en)
JPH1179886A (en) Crystal growing method and apparatus therefor
JPH034028Y2 (en)
JPH09221397A (en) Production of silicon carbide single crystal
JPH09263498A (en) Production of silicon carbide single crystal
JPH09110584A (en) Growing of single crystal
JPH10297997A (en) Formation of silicon carbide singe crystal
JPH04193798A (en) Production of sic single crystal
JP2004083301A (en) Single crystal manufacturing apparatus
JPH1160391A (en) Production of silicon carbide single crystal
JPH0449185Y2 (en)
JPS58140114A (en) Device of crystallization
JPS63186775U (en)
JPH0316988A (en) Production device of single crystal of compound semiconductor
JPS6117489A (en) Production of silicon single crystal
JPH0867593A (en) Method for growing single crystal
JPS63185885A (en) Crystal growing device of horizontal type
JPH01305889A (en) Molecular beam cell
McGill GROWTH OF SINGLE CRYSTAL SILICON ON AMORPHOUS SUBSTRATES
JPH10259098A (en) Vessel for growing lithium borate single crystal, and growth of lithium borate single crystal
JPH0329752B2 (en)
JPH0261136B2 (en)
JPH0365590A (en) Molecular beam epitaxy apparatus
JP2004018319A (en) Compound semiconducting crystal growth apparatus
JPS6077195A (en) Apparatus for producing compound semiconductor single crystal