JPH034026A - Mounting structure for ceramic bearing - Google Patents

Mounting structure for ceramic bearing

Info

Publication number
JPH034026A
JPH034026A JP13563789A JP13563789A JPH034026A JP H034026 A JPH034026 A JP H034026A JP 13563789 A JP13563789 A JP 13563789A JP 13563789 A JP13563789 A JP 13563789A JP H034026 A JPH034026 A JP H034026A
Authority
JP
Japan
Prior art keywords
metal
ceramic bearing
thermal expansion
coefficient
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13563789A
Other languages
Japanese (ja)
Other versions
JP2641762B2 (en
Inventor
Yoshinori Narita
義則 成田
Yoshinori Hattori
服部 善憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP13563789A priority Critical patent/JP2641762B2/en
Publication of JPH034026A publication Critical patent/JPH034026A/en
Application granted granted Critical
Publication of JP2641762B2 publication Critical patent/JP2641762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/525Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to temperature and heat, e.g. insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/07Fixing them on the shaft or housing with interposition of an element
    • F16C35/073Fixing them on the shaft or housing with interposition of an element between shaft and inner race ring

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PURPOSE:To prevent damage of a bearing by loose-fitting a metal-made jacket pipe, which is provided with a coefficient of thermal expansion smaller than a metal-made rotary shaft and not less than the inner ring of a ceramic bearing, to a small bore part and securely interposing a fitting ring with a coefficient of thermal expansion larger than the rotary shaft in one side of the jacket pipe. CONSTITUTION:A metal-made jacket pipe 2, fitted into a small bore part 11 in a metal-made rotary shaft 1, is provided with a coefficient of thermal expansion smaller than that of the rotary shaft 1 and larger than that of an inner ring 41 of a ceramic bearing 4, and the small bore part 11 and the internal bore of the jaket pipe 2 are loose-fitted so as to obtain a 0 clearance at a temperature of use not less than 100 deg.C. A fitting ring 3 is inserted to a top end surface 23 in the jacket pipe 2, and a coefficient of thermal expansion of the fitting ring is set larger than that of the rotary shaft 1 with a rear end surface 31 formed in a tapered shape. A loose-fit clearance between the inner ring 41 of the bearing 4 and the jacket pipe 2 is set to zero at a normal temperature. The fitting ring 3 is tightened by a nut 5. Accordingly, stress in the diametric direction of the rotary shaft 1 by thermal expansion is not suppressed by the jacket pipe 2 but transmitted to the bearing 4, which is prevented from being damaged.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高温環境下で使用する軸受の構造に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to the structure of a bearing used in a high temperature environment.

[従来の技術] セラミックは高温での強度や、耐磨耗性に優れるため、
高温環境下で使用する軸受にはセラミック軸受が用いら
れる。
[Conventional technology] Ceramics have excellent strength at high temperatures and abrasion resistance, so
Ceramic bearings are used for bearings used in high-temperature environments.

このセラミック軸受(熱膨張係数αa)は、取付は段部
が形成された金属製回転軸(熱膨張係数αb)に直接液
め込まれる。
This ceramic bearing (coefficient of thermal expansion αa) is mounted directly into a metal rotating shaft (coefficient of thermal expansion αb) having a stepped portion.

[発明が解決しようとする課題] しかるに、上記従来の技術はつぎのような欠点がある。[Problem to be solved by the invention] However, the above conventional technology has the following drawbacks.

温度が上昇すると、金属製回転軸の径方向の熱膨張の影
g(通常αa〈αbである為)がセラミック軸受に伝わ
るのでセラミック軸受が破損する場合がある。
When the temperature rises, the influence g of thermal expansion in the radial direction of the metal rotating shaft (usually αa<αb) is transmitted to the ceramic bearing, which may damage the ceramic bearing.

本発明の目的は、使用環境温度か上昇しても不具合が生
じ難いセラミック軸受の取付構造の堤倶にある。
An object of the present invention is to provide a mounting structure for a ceramic bearing that is less likely to cause problems even if the operating environment temperature rises.

し課題を解決するための手段1 上記目的達成のため、本発明はつぎの構成を採用した。Means to solve the problem 1 In order to achieve the above object, the present invention employs the following configuration.

第1の発明として、径小部を備えた金トル製凹転軸、お
よび前記径小部に収イ1けられるセラミック軸受からな
るセラミック軸受の取付構造において、熱膨張係数が、
前記金属製回転軸より小さく、かつセラミック軸受けの
内輪以」二である金属製套管を、萌記径小部にすきま嵌
めして前記径小部と内輪との間に配し、前記金属製套管
のハfullまたは両側に、前記回転軸より熱膨張係数
が大きい嵌め輪を同軸的に介在させ°C2締結部材によ
り固着している。
As a first invention, in a ceramic bearing mounting structure comprising a concave rotating shaft made of metal and a small diameter portion and a ceramic bearing accommodated in the small diameter portion, the coefficient of thermal expansion is
A metal sleeve, which is smaller than the metal rotating shaft and smaller than the inner ring of the ceramic bearing, is fitted into the small diameter portion with a clearance and arranged between the small diameter portion and the inner ring, and Fitting rings having a coefficient of thermal expansion larger than the rotating shaft are coaxially interposed on the full or both sides of the sleeve and are fixed by a °C2 fastening member.

第2の発明として、さらに、嵌め輪と金属製套管、嵌め
輪と締結部材、金Bf41套管と金属製回転軸、および
嵌め輪と金属製回転軸の各端面は面当接され、これら4
1向のうち、少なくとも1組は円錐状のテーパに形成さ
れている。
As a second invention, each end face of the fitting ring and the metal sleeve, the fitting ring and the fastening member, the gold Bf41 sleeve and the metal rotating shaft, and the fitting ring and the metal rotating shaft are in surface contact with each other, and 4
At least one set in one direction is formed into a conical taper.

[作用および発明の効果] 本発明はつぎの作用および効果を奏する。[Action and effect of invention] The present invention has the following functions and effects.

(JIl求項1について) (1)金属ツ套管は熱膨張係数が、金属製回転軸より小
さく、かつセラミック軸受の内輪以上であるさらに、金
属製套管と金属製回転軸とはすきま嵌めされている。こ
のため、使用環境温度が−1−昇しても、金属製回転軸
の熱膨張(径方向)の影響がセラミック軸受の内輪に伝
わり難く、セラミック軸受の破損が防止できる。
(Regarding JIl Requirement 1) (1) The coefficient of thermal expansion of the metal sleeve is smaller than that of the metal rotating shaft, and is greater than the inner ring of the ceramic bearing.Furthermore, the metal sleeve and the metal rotating shaft are a loose fit. has been done. Therefore, even if the operating environment temperature rises by -1, the effect of thermal expansion (in the radial direction) of the metal rotating shaft is not easily transmitted to the inner ring of the ceramic bearing, and damage to the ceramic bearing can be prevented.

(2)金属製套管は熱膨張係数が金属製回転軸より小さ
い、ここで、使用環境温度が上昇すると金属製套管と金
属製回転軸との熱llj張差により、これら部材間に軸
〃向における隙間の発生が考えられる。しかし、嵌め輪
の熱M3張係数を金に4製回転軸より大きくして1bる
ので、金属製套管は嵌め輪により押され、上記隙間を生
じさせないように作用する。よって、使用環境温度が上
昇しても金属製套管と金属製回転軸との緩みは極めて起
こり難い。
(2) The coefficient of thermal expansion of the metal sleeve is smaller than that of the metal rotating shaft.Here, when the operating environment temperature rises, the thermal tension difference between the metal sleeve and the metal rotating shaft causes the shaft to expand between these parts. It is possible that a gap may occur in the direction. However, since the thermal M3 tensile coefficient of the fitting ring is 1b larger than that of the rotating shaft made of gold and 4, the metal sleeve is pressed by the fitting ring and acts to prevent the above-mentioned gap from occurring. Therefore, even if the operating environment temperature rises, loosening of the metal sleeve and the metal rotating shaft is extremely unlikely to occur.

(請求項2について) 嵌め輪と金属製套管、嵌め輪と締結部材、金属製套管と
金属製回転軸、および嵌め輪と金属製回転軸の各端面は
面当接され、これら端面のうち、少なくとも1組は円錐
状のテーパに形成さえ′L′Cいる。このため、調芯(
p用が生じ金属製套管の軸ずれが防止できる。
(Regarding Claim 2) The end surfaces of the fitting ring and the metal sleeve, the fitting ring and the fastening member, the metal sleeve and the metal rotating shaft, and the fitting ring and the metal rotating shaft are in surface contact, and Among them, at least one set is formed into a conical taper. For this reason, alignment (
This can prevent the metal sleeve from shifting its axis.

[実施例1 つぎに、本発明の第1実施例を第1図に基づき説明する
[Embodiment 1] Next, a first embodiment of the present invention will be described based on FIG.

第1図に示すごとく、本実施例のセラミック軸受の取イ
・1構造Aは、径小部11が形成される金属製回転軸1
と、前記径小部11に嵌め込まれる金属製套管2と、該
金属製套管2の先端側に嵌め込まれる嵌め輪3と、前記
金属製套管2に外嵌されるセラミック軸受4と、ワッシ
ャ51およびナツト5とを備える。
As shown in FIG. 1, the structure A of the ceramic bearing of this embodiment has a metal rotating shaft 1 on which a small diameter portion 11 is formed.
a metal sleeve 2 fitted into the small diameter portion 11; a fitting ring 3 fitted onto the distal end side of the metal sleeve 2; and a ceramic bearing 4 fitted onto the metal sleeve 2. It includes a washer 51 and a nut 5.

金属製回転軸1は、熱膨張係数α1が11,5X 10
−’/’Cのクロムモリブデン鋼で形成されている。前
記径小部11(常温で直径17mm)にはねじI2が螺
刻されている。径小部1】の後端はテーパ而13が形成
され、ii前記金属製g管2の後端面21に面接触して
いる。
The metal rotating shaft 1 has a thermal expansion coefficient α1 of 11.5X 10
-'/'C chromium molybdenum steel. A screw I2 is threaded into the small diameter portion 11 (diameter 17 mm at room temperature). A tapered portion 13 is formed at the rear end of the small diameter portion 1 and is in surface contact with the rear end surface 21 of the metal g-tube 2.

金属製套管2は、熱&lj?J、係数α2が6XiO−
’/℃の超硬合金で形成されている。また、外周Vは係
止段22が周設され、前記後端面21、先端面23は円
錐形のテーパ(θ1、θ2・二15′″)に形成されて
いる。この金属製套管2は、常温で、外径が30mm、
内径がほぼ17 tr目TI 、長さl−。
The metal sleeve 2 is heat & lj? J, coefficient α2 is 6XiO−
'/℃ made of cemented carbide. Further, a locking step 22 is provided around the outer periphery V, and the rear end surface 21 and the front end surface 23 are formed into a conical taper (θ1, θ2・215′″). , the outer diameter is 30 mm at room temperature,
The inner diameter is approximately 17th tr, and the length is l-.

24mm(金属製套管2の平均長さ)の円筒形状である
。なお50q記金属製回転軸1の径小部11と金属製套
管2の内径とは100°C以」の使用温度下で嵌め合い
隙間がOm +n以]4(常温では隙jj)14を有す
る)になるようにされている、金属製套管2は前記セラ
ミック軸受4を取付けた後、金属製回転軸1の径小部1
1に挿入される。なお、R(嵌め輪3の位置30におけ
る半径)は1175 ni mである。
It has a cylindrical shape of 24 mm (average length of the metal sleeve 2). Note that the small-diameter portion 11 of the metal rotating shaft 1 and the inner diameter of the metal sleeve 2 described in 50q have a fitting clearance of Om + n or less at a working temperature of 100°C or less (gap jj at room temperature) 14. After the ceramic bearing 4 is attached to the metal sleeve 2, which is designed to have a small diameter portion 1 of the metal rotating shaft 1,
1 is inserted. Note that R (radius at position 30 of the fitting ring 3) is 1175 nim.

嵌め輪3は、熱膨張係数α3が22.0Xi06/℃、
長さ’I =6mm (嵌め輪3の平均距離)のアルミ
ニウム合金で形成されている。この嵌め輪3は後端面3
1がテーパに形成されている。
The fitting ring 3 has a thermal expansion coefficient α3 of 22.0Xi06/℃,
It is made of aluminum alloy and has a length 'I = 6 mm (average distance of the fitting ring 3). This fitting ring 3 is the rear end surface 3
1 is formed into a tapered shape.

セラミック軸受4(金属製玉軸受けの呼び番号6206
に相当)は、内輪41、外輪42、球43からなり、熱
膨張係数α4が3.lXl0”/℃のサイアロンで全て
形成されている。なお、前記金属製套管2の外径とセラ
ミック軸受4の内輪径とは常温で嵌め合い隙間がOmm
となるようにされている。このセラミック軸受4は、圧
入により前記金属製套管2に固定される。
Ceramic bearing 4 (metal ball bearing number 6206
) consists of an inner ring 41, an outer ring 42, and a ball 43, and has a thermal expansion coefficient α4 of 3. The outer diameter of the metal sleeve 2 and the inner ring diameter of the ceramic bearing 4 fit together at room temperature with a gap of 0 mm.
It is designed to be. This ceramic bearing 4 is fixed to the metal sleeve 2 by press fitting.

ナツト5(金属製)は前記ワッシャ51(金属製)を介
して前記底め輪3を締め付けている。
The nut 5 (made of metal) tightens the bottom ring 3 via the washer 51 (made of metal).

本実施例における各数値の最適範囲は以下のごとくであ
る。
The optimal range of each numerical value in this example is as follows.

(1)セラミック軸受4の熱mgi係数α4と金属製套
管2の熱m張係数α2との関係は、 0≦α2−α4≦6 X 10−’/”Cとされる。α
2くα4は通常者えられず、α2−α4>6X10−’
/”Cであると温度上昇によりセラミック軸受が破壊さ
れ易い。
(1) The relationship between the thermal mgi coefficient α4 of the ceramic bearing 4 and the thermal mgi coefficient α2 of the metal sleeve 2 is 0≦α2−α4≦6×10−′/”C.α
2 × α4 cannot be obtained normally, α2−α4>6X10−'
/''C, the ceramic bearing is likely to be destroyed due to temperature rise.

金属製套管2の熱膨張係数α2と金属製回転軸1の熱膨
張係数α1との関係は、 α2くα1 とされる、α2〉α1であると金属製回転軸1の温度上
昇に伴う径方向の膨張による応力が金属製套管2により
抑制されることなくセラミック軸受4に伝わる。
The relationship between the coefficient of thermal expansion α2 of the metal sleeve 2 and the coefficient of thermal expansion α1 of the metal rotating shaft 1 is α2 × α1. If α2>α1, the diameter of the metal rotating shaft 1 increases as the temperature rises. Stress due to directional expansion is transmitted to the ceramic bearing 4 without being suppressed by the metal sleeve 2.

金IX!!!回転軸lの熱膨張係数α1と嵌め輪3の!
!!、1j8I係数α3との関係は、α1くα3 とされる、α1〉α3であると、金属製回転軸1と金属
製套管2との軸方向の熱膨張差によるナツト5の緩みを
嵌め輪3の軸方向の熱膨張により補償することができな
い。
Gold IX! ! ! The thermal expansion coefficient α1 of the rotating shaft l and the fit ring 3!
! ! , 1j8I coefficient α3 is α1 × α3. If α1>α3, the loosening of the nut 5 due to the difference in thermal expansion in the axial direction between the metal rotating shaft 1 and the metal sleeve 2 can be absorbed by the fitting ring. 3 cannot be compensated for due to axial thermal expansion.

以上、纒めると、 α4≦α2〈α1くα3 (但しα2−α4≦6 x 10−6/’C)(2)温
度上昇時の金属製回転軸1の軸方向のllj張に関係す
る長さ(9+I、)が、金属製套管2の該当長さ(L)
および嵌め輪3の該当長さ(41)により補償できれば
良いので以下の式が成り立つ。
To summarize the above, α4≦α2〈α1×α3 (however, α2−α4≦6 x 10-6/'C) (2) Related to the axial tension of the metal rotating shaft 1 when the temperature rises The length (9+I,) is the corresponding length (L) of the metal sleeve 2
Since it is only necessary to compensate by the corresponding length (41) of the fitting ring 3, the following formula holds true.

α1 (N +L)≦ α2 ・L+a3 (J +N−R−tanθ)(但し
Nはテーパ数) (3)θ1およびθ2は45°未満とされる。45°を
越えると温度」〕昇時の締め付は応力が軸方向とならず
径方向になる。
α1 (N + L)≦ α2 ·L+a3 (J +NR-tan θ) (where N is the taper number) (3) θ1 and θ2 are less than 45°. If the temperature exceeds 45°, the stress will not be in the axial direction but in the radial direction when tightening as the temperature increases.

本実施例のセラミック軸受の取付構造Aでは、使用温度
を常温から200℃まで上昇させても、ナツトらの緩み
(金属製套管2と金属製回転1IIIlとの緩み)は生
じなかった。
In the ceramic bearing mounting structure A of this example, even when the operating temperature was raised from room temperature to 200° C., loosening of the nuts (loosening of the metal sleeve 2 and the metal rotating shaft 1III1) did not occur.

また、セラミック軸受4と金属製套管2との緩みも生じ
ず、セラミック軸受4には著しい圧縮応力も生じなかっ
た。さらに、金属製回転軸1を毎分3000回転させて
も軸振れは生じなかった。
Moreover, no loosening occurred between the ceramic bearing 4 and the metal sleeve 2, and no significant compressive stress was generated in the ceramic bearing 4. Further, even when the metal rotating shaft 1 was rotated at 3000 revolutions per minute, no shaft runout occurred.

第2図は本発明の第2実施例を示す。FIG. 2 shows a second embodiment of the invention.

嵌め輪3は熱IIj張係数19 X 10−’/’C1
長さ10mmの銅合金で形成され、後端面31は回転軸
に対して垂直とされ、先端面32は円錐状のテーパ(θ
3=15’)とされている。
Fitting ring 3 has thermal IIj tensile coefficient 19 x 10-'/'C1
It is made of copper alloy with a length of 10 mm, the rear end surface 31 is perpendicular to the rotation axis, and the front end surface 32 has a conical taper (θ
3=15').

52は座金(熱膨張係数が11..5X10’−’/℃
のクロムモリブデンw4)であり、前記金属製回転軸1
と同材料で形成されている。
52 is a washer (thermal expansion coefficient is 11.5X10'-'/℃
chromium molybdenum w4), and the metal rotating shaft 1
It is made of the same material.

座金52の後端面53と嵌め輪3の先端面32および嵌
め輪3の後端面31と金属製套管2の先端面23とはそ
れぞれ面接触されている。
The rear end surface 53 of the washer 52 and the distal end surface 32 of the fitting ring 3 are in surface contact with each other, and the rear end surface 31 of the fitting ring 3 and the distal end surface 23 of the metal sleeve 2 are in surface contact with each other.

本実施例のセラミック軸受の取付構造Bはつぎの効果を
奏する。
The ceramic bearing mounting structure B of this embodiment has the following effects.

金属製套管2の先端面23はテーパとしなくても良い。The distal end surface 23 of the metal sleeve 2 does not have to be tapered.

金属製回転軸1と同材料の座金52により締まりが安定
する。
The metal rotating shaft 1 and the washer 52 made of the same material stabilize the tightness.

嵌め輪3の長さを長くすれば嵌め輪3は熱膨張係数の小
さい(金属製回転軸1よりは大きい)材料を使うことが
できる。
By increasing the length of the fitting ring 3, a material with a small coefficient of thermal expansion (larger than that of the metal rotating shaft 1) can be used for the fitting ring 3.

金属製回転軸1の径小部11が長くとれる場合に好適で
ある。
This is suitable when the small diameter portion 11 of the metal rotating shaft 1 can be made long.

第3図は本発明の第3実施例を示す。FIG. 3 shows a third embodiment of the invention.

嵌め輪3は熱膨張係数3 x 10−”/”C1長さ6
mmの耐熱性を有するフェノール樹脂で形成され、後端
面31は回転軸に対して垂直とされ、後端面31および
先端面32は円錐状のテーパ(θ5、θ6−10°)と
されている。
Fitting ring 3 has thermal expansion coefficient 3 x 10-”/”C1 length 6
It is made of a phenolic resin having a heat resistance of mm, the rear end surface 31 is perpendicular to the rotation axis, and the rear end surface 31 and the front end surface 32 are tapered conically (θ5, θ6-10°).

座き52は第2実施例と同じものである。The seat 52 is the same as in the second embodiment.

本実施例のセラミック軸受の取付構造Cでは、嵌め輪3
に熱膨張係数の大きいものを使ったり、テーパの数を増
やしたりずれば、θ4、θ5、θ6(径方向と端面との
成す角度)は小さくできる。
In the ceramic bearing mounting structure C of this embodiment, the fitting ring 3
θ4, θ5, and θ6 (angles formed between the radial direction and the end face) can be made smaller by using a material with a large coefficient of thermal expansion or by increasing the number of tapers.

第4図は本発明の第4実施例を示す。FIG. 4 shows a fourth embodiment of the invention.

金属製套管2は、熱膨張係数が5xio−6,/”Cの
超硬合金であり、後端面21、先端向23は歯形状に形
成されている。
The metal sleeve 2 is made of cemented carbide with a thermal expansion coefficient of 5xio-6,/''C, and the rear end surface 21 and the front end 23 are tooth-shaped.

本実施例では金属製套管2の後端側にも嵌め輪6が配さ
れている。
In this embodiment, a fitting ring 6 is also arranged on the rear end side of the metal sleeve 2.

嵌め輪6および嵌め輪3は、熱膨張係数17X10−’
/’C1長さ12mmのステンレス鋼で形成されている
。ここで、嵌め輪6の後端面61および嵌め輪3の先端
面32は円鉾状のテーパ(θ8、θ7=15°)とされ
ている、また、先端面62、後端面31は、それぞれ後
41而21、先端向23と歯合する歯形状に形成されζ
いる。
The fitting ring 6 and the fitting ring 3 have a thermal expansion coefficient of 17X10-'
/'C1 It is made of stainless steel and has a length of 12 mm. Here, the rear end surface 61 of the fitting ring 6 and the tip surface 32 of the fitting ring 3 are tapered in the shape of a circular hoop (θ8, θ7=15°), and the tip surface 62 and the rear end surface 31 are respectively rearward. 41 and 21, formed into a tooth shape that meshes with the tip direction 23 ζ
There is.

本実施例のセラミック軸受の取付構造りでは、金属製套
管2の両側に嵌め輪3.6を配しているので、金属製套
管2の先端向23、後端(m24のテーパは不要となる
。さらに、金属製套管2と嵌め輪3.6との結合はカー
ビックカップリングを用いているので環境温度が常温程
度のとき(隙間14が広いとき)でも、金属製套管2は
安定に保持され、セラミック軸受4は芯ずれを起こした
り、がたついたりしない、また、嵌め輪3.6が金属製
套管2の熱lIj+5Mをカーピックカップリングを介
して抑制するのでセラミック軸受4を破壊に土らしぬる
ことはない。
In the ceramic bearing mounting structure of this embodiment, the fitting rings 3.6 are arranged on both sides of the metal sleeve 2, so the taper in the forward direction 23 and rear end (m24) of the metal sleeve 2 is unnecessary. Furthermore, since a curvic coupling is used to connect the metal sleeve 2 and the fitting ring 3.6, even when the environmental temperature is around room temperature (when the gap 14 is wide), the metal sleeve 2 is held stably, and the ceramic bearing 4 does not become misaligned or wobble. Also, since the fitting ring 3.6 suppresses the heat lIj+5M of the metal sleeve 2 through the car pick coupling, the ceramic bearing 4 The bearing 4 will not be destroyed.

第5図は本発明の第5実施例(請求項1に対応)を示す
FIG. 5 shows a fifth embodiment (corresponding to claim 1) of the present invention.

金属製回転軸1は、熱W3張係数が11..0X10−
’/’Cの炭素鋼で形成されている。
The metal rotating shaft 1 has a thermal W3 tensile coefficient of 11. .. 0X10-
It is made of '/'C carbon steel.

金m製套管2は、熱膨張係数が8.0XtO”6/℃の
コバルトニッケル鋼で形成されている。後端面2】、先
端面23は回転軸に対して垂直である。
The gold sleeve tube 2 is made of cobalt nickel steel with a thermal expansion coefficient of 8.0XtO''6/°C.The rear end surface 2 and the front end surface 23 are perpendicular to the axis of rotation.

金属製套管2(内径は常温でほぼ17mm>と金属製回
転軸1(常温で直径17mm)とのすきま嵌めは、常温
に近い比較的低い温度の時、隙間14(径小部11と金
属製套管2との)により芯ずれ(軸振れ)を起こさず、
かつ100’C程度の使用温度下(80℃)で前記隙間
14がほぼOrnmとなるようにされている。
The clearance fit between the metal sleeve 2 (inner diameter is approximately 17 mm at room temperature) and the metal rotating shaft 1 (diameter 17 mm at room temperature) is such that when the temperature is relatively low near room temperature, the gap 14 (the small diameter portion 11 and the metal With the cannula 2), there is no misalignment (axial runout),
Moreover, the gap 14 is designed to be approximately Ornm at an operating temperature of about 100'C (80°C).

嵌め輸3は、熱1ljI31係数が3.0X10−’/
’C5長さ10mmのフェノール樹脂で形成されている
Insertion 3 has a heat 1ljI31 coefficient of 3.0X10-'/
'C5 is made of phenolic resin with a length of 10 mm.

この嵌め輪3の後41面31は回転軸に対して垂直であ
る。
The rear surface 31 of this fitting ring 3 is perpendicular to the axis of rotation.

本実施例のセラミック軸受の取付JIEは使用温度の一
ト、限値が池の実施例のものより低い、また、嵌め輪3
に熱lI5張係数の大きい材料を使う必要があり、また
、金属製回転軸1は熱lj張係数をできるだけセラミッ
ク軸受4に近付ける必要がある。
The ceramic bearing installation JIE of this example has a working temperature of 1 and a lower limit value than that of the example of Ike, and the fitting ring 3
It is necessary to use a material with a large thermal lI5 tensile coefficient, and the metal rotating shaft 1 needs to have a thermal lj tensile coefficient as close to that of the ceramic bearing 4 as possible.

本実施例の効果をつぎに述べる。The effects of this embodiment will be described below.

上記の様に、各材料間の規定が満足でき、使用温度が比
較的低い場合には、ff!華な構造および低コストのセ
ラミック軸受の取付構造として有効である。
As mentioned above, if the specifications between each material are satisfied and the operating temperature is relatively low, ff! It has an elegant structure and is effective as a low-cost mounting structure for ceramic bearings.

本発明は上記実施例以外につぎの実施態様を含む。The present invention includes the following embodiments in addition to the above embodiments.

a、セラミック軸受4は、外輪712、球43がセラミ
ックでなくても良い。
a. In the ceramic bearing 4, the outer ring 712 and the balls 43 do not need to be made of ceramic.

b、嵌め輪の材料は、マグネシウム合金等の金属、シリ
コーン、ポリジアリルフタレート、ボリテl〜ラフルオ
ロエチレン等の耐熱性プラスチックでも良い。
b. The material of the fitting ring may be metal such as magnesium alloy, silicone, polydiallyl phthalate, heat resistant plastic such as bolite-lafluoroethylene, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例であるセラミック軸受の取
付Wi造の断面図である。 第2図は本発明の第2実施例であるセラミック軸受の取
付構造の断面図である。 第3図は本発明の第3実施例であるセラミック軸受の取
付構造の断面図である。 第4図は本発明の第4実施例であるセラミック軸受の取
付i造の断面図である。 第5図は本発明の第5実施例であるセラミック軸受の取
付構造の断面図である。
FIG. 1 is a sectional view of a ceramic bearing mounting structure according to a first embodiment of the present invention. FIG. 2 is a sectional view of a ceramic bearing mounting structure according to a second embodiment of the present invention. FIG. 3 is a sectional view of a ceramic bearing mounting structure according to a third embodiment of the present invention. FIG. 4 is a sectional view of a ceramic bearing mounting structure according to a fourth embodiment of the present invention. FIG. 5 is a sectional view of a ceramic bearing mounting structure according to a fifth embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1)径小部を備えた金属製回転軸、および前記径小部に
取付けられるセラミック軸受からなるセラミック軸受の
取付構造において、 熱膨張係数が、前記金属製回転軸より小さく、かつセラ
ミック軸受けの内輪以上である金属製套管を、前記径小
部にすきま嵌めして前記径小部と内輪との間に配し、 前記金属製套管の片側または両側に、前記回転軸より熱
膨張係数が大きい嵌め輪を同軸的に介在させて、締結部
材により固着したことを特徴とするセラミック軸受の取
付構造。 2)前記嵌め輪と金属製套管、嵌め輪と締結部材、金属
製套管と金属製回転軸、および嵌め輪と金属製回転軸の
各端面は面当接され、 これら端面のうち、少なくとも1組は円錐状のテーパに
形成されていることを特徴とする請求項1記載のセラミ
ック軸受の取付構造。
[Claims] 1) A ceramic bearing mounting structure comprising a metal rotating shaft having a small diameter portion and a ceramic bearing attached to the small diameter portion, the coefficient of thermal expansion being smaller than that of the metal rotating shaft. , and a metal sleeve whose diameter is larger than the inner ring of the ceramic bearing is loosely fitted into the small-diameter portion and arranged between the small-diameter portion and the inner ring; A mounting structure for a ceramic bearing characterized in that a fitting ring having a coefficient of thermal expansion larger than that of the shaft is interposed coaxially and fixed by a fastening member. 2) The respective end surfaces of the fitting ring and the metal sleeve, the fitting ring and the fastening member, the metal sleeve and the metal rotating shaft, and the fitting ring and the metal rotating shaft are brought into surface contact, and at least 2. The ceramic bearing mounting structure according to claim 1, wherein one set is formed into a conical taper.
JP13563789A 1989-05-29 1989-05-29 Mounting structure of ceramic bearing Expired - Fee Related JP2641762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13563789A JP2641762B2 (en) 1989-05-29 1989-05-29 Mounting structure of ceramic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13563789A JP2641762B2 (en) 1989-05-29 1989-05-29 Mounting structure of ceramic bearing

Publications (2)

Publication Number Publication Date
JPH034026A true JPH034026A (en) 1991-01-10
JP2641762B2 JP2641762B2 (en) 1997-08-20

Family

ID=15156467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13563789A Expired - Fee Related JP2641762B2 (en) 1989-05-29 1989-05-29 Mounting structure of ceramic bearing

Country Status (1)

Country Link
JP (1) JP2641762B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05321940A (en) * 1992-05-21 1993-12-07 Ngk Insulators Ltd Bearing unit
EP0636804A1 (en) * 1993-07-29 1995-02-01 S.N.R. Roulements Mounting of a bearing on a shaft
WO1996018047A1 (en) * 1994-12-08 1996-06-13 Sihi Gmbh & Co. Kg Centring a bush made of a material sensitive to tensile stress on a shaft
JP2007192120A (en) * 2006-01-19 2007-08-02 Toyota Motor Corp Turbocharger
DE102010025371B4 (en) 2010-06-28 2018-10-11 Schaeffler Technologies AG & Co. KG bearing arrangement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045283B2 (en) 2007-07-13 2012-10-10 株式会社ジェイテクト Driving force transmission device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05321940A (en) * 1992-05-21 1993-12-07 Ngk Insulators Ltd Bearing unit
EP0636804A1 (en) * 1993-07-29 1995-02-01 S.N.R. Roulements Mounting of a bearing on a shaft
FR2708685A1 (en) * 1993-07-29 1995-02-10 Roulements Soc Nouvelle Bearing mounting on a shaft.
WO1996018047A1 (en) * 1994-12-08 1996-06-13 Sihi Gmbh & Co. Kg Centring a bush made of a material sensitive to tensile stress on a shaft
US5775816A (en) * 1994-12-08 1998-07-07 Sihi Gmbh & Co Kg Bearing arrangement
JP2007192120A (en) * 2006-01-19 2007-08-02 Toyota Motor Corp Turbocharger
DE102010025371B4 (en) 2010-06-28 2018-10-11 Schaeffler Technologies AG & Co. KG bearing arrangement

Also Published As

Publication number Publication date
JP2641762B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
US4834569A (en) Thermal expansion compensating joint assembly
US3463520A (en) Combination collar-clamp and shaft coupling
CA2263107C (en) Molten metal transfer pump
GB2243719A (en) Temperature sensor
JPH034026A (en) Mounting structure for ceramic bearing
US4099311A (en) Composite roll with roll ring of material which is sensitive to tensile stress
FI116695B (en) Warehouse arrangements
JP5039281B2 (en) Sliding ring fixing device
EP0720699B1 (en) Locking device for use with shafts or tubes
JP4010566B2 (en) Rotary shaft with built-in torsional moment measurement device
JP2603064B2 (en) Fixing device for ceramic bearings
JPH02284032A (en) Torque measuring instrument
JP3600443B2 (en) Impeller structure
GB1559185A (en) Arrangements including fible-optic cable and device for use therein
JPH01177405A (en) Muffler for motor bicycle or the like
JPH0159444B2 (en)
JPS6117718A (en) Universal joint
JP3079151B2 (en) Fastener
JP2970029B2 (en) Ring attachment device
JPH03209021A (en) Rolling bearing
JPS604620A (en) Transmission apparatus for robot
US4892436A (en) Shaft composite structure between ceramic turbine rotor and metal member
JP2023095129A (en) Temperature measuring apparatus
JP2970003B2 (en) Ring attachment device
JPS6334309A (en) Mount jig of shaft and ring body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees