JPH0339945Y2 - - Google Patents

Info

Publication number
JPH0339945Y2
JPH0339945Y2 JP1986042243U JP4224386U JPH0339945Y2 JP H0339945 Y2 JPH0339945 Y2 JP H0339945Y2 JP 1986042243 U JP1986042243 U JP 1986042243U JP 4224386 U JP4224386 U JP 4224386U JP H0339945 Y2 JPH0339945 Y2 JP H0339945Y2
Authority
JP
Japan
Prior art keywords
voltage
input terminal
input
terminal
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986042243U
Other languages
Japanese (ja)
Other versions
JPS62155523U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986042243U priority Critical patent/JPH0339945Y2/ja
Publication of JPS62155523U publication Critical patent/JPS62155523U/ja
Application granted granted Critical
Publication of JPH0339945Y2 publication Critical patent/JPH0339945Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Pulse Circuits (AREA)

Description

【考案の詳細な説明】 〔考案の技術分野〕 本考案は、高速で安定かつ広範囲にパルス幅を
変調できるパルス幅調整回路に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a pulse width adjustment circuit that can modulate the pulse width at high speed, stably, and over a wide range.

〔従来技術およびその問題点〕[Prior art and its problems]

超LSIに代表される高性能回路素子の正確な測
定は、最近ますます重要になつてきた。そのよう
な測定では、高速のパルス信号を正確に発生さ
せ、それを歪なく伝送する必要がある。しかしな
がら、歪なしに伝送するのは事実上不可能であ
り、伝送途上における歪を補正する方法がとられ
る。
Accurate measurement of high-performance circuit elements, such as VLSIs, has recently become increasingly important. Such measurements require accurately generating high-speed pulse signals and transmitting them without distortion. However, it is virtually impossible to transmit data without distortion, so methods are used to correct distortion during transmission.

前記の歪補正はパルスの位置の調整とパルスの
幅の調整によつて達成される。本考案はこのよう
なパルスの幅の調整に関連してなされたもので、
その従来例は第2図に示すものである。
The distortion correction described above is achieved by adjusting the pulse position and pulse width. The present invention was made in connection with such pulse width adjustment.
A conventional example thereof is shown in FIG.

第2図において、論理IC102,106,1
09はECL等のゲートであり、抵抗103,1
07,113はそれぞれのエミツタ抵抗である。
原信号ViをIC102の非反転入力端子101よ
り入力し、IC102は抵抗104を経由してIC
106の非反転入力端子1041に入力される。
IC102の出力が入力信号となる。
In FIG. 2, logic ICs 102, 106, 1
09 is the gate of ECL etc., and resistor 103,1
07 and 113 are respective emitter resistances.
The original signal Vi is input from the non-inverting input terminal 101 of the IC102, and the IC102 is connected to the IC via the resistor 104.
It is input to the non-inverting input terminal 1041 of 106.
The output of IC102 becomes an input signal.

端子1041とグランド間には、必要に応じ
て、パルス幅の調整範囲を広げるためのコンデン
サ105を挿入する。。
A capacitor 105 is inserted between the terminal 1041 and the ground as necessary to widen the adjustment range of the pulse width. .

IC106の反転入力端子電圧Vbは、パルス幅
を決定する閾値を与える。
The inverting input terminal voltage Vb of IC 106 provides a threshold value that determines the pulse width.

端子1041の電圧波形は第3図に示すとおり
である。第3図では正パルスを取り扱つているが
負パルスについても同様であるので、正パルスに
ついてのみ説明する。
The voltage waveform at terminal 1041 is as shown in FIG. Although FIG. 3 deals with positive pulses, the same applies to negative pulses, so only positive pulses will be explained.

端子1041の電圧は、低論理電圧レベルVL
から高論理電圧レベルVHに遷移し、一定の頂部
を保つた後、再び低論理電圧レベルVLに遷移す
る。
The voltage at terminal 1041 is at the low logic voltage level V L
It transitions from VH to high logic voltage level, maintains a constant peak, and then transitions again to low logic voltage level VL .

従つて、VbをVb1,Vb2,Vb3(但しVL<Vb3
Vb1<Vb2<VH)と選べば、IC106の出力パル
ス幅はそれぞれW1,W2,W3と変化する。
Therefore, V b is defined as V b1 , V b2 , V b3 (however, V L < V b3 <
If V b1 < V b2 < V H ), the output pulse width of the IC 106 changes to W 1 , W 2 , and W 3 respectively.

VbはIC111、抵抗110,112、電圧が
VBB(通常−1.29V)に保たれる非反転入力端子1
09から成る反転増幅器の入力端子108に原調
整電圧Vaを印加し、それを可変して得られる。
V b is IC111, resistor 110, 112, voltage is
Non-inverting input terminal 1 held at V BB (typically -1.29V)
It is obtained by applying the original adjustment voltage Va to the input terminal 108 of the inverting amplifier consisting of 09 and varying it.

前記のような構成であるので、IC106の出
力信号が反転するときのIC106の入力コモン
モード電圧は、Vbに等しくなる。
With the above configuration, the input common mode voltage of the IC 106 when the output signal of the IC 106 is inverted is equal to V b .

ところが、論理回路に用いるICの許容動作入
力電圧範囲は、その出力電圧範囲より小さいの
で、Vbの値をVHやVLの近くに設定することがで
きず、従つてパルス幅の調整範囲を広くとること
はできない。
However, the allowable operating input voltage range of ICs used in logic circuits is smaller than their output voltage range, so the value of V b cannot be set close to V H or V L , and therefore the pulse width adjustment range is limited. It is not possible to take a wide range of

またVbの値がVHやVLに近ずくにつれ閾値近傍
の雑音が増加し、遅延ジツタやパルス幅ジツタが
増加する。
Further, as the value of V b approaches V H or V L , noise near the threshold increases, and delay jitter and pulse width jitter increase.

〔考案の目的〕[Purpose of invention]

本考案の目的は、前記の欠点を解消し信号のパ
ルス幅調整範囲がそのパルスの第1、第2遷移時
間の和に等しい低ジツタパルス幅調整回路を提供
することである。
SUMMARY OF THE INVENTION It is an object of the present invention to overcome the above-mentioned drawbacks and to provide a low-jitter pulse width adjustment circuit in which the pulse width adjustment range of a signal is equal to the sum of the first and second transition times of the pulse.

〔考案の概要〕[Summary of the idea]

本考案の1つの実施例では、前記差動比較器と
して働くICの反転及び非反転入力端子の双方に
調整電圧と入力信号電圧とを重畳する。各入力端
子の電圧は信号入力時に相補的に変化し、比較出
力反転時の入力電圧は常に等しくなる。
In one embodiment of the invention, a regulation voltage and an input signal voltage are superimposed on both the inverting and non-inverting input terminals of the IC acting as the differential comparator. The voltages at each input terminal change complementarily when a signal is input, and the input voltages are always equal when the comparison output is inverted.

従つて、入力信号電圧のどのレベルにおいても
比較出力を反転できるので、パルス幅調整幅は入
力信号パルスの第1、第2遷移時間の和に等しく
なる。
Therefore, since the comparison output can be inverted at any level of the input signal voltage, the pulse width adjustment width becomes equal to the sum of the first and second transition times of the input signal pulse.

また、比較出力反転時の入力信号電圧は任意に
設定できるので、出力パルスのジツタが最小にな
るように(例えばECLなら−1.29V)選択され
る。
Furthermore, since the input signal voltage when the comparison output is inverted can be set arbitrarily, it is selected (for example, -1.29V for ECL) so that the jitter of the output pulse is minimized.

〔考案の実施例〕[Example of idea]

第1図は本考案の1実施例を示す図で、第4図
はこの実施例の動作を説明するための波形図であ
る。
FIG. 1 is a diagram showing one embodiment of the present invention, and FIG. 4 is a waveform diagram for explaining the operation of this embodiment.

第1図において、IC3,8,15は成てECL
ゲートとする。これらのICの出力はオープンエ
ミツタ出力であり、抵抗4,5;抵抗9,10;
抵抗16,17はそれぞれIC3,8,15の出
力抵抗であり、全て等しい値REに選んである。
In Figure 1, IC3, 8, and 15 are made up of ECL
Gate. The outputs of these ICs are open emitter outputs, with resistors 4 and 5; resistors 9 and 10;
Resistors 16 and 17 are the output resistances of ICs 3, 8, and 15, respectively, and are all selected to have the same value RE .

原入力信号ViはIC3の非反転入力端子1と反
転入力端子2の間に印加されIC3の非反転出力
端子41と反転出力端子42に相補論理信号パル
スを入力信号として発生する。原入力信号Viと
IC3の特性によつて、この相補論理信号パルス
の遷移時間が定る。
The original input signal Vi is applied between the non-inverting input terminal 1 and the inverting input terminal 2 of the IC3, and generates complementary logic signal pulses as input signals at the non-inverting output terminal 41 and the inverting output terminal 42 of the IC3. Original input signal Vi and
The transition time of this complementary logic signal pulse is determined by the characteristics of IC3.

一方IC15の非反転入力端子と反転出力端子
171間には帰還抵抗14(抵抗値RD)が挿入
され、さらにその非反転入力端子と端子11の間
には入力抵抗13(抵抗値RC)が接続される。
On the other hand, a feedback resistor 14 (resistance value R D ) is inserted between the non-inverting input terminal and the inverting output terminal 171 of the IC 15, and an input resistor 13 (resistance value R C ) is inserted between the non-inverting input terminal and the terminal 11. is connected.

IC15の反転入力端子は、IC15の入力電圧
の中心値(ECLではVBBで−1.29Vである)に設
定される。
The inverting input terminal of IC15 is set to the center value of the input voltage of IC15 (-1.29V at VBB in ECL).

端子11のグランド20に対する電位をVaと
すると、これが原調整電圧である。端子171の
電圧はそれをVaNとおくと次式となる。
Assuming that the potential of the terminal 11 with respect to the ground 20 is Va, this is the original adjusted voltage. The voltage at the terminal 171 is expressed by the following equation when it is set as VaN .

VaN=VBB−RD/RC(Va−VBB) ……(1) 調整電圧は端子161,171に得られる。 Va N =V BB -R D /R C (Va - V BB ) ... (1) The regulated voltage is obtained at terminals 161 and 171.

端子161の出力電圧は、端子171の出力電
圧と相補的であるので、それをVaPとすると次式
で表わされる。
Since the output voltage of the terminal 161 is complementary to the output voltage of the terminal 171, if it is designated as VaP , it is expressed by the following equation.

VaP=VBB+RD/RC(Va−VBB) ……(2) 端子41,42とグランド間の電圧をそれぞれ
ViP,ViNとすると、ViP,ViNは相補的であるの
で ViP+ViN=2VBB ……(3) となつている。
Va P = V BB + R D /R C (Va−V BB ) ...(2) The voltage between terminals 41 and 42 and ground, respectively.
Assuming Vi P and Vi N , Vi P and Vi N are complementary, so Vi P + Vi N = 2V BB (3).

差動比較器として働くIC8の非反転入力端子
61と端子41,161との間には抵抗6(抵抗
値RA)と抵抗18(抵抗値RB)がそれぞれ接続
され、IC8の反転入力端子62と端子42,1
71との間には抵抗7(抵抗値RA)と抵抗19
(抵抗値RB)がそれぞれ接続されている。抵抗
6,7,18,19は入力信号と調整電圧の結合
抵抗となる。
A resistor 6 (resistance value R A ) and a resistor 18 (resistance value R B ) are connected between the non-inverting input terminal 61 and terminals 41 and 161 of IC8, which acts as a differential comparator, respectively, and the inverting input terminal of IC8 62 and terminal 42,1
71, there is a resistor 7 (resistance value R A ) and a resistor 19.
(resistance value R B ) are connected to each other. Resistors 6, 7, 18, and 19 serve as coupling resistances for input signals and adjustment voltages.

端子61,62とグランド間の電圧をVtP
VtNとするとそれらは、時間的に変化しない状態
で下式のように表わされる。
The voltage between terminals 61, 62 and ground is Vt P ,
Assuming Vt N , they are expressed as shown below in a state that does not change over time.

VtP=RBViP+RAVaP/RA+RB ……(4) VtN=RBViN+RAVaN/RA+RB ……(5) 従つて、IC8の出力が反転する閾値電圧Vt
VtN=VtPから与えられる。
Vt P = R B Vi P + R A Va P /R A +R B ......(4) Vt N = R B Vi N +R A Va N /R A +R B ......(5) Therefore, the output of IC8 is inverted. The threshold voltage V t is
Given from V tN = V tP .

VtN=VtP ……(6) から RB(ViP−ViN)+RA(VaP−VaN)=0 ……(7) 式(7),式(3)からViPを求め式(4)に代入すること
により、 VtN=VtP=VBB ……(8) が得られる。
V tN = V tP ...(6) From R B (Vi P - Vi N ) + R A (Va P - Va N ) = 0 ... (7) Find Vi P from equations (7) and (3) By substituting into equation (4), Vt N =Vt P =V BB (8) is obtained.

パルス幅調整量を拡大するために、端子61,
62とグランド間にそれぞれ等しい値の容量2
1,22を接続した場合も同様に(8)が成り立つ。
In order to expand the amount of pulse width adjustment, terminal 61,
Capacitance 2 of equal value between 62 and ground
Similarly, (8) holds when 1 and 22 are connected.

また、VtN=VtP=VBB近傍でのIC8への差動入
力の時間変化率は、tを時間とすると、VaP
VaNは一定として d/dt(VtP−VtN)=d/dt{RB(Vip−ViN)/RA
RB} ……(9) d/dt(ViP+ViN)=2dVBB/dt=0……(10) から d/dt(VtP+VtN)=2RB/RA+RB・dViP/dt……(11
) となる。
Also, the time rate of change of the differential input to IC8 near Vt N = Vt P = V BB is Va P , where t is time.
Assuming that Va N is constant, d/dt(Vt P −Vt N )=d/dt{R B (Vi p −Vi N )/R A +
R B } ...(9) d/dt (Vi P + Vi N ) = 2 dV BB /dt = 0... (10) From d/dt (Vt P + Vt N ) = 2R B /R A +R B・dVi P /dt……(11
) becomes.

RA=RBと選ぶ代表的な場合においても式(11)か
ら d/dt(VtP+VtN)=dViP/dt ……(12) となつて、従来例における遷移傾度と同じであ
る。
Even in the typical case where R A = R B , from equation (11), d/dt (Vt P + Vt N ) = dVi P /dt ...(12), which is the same as the transition slope in the conventional example. .

以上の動作による波形は第4図に示すとおりで
あり、波形AはVtPを、波形BはVtNを表わす。
The waveforms resulting from the above operation are as shown in FIG. 4, where waveform A represents Vt P and waveform B represents Vt N.

原調整電圧Vaにより電圧差VGが変化するの
で、出力パルス幅Waがそれに伴つて変えられる。
Since the voltage difference V G changes depending on the original adjustment voltage Va, the output pulse width W a changes accordingly.

なお、実施例ではRE=68Ω、VE=3V RA=RB
=147Ω RD=196Ω,RC=100Ωとした。ECLゲ
ートの出力パルスの第1、第2遷移時間は略等し
く、波形は第4図のようになるので、出力パルス
は入力パルスに対して振幅可変による遅延を有し
ない。前述の実施例では端子61と62の双方を
相補的に励振したが、1方の端子を固定電圧VBB
で付勢する構成も可能である。
In addition, in the example, R E = 68Ω, V E = 3V R A = R B
= 147Ω R D = 196Ω, R C = 100Ω. The first and second transition times of the output pulse of the ECL gate are approximately equal and the waveform is as shown in FIG. 4, so the output pulse does not have a delay with respect to the input pulse due to amplitude variation. In the embodiment described above, both terminals 61 and 62 were excited complementary, but one terminal was connected to a fixed voltage V BB
A configuration in which the power is energized is also possible.

このばあいはIC8の出力反転時の差動入力の
傾斜が前述の例より小さくなり、ジツタが増加す
るが回路を簡単にできる。
In this case, the slope of the differential input when the output of IC8 is inverted is smaller than in the previous example, and although jitter increases, the circuit can be simplified.

〔考案の効果〕[Effect of idea]

前記実施例に詳述したように、本考案によれば
入力信号の全振幅範囲のいずれのレベルにおける
パルス幅でも選択することが可能であり、その比
較器入力電圧傾度もそのまま保てるのでジツタの
発生がおこらない。
As detailed in the above embodiment, according to the present invention, it is possible to select a pulse width at any level within the entire amplitude range of the input signal, and the slope of the comparator input voltage can also be maintained, thereby eliminating the occurrence of jitter. does not occur.

また、従来例と同程度の調整範囲を得るばあい
は、原調整電圧と(そして調整電圧と)調整量の
線形性が向上するのでより制御が容易になる。
Furthermore, when obtaining an adjustment range comparable to that of the conventional example, the linearity between the original adjustment voltage and the adjustment amount (and the adjustment voltage) improves, making control easier.

したがつて実用に供して有益である。 Therefore, it is useful for practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の1実施例を示す回路図、第2
図は従来例を示す回路図、第3図は従来例の動作
を説明する波形図、第4図は本考案の1実施例の
動作を説明するための波形図。 1,2:原信号入力端子、3,8,15:IC
ゲート、4,5,9,10,16,17:エミツ
タ抵抗、13:入力抵抗、14:帰還抵抗、6,
7,18,19:入力信号と調整電圧の結合抵抗
するための抵抗、11:原調整電圧入力端子、1
2:VBB入力端子、21,22:調整幅拡大用コ
ンデンサ、101:原信号入力端子、102,1
06,111:ICゲート、103,107,1
13:エミツタ抵抗、104:調整幅拡大用抵
抗、105:調整幅拡大用コンデンサ、108:
原調整電圧入力端子、109:VBB入力端子、1
10:入力抵抗、112:帰還抵抗。
Figure 1 is a circuit diagram showing one embodiment of the present invention, Figure 2 is a circuit diagram showing one embodiment of the present invention.
The figure is a circuit diagram showing a conventional example, FIG. 3 is a waveform diagram explaining the operation of the conventional example, and FIG. 4 is a waveform diagram explaining the operation of one embodiment of the present invention. 1, 2: Original signal input terminal, 3, 8, 15: IC
Gate, 4, 5, 9, 10, 16, 17: Emitter resistance, 13: Input resistance, 14: Feedback resistance, 6,
7, 18, 19: Resistor for combining input signal and adjustment voltage, 11: Original adjustment voltage input terminal, 1
2: V BB input terminal, 21, 22: Adjustment width expansion capacitor, 101: Original signal input terminal, 102, 1
06,111: IC gate, 103,107,1
13: Emitter resistor, 104: Resistor for expanding adjustment width, 105: Capacitor for expanding adjustment width, 108:
Original adjustment voltage input terminal, 109: V BB input terminal, 1
10: Input resistance, 112: Feedback resistance.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 入力信号Viを入力して論理信号パルスを出力
する第1の出力端子と該論理信号パルスの相補論
理信号パルスを出力する第2の出力端子とを有す
る第1のECLゲート3と、第1、第2の入力端
子を有する差動比較器8と、前記第1の入力端子
と前記第1の出力端子とを接続する第1の抵抗6
と、前記第2の入力端子と前記第2の出力端子と
を接続する第2の抵抗7と、前記第1の入力端子
と調整電圧の入力端子161とを接続する第3の
抵抗18と、前記第2の入力端子と前記調整電圧
の相補電圧の入力端子162とを接続する第4の
抵抗とから成るパルス幅調整回路。
a first ECL gate 3 having a first output terminal that inputs an input signal Vi and outputs a logic signal pulse; and a second output terminal that outputs a complementary logic signal pulse of the logic signal pulse; A differential comparator 8 having a second input terminal, and a first resistor 6 connecting the first input terminal and the first output terminal.
, a second resistor 7 that connects the second input terminal and the second output terminal, and a third resistor 18 that connects the first input terminal and the adjustment voltage input terminal 161; A pulse width adjustment circuit comprising a fourth resistor connecting the second input terminal and an input terminal 162 of a complementary voltage of the adjustment voltage.
JP1986042243U 1986-03-20 1986-03-20 Expired JPH0339945Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986042243U JPH0339945Y2 (en) 1986-03-20 1986-03-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986042243U JPH0339945Y2 (en) 1986-03-20 1986-03-20

Publications (2)

Publication Number Publication Date
JPS62155523U JPS62155523U (en) 1987-10-02
JPH0339945Y2 true JPH0339945Y2 (en) 1991-08-22

Family

ID=30857972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986042243U Expired JPH0339945Y2 (en) 1986-03-20 1986-03-20

Country Status (1)

Country Link
JP (1) JPH0339945Y2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53906A (en) * 1976-05-04 1978-01-07 Bio Communication Res Method and device for filtering environmental noise from speech
JPS5922436A (en) * 1982-07-28 1984-02-04 Hitachi Ltd Variable delay circuit
JPS61127224A (en) * 1984-11-26 1986-06-14 Fujitsu Ltd Pulse width variable circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114949U (en) * 1977-02-18 1978-09-12

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53906A (en) * 1976-05-04 1978-01-07 Bio Communication Res Method and device for filtering environmental noise from speech
JPS5922436A (en) * 1982-07-28 1984-02-04 Hitachi Ltd Variable delay circuit
JPS61127224A (en) * 1984-11-26 1986-06-14 Fujitsu Ltd Pulse width variable circuit

Also Published As

Publication number Publication date
JPS62155523U (en) 1987-10-02

Similar Documents

Publication Publication Date Title
US5252865A (en) Integrating phase detector
US5072136A (en) Ecl output buffer circuit with improved compensation
US4430622A (en) Offset correction circuit
JPH0448285B2 (en)
US5805089A (en) Time-division data multiplexer with feedback for clock cross-over adjustment
JPH0339945Y2 (en)
US4858208A (en) Apparatus and method for testing semiconductor devices
US6747504B2 (en) Controlled rise time output driver
JPH0585084B2 (en)
JPS6271320A (en) Current controlled oscillator
JPH04219013A (en) Pulse width adjustment circuit
US4926133A (en) FM demodulator having a frequency independent delay circuit
JPS61192116A (en) Hysteresis circuit
JPH0644704B2 (en) Differential comparator circuit with hysteresis
JPH04200109A (en) Comparator
JP2023183668A (en) ring oscillator
JPH0732357B2 (en) Logic level setting circuit
JPH02285714A (en) Semiconductor integrated circuit
JP2656857B2 (en) Constant voltage generator
JP2717173B2 (en) Interface circuit
JPH07312538A (en) Digital buffer circuit
JPS5849047B2 (en) Waveform shaping circuit
JPS6139650A (en) Clock phase fine adjusting circuit
JPH09135157A (en) Power-on reset circuit
JPS594220A (en) Schmitt trigger circuit