JPH0339915A - Endoscope objective - Google Patents

Endoscope objective

Info

Publication number
JPH0339915A
JPH0339915A JP1228496A JP22849689A JPH0339915A JP H0339915 A JPH0339915 A JP H0339915A JP 1228496 A JP1228496 A JP 1228496A JP 22849689 A JP22849689 A JP 22849689A JP H0339915 A JPH0339915 A JP H0339915A
Authority
JP
Japan
Prior art keywords
group
image
image height
lens
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1228496A
Other languages
Japanese (ja)
Other versions
JPH07101254B2 (en
Inventor
Iwao Kanamori
金森 巌
Minoru Okabe
岡部 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP1228496A priority Critical patent/JPH07101254B2/en
Publication of JPH0339915A publication Critical patent/JPH0339915A/en
Publication of JPH07101254B2 publication Critical patent/JPH07101254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To obtain the objective which has its distortion removed sufficiently and is uniform in the brightness of an image from the center to the periphery by providing a 1st group which has negative refracting power and a 2nd group which has positive refracting power and making the 1st group satisfy specific conditions. CONSTITUTION:The objective consists of the 1st group with the negative refracting power and the 2nd group with the positive refracting power; and the 1st group has one concave surface which satisfies an expression I and faces the image side and one surface is an aspherical surface which satisfies an expression II as to >=50% of effective area determined by luminous flux of maximum image height. Here, R1 is the radius of curvature of the concave surface, (f) the focal length of the whole system, w1 and w0.5 visual field angles at image height I and image height a half as large as the maximum image height, and K1 and K0.5 values of K corresponding to the image height I and the image height a half as large as the maximum image height when K=sintheta2/tantheta (theta1: angle of light incident on the aspherical surface closest to the object side from the object side to the optical axis, theta2: angle of light right after the main light beam is refracted by the aspherical surface closest to the image side to the optical axis). Consequently, the distortion is corrected and the loss of the quantity of light is small at the periphery of the image plane.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、諸収差、特に歪曲収差の良好に補正された内
視鏡対物レンズに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an endoscope objective lens in which various aberrations, particularly distortion, are well corrected.

[従来の技術] 従来の内視鏡対物レンズで第70図に示すようなレトロ
フォーカスタイプのものが知られている。
[Prior Art] A retrofocus type objective lens as shown in FIG. 70 is known as a conventional endoscope objective lens.

このタイプの内視鏡対物レンズは、第70図に示すよう
な直視用ばかりでなく、レンズn1.1と(4゜との間
に視野方向変換プリズムを配置することによって、側視
や斜視等の種々の使い方にて使用される。例えば第71
図(Alは、レンズ詳り、とL2との間に側視用のプリ
ズムを設けた対物レンズを、その最後のレンズをイメー
ジガイドファイバー束の入射端面に接合するように配置
したファイバスコープの対物光学系を示すものである。
This type of endoscope objective lens can be used not only for direct viewing as shown in Fig. 70, but also for side viewing, strabismus, etc. by placing a viewing direction converting prism between lens n1.1 and (4°). It is used in various ways. For example, the 71st
Figure (Al is the objective lens of a fiberscope in which a side-viewing prism is installed between the lens detail and L2, and the last lens is connected to the input end surface of the image guide fiber bundle. This shows the optical system.

又第4・ 71図fB+は、レンズL1とり、の間に斜視用のプリ
ズムを配置した対物レンズを、固体撮像素子の前に設け
たビデオスコープの対物光学系を示すものである。更に
第71図(C)は、レンズ群L1と1−、の間に、後方
視プリズムを配置した対物レンズをリレーレンズHの前
に設けた硬性鏡の対物レンズを示すちのである。
Further, Fig. 4.71 fB+ shows an objective optical system of a videoscope in which an objective lens having a lens L1 and a prism for squinting arranged therebetween is provided in front of a solid-state image sensor. Furthermore, FIG. 71(C) shows an objective lens of a rigid scope in which an objective lens with a backward viewing prism is provided in front of the relay lens H between the lens groups L1 and 1-.

これら図に示す光学系においては、カメラのレンズ系等
とは異なって、テレセントリックな光学系が要求される
。その理由は、イメージガイドファイバー束は、入射面
に垂直に光を入射させないと、伝送光量が減少する。又
固体撮像素子は、受光面での反射によって光量が減少す
るほか、色シェープインクの発生等の画質の劣化の原因
となる。更に硬性鏡においては、リレーレンズが1倍で
入射瞳位置が無限遠であるためにテレセントリック系で
ないとけられを生ずる。
The optical systems shown in these figures require a telecentric optical system, unlike camera lens systems and the like. The reason for this is that if the image guide fiber bundle does not allow light to enter the incident plane perpendicularly, the amount of transmitted light will decrease. Furthermore, in solid-state image sensors, the amount of light decreases due to reflection on the light-receiving surface, and also causes deterioration in image quality such as the generation of color-shape ink. Furthermore, in a rigid scope, since the relay lens is 1x and the entrance pupil position is at infinity, vignetting will occur unless it is a telecentric system.

このレトロフォーカスタイプの対物レンズは、明るさ絞
りSを挟んで物体側に負の屈折力を有するレンズ詳り、
を又像側に合成の屈折力が正であるレンズ群14□を配
置している。この1上うにレンズ訂り、が視野角を広げ
る負の作用を有しており、レンズ群L2が結像作用を有
していて、内視鏡特有の視野角が大きくて像高の大小に
かかわらず主光綿Pが像面に垂直に入射するテレセント
リックな光学系になっている。
This retrofocus type objective lens has a negative refractive power on the object side across the aperture stop S.
A lens group 14□ having a positive composite refractive power is also arranged on the image side. The lens group L2 has a negative effect of widening the viewing angle, and the lens group L2 has an image forming effect. Regardless, it is a telecentric optical system in which the principal light beam P enters the image plane perpendicularly.

内視鏡対物レンズがテレセントリックな特性を必要とす
るのは、像面に光フアイバー束からなるイメージガイド
やCCDなとの固体撮像素子、入射瞳が無限遠であるリ
レーレンズを配置した時、それらは入射できる光線の角
度に制限があり、光線が像面に対し傾斜して入射すると
伝送効率が落ち、像が暗くなる不具合がおこるためであ
る。
Endoscope objective lenses require telecentric characteristics when an image guide made of an optical fiber bundle, a solid-state image sensor such as a CCD, and a relay lens whose entrance pupil is at infinity are placed on the image plane. This is because there is a limit to the angle at which light rays can be incident, and if the light rays are incident at an angle to the image plane, the transmission efficiency will drop and the image will become dark.

また上記のような構成の内視鏡対物レンズは、視野角が
大きいにもかかわらず、レンズ群し+、Laのレンズ外
径がイメージガイドとほぼ等しくコンパクトであって、
しかも枚数が少ないので実際にはtLnraの径のレン
ズであるにち拘らず組立が容易でコストも低い。
Furthermore, although the endoscope objective lens having the above configuration has a large viewing angle, it is compact with the lens outer diameter of the lens group + and La being almost equal to that of the image guide.
Moreover, since the number of lenses is small, assembly is easy and the cost is low even though the lens actually has a diameter of tLnra.

第72図に示す対物レンズは、別の従来′例であって、
特開昭59−226315号公報に記載されたちのであ
る。
The objective lens shown in FIG. 72 is another conventional example,
It is described in Japanese Patent Application Laid-Open No. 59-226315.

このレトロフォーカスタイプの対物レンズは、瞳位置S
をはさんで物体側に負の屈折力を有するレンズ141を
又像側に正の屈折力を有するレンズL2’、L−’を配
置したレンズ系で、第70図に示す対物レンズと同様の
構成である。
This retrofocus type objective lens has pupil position S.
This is a lens system in which a lens 141 having a negative refractive power is placed on the object side, and lenses L2' and L-' having a positive refractive power are placed on the image side, similar to the objective lens shown in FIG. It is the composition.

第72図に示す対物レンズを第73図に示すようにリレ
ーレンズと組合わせた場合、対物レンズで結像された空
中像O6は、リレーレンズll+、Ri、Riによって
夫々0..0..0.と伝達され、同時に明るさを決定
する瞳の位置も伝達されて行く。そして、空中像04の
後方に接眼レンズOCを配置して上記の空中像を拡大観
察することができる。瞳位置は、対物レンズ中では、S
に相当するが、リレー系中では、S、、S、、S3に相
当し、多くの場合リレー系の外径と1ils、、S、、
S、の径は等しい、したがって、明るさは、リレー系の
外径によっておよそ決定され、対物レンズの瞳位置Sに
は遮光効果を有する明るさ絞りを設ける必要はない。
When the objective lens shown in FIG. 72 is combined with the relay lens as shown in FIG. 73, the aerial image O6 formed by the objective lens is 0.0. .. 0. .. 0. At the same time, the position of the pupils, which determines the brightness, is also transmitted. Then, an eyepiece lens OC is placed behind the aerial image 04, so that the above aerial image can be observed in an enlarged manner. The pupil position is S in the objective lens.
However, in a relay system, it corresponds to S,,S,,S3, and in most cases, the outer diameter of the relay system and 1ils,,S,,
The diameters of S and S are equal, so the brightness is approximately determined by the outer diameter of the relay system, and there is no need to provide an aperture stop with a light shielding effect at the pupil position S of the objective lens.

[発明が解決しようとする課題] 第70図および第72図に示す内視鏡対物レンズは、明
るさ絞りSよりち物体側に位置するレンズ141に入射
する主光線Pの光軸に対する傾きθと、レンズL+から
出射して明るさ絞りSより像側に位置するレンズL2に
入射する前記主光線Pの光軸に対する傾きθ゛とを比較
した時、0に対してθ。
[Problems to be Solved by the Invention] The endoscope objective lens shown in FIGS. 70 and 72 has an inclination θ with respect to the optical axis of the principal ray P that enters the lens 141 located closer to the object side than the aperture stop S. and the inclination θ゛ with respect to the optical axis of the principal ray P that emerges from the lens L+ and enters the lens L2 located on the image side of the aperture stop S.

が非常に小さいことがわかる。これは、レンズLが視野
角を広げる負の屈折作用を持っていることからも明らか
である。
It can be seen that it is very small. This is also clear from the fact that the lens L has a negative refractive effect that widens the viewing angle.

このような特徴をもつレンズ系において、θ′が小さい
上記レンズ群す又はL2°と収差との間には次のような
関係があることが一般に知られている。つまりザイデル
の収差でみると、被写体に対して、像面わん曲、非点収
差、歪曲収差は発生量が少なく1球面収差、コマ収差は
比較的大きい。
In a lens system having such characteristics, it is generally known that the following relationship exists between the lens group having a small θ' or L2° and aberration. In other words, when looking at Seidel's aberrations, curvature of field, astigmatism, and distortion aberration occur in small amounts with respect to the subject, while spherical aberration and coma aberration are relatively large.

この関係は第75図に示す通りである。したがって、正
の屈折力を有する上記レンズ群L2又はL2゜は、上記
レンズ群L2又はL2°との間の瞳Sを被写体としての
球面収差とコマ収差が補正されていればよく、それを満
足する条件として正弦条件が知られている。正弦条件は
、第76図において、像高を1、正の屈折力を有する第
2群L2の焦点距離なf2、第2群へ入射する主光#!
Pの光軸に対する傾き角をθ°とすると、主光IIPが
像高工の像面に垂直に入射するテレセントリックな光学
系の場合1次の式で表わすことが出来る。
This relationship is as shown in FIG. Therefore, the lens group L2 or L2° having positive refractive power only needs to correct spherical aberration and coma aberration when the pupil S between it and the lens group L2 or L2° is corrected. The sine condition is known as a condition for this. In FIG. 76, the sine conditions are: image height 1, focal length f2 of the second group L2 having positive refractive power, principal light #!
Assuming that the inclination angle of P with respect to the optical axis is θ°, in the case of a telecentric optical system in which the principal light IIP is perpendicularly incident on the image plane of the image height, it can be expressed by the following equation.

I =fzsinθ。I=fzsinθ.

また第1群のレンズL、についても、第76図のように
一般的な球面レンズ1枚用いたとき、明るさ絞りより前
側で、も正弦条件はあまりくずれてはいない、したがっ
て、全系の焦点距離をf、第1群へ入射する主光mpの
光軸に対する傾きをθとするとおよそ次の式が成立つ。
Also, regarding the first lens group L, when one general spherical lens is used as shown in Fig. 76, the sine condition does not break much in front of the aperture stop. Assuming that the focal length is f and the inclination of the principal light mp entering the first group with respect to the optical axis is θ, the following equation approximately holds true.

i = f sinθ 現在用いられている内視鏡の対物レンズは、レンズの外
径やレンズ枚数の制約の上から第76図のような構成の
ものが多く上記正弦条件をほぼ満足するものがほとんど
である。
i = f sin θ Due to constraints on the outer diameter of the lens and the number of lenses, most of the objective lenses of endoscopes currently in use have a configuration as shown in Figure 76, which almost satisfies the above sine condition. It is.

上記正弦条件を満足すると、歪曲収差は、視野角θの増
加に伴い急激に増加する傾向にあり、その関係は次の式
で表わすことが出来る。
When the above sine condition is satisfied, distortion tends to increase rapidly as the viewing angle θ increases, and the relationship can be expressed by the following equation.

口T(θ)  = (cosθ −11xtoo(%)
ただしDTは、歪曲収差により変形した像の大きさをy
、近軸計算による理想像の大きさをyoとすると次の式
で与えられる。
Mouth T(θ) = (cosθ −11xtoo(%)
However, DT is the size of the image deformed due to distortion, y
, if the size of the ideal image by paraxial calculation is yo, it is given by the following formula.

DT=  (y−ya)/yo  x  10ロ  (
%)上記正弦条件および歪曲収差DTfθ)とθの関係
が成立つとき、通常の内視鏡対物レンズの場合視野角θ
の増加に伴って負の歪曲収差(橋架の歪曲収差)が急激
に増加する。
DT= (y-ya)/yo x 10ro (
%) When the above sine condition and the relationship between distortion aberration DTfθ) and θ hold, in the case of a normal endoscope objective lens, the viewing angle θ
As , negative distortion aberration (bridge distortion aberration) increases rapidly.

例えば第72図に示す従来の内視鏡対物レンズは、以下
に示すように正弦条件をほぼ満足している。
For example, the conventional endoscope objective lens shown in FIG. 72 almost satisfies the sine condition as shown below.

=0.898 又上記対物レンズの歪曲収差は、θ=45°の時−30
%となり、正弦条件を満足する時の値(cos45°−
1) x 100 = −29,3%とほぼ一致する。
=0.898 Also, the distortion aberration of the above objective lens is -30 when θ=45°
%, and the value when satisfying the sine condition (cos45°−
1) Almost coincides with x 100 = -29.3%.

ここでI = f sinθの関係をほぼ満足する対物
レンズをI = f sinθ型の対物レンズと呼ぶこ
とにすると、この種の対物レンズにおいては、θを変化
させた時のDT(θ)の値は次の通りである。
Here, an objective lens that almost satisfies the relationship I = f sin θ is called an I = f sin θ type objective lens, and in this type of objective lens, the value of DT (θ) when θ is changed is is as follows.

視野角 2θ  40” 60”  80” 100@
120@140”歪曲収差DT(θl −6−13,5
−23−36−50−66(和尚歪曲収差による像が実
際にどのように見えるかを示した図が第78図、第79
図である。この図は光軸に対して垂直な平面上に等間隔
に並んだ縦横の格子模様を最大像高でDTが0%と一3
0%の上記対物レンズによる像である。
Viewing angle 2θ 40” 60” 80” 100@
120@140" Distortion aberration DT (θl -6-13,5
-23-36-50-66 (Figures 78 and 79 show how the image due to distortion aberration actually looks.
It is a diagram. This figure shows a vertical and horizontal lattice pattern arranged at equal intervals on a plane perpendicular to the optical axis at maximum image height and DT of 0%.
This is an image taken with the above objective lens of 0%.

以上のように、従来の内視鏡対物レンズは、広角で、テ
レセントリック系で、収差が良好に補正されていて、コ
ンパクトであるという要件を満足するために正弦条件を
満たしているが、負の歪曲収差が大である。
As described above, conventional endoscope objective lenses are wide-angle, telecentric, have well-corrected aberrations, and satisfy the sine condition in order to be compact. Distortion is large.

歪曲収差が発生している内視鏡対物レンズは、中心の像
に比べて周辺の像が小さく、歪んでみえる。
In an endoscope objective lens where distortion aberration occurs, peripheral images are smaller than the central image and appear distorted.

そのため、このような歪曲収差を有する対物レンズを例
えば工業用分野における物体の検査や観察に用いたとき
は、形状測定や解析が正確に行なえず、又医療用分野に
おいても、同様の理由から誤診につながるおそれがある
Therefore, when an objective lens with such distortion is used for inspecting or observing objects in the industrial field, for example, shape measurement and analysis cannot be performed accurately, and also in the medical field, misdiagnosis may occur due to the same reason. It may lead to

又、歪曲収差の少ない、例えば第77図に示すような広
角なカメラレンズでは、次の式が成立つ。
Further, in a wide-angle camera lens with little distortion, for example, as shown in FIG. 77, the following equation holds true.

1  =  f tanθ このタイプの対物レンズは、θの値が大になるにつれて
cos’θの割合で像面の光量が減少する。
1 = f tan θ In this type of objective lens, as the value of θ increases, the amount of light on the image plane decreases at a rate of cos' θ.

そのために広角の内視鏡対物レンズとしては不適当であ
る。更に最ち物体側のレンズが他のレンズに比べて大き
くなるために、外径に大きな制約をともなう内視鏡対物
レンズには適しない。これに対して従来の内視鏡は、負
の歪曲収差が大であるために、前記のcos’θの割合
で明るさが減少するちのと打消しあい、I = f s
inθの場合、θが増加しても中心から周辺まで均一な
明るさになる。
Therefore, it is unsuitable as a wide-angle endoscope objective lens. Furthermore, since the lens closest to the object side is larger than the other lenses, it is not suitable for an endoscope objective lens with large restrictions on the outer diameter. On the other hand, conventional endoscopes have a large negative distortion, so the brightness decreases at the rate of cos'θ, which cancels out I = f s
In the case of inθ, even if θ increases, the brightness is uniform from the center to the periphery.

したがって、正弦条件を満足する多くの内視鏡対物レン
ズは、像の明るさが中心から周辺まで一様であると言う
優れた特徴を有する。しかし、歪曲収差が大きいため前
述の理由から好ましくなし)。
Therefore, many endoscope objective lenses that satisfy the sine condition have the excellent feature that the brightness of the image is uniform from the center to the periphery. However, it is not preferable for the reasons mentioned above because of the large distortion aberration).

本発明の目的は、視野角が大きいにもかかわらず、歪曲
収差が充分除去されており、かつ像の明るさが中心から
周辺まで一様である内視鏡対物レンズを提供するもので
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an endoscope objective lens that has a large viewing angle, sufficiently eliminates distortion, and has uniform image brightness from the center to the periphery.

[課題を解決するための手段] 本発明の内視鏡対物レンズは、前記の目的を達成するた
めに、次のように構成した。
[Means for Solving the Problems] In order to achieve the above object, the endoscope objective lens of the present invention is configured as follows.

例えば第1図に示す構成で、物体側より順に負の屈折力
を有する第1P3と、正の屈折力を有する第2群とより
なり、前記第1群が下記条件(1)を満足する像側に向
いた一つの凹面を有し、かつ一つの面が最大像高の光束
によって定まる有効面積のうちの50%以上について下
記の条件(2)を満足する非球面′Cあることを特徴と
する内視鏡対物レンズ。
For example, in the configuration shown in FIG. 1, the image consists of a first P3 having a negative refractive power and a second group having a positive refractive power in order from the object side, and the first group satisfies the following condition (1). It has one concave surface facing toward the side, and one surface is an aspherical surface 'C that satisfies the following condition (2) for 50% or more of the effective area determined by the light beam at the maximum image height. Endoscope objective lens.

+111R,l≦3f (2) l (K+−Ko、 sl/Ko61< IC
O8ω+−CO3lalo、 sただしR8は前記凹面
の曲率半径、fは全系の焦点距離、ω1.ωo5は夫々
像高【および最大像高の局の像高における視野角、K+
、Ko、sは夫々に=sinθx / t a nθ1
 (O1は最も物体側にある上記非球面に物体側より入
射する主光線の光軸とのなす角、O2は上記主光線が最
も像側にある非球面により屈折した直後の光線が光軸と
のなす角)とした時の像高が1および最大像高の%の像
高におけるKの(直である。め’f L、 W+のIt
a’b八獣?丁へ2I吻のit鮎ビ希之るbのとする。
+111R, l≦3f (2) l (K+-Ko, sl/Ko61< IC
O8ω+-CO3lalo, s where R8 is the radius of curvature of the concave surface, f is the focal length of the entire system, and ω1. ωo5 is the image height [and the viewing angle at the image height of the station with the maximum image height, K+
, Ko, and s are each = sinθx / t a nθ1
(O1 is the angle between the optical axis of the principal ray that enters the aspherical surface closest to the object side from the object side, and O2 is the angle between the optical axis of the ray immediately after the principal ray is refracted by the aspherical surface closest to the image side. It is (direct) of K at an image height of 1 and % of the maximum image height when the angle formed by
a'b eight beasts? Let's say it's Ayu Biki no B of 2I proboscis to Ding.

条件(1)において、lR41が条件より外れて大きく
なると、大きな視野角を得るために、第1群の負の屈折
力を有する面の数を増加せざるを得す、内視鏡のように
寸法が数1の小さいスペースの中に設けることは組立作
業上困難である。
In condition (1), if lR41 deviates from the condition and becomes large, the number of surfaces with negative refractive power in the first group must be increased in order to obtain a large viewing angle, as in an endoscope. It is difficult to install it in a small space whose size is several 1 in terms of assembly work.

また本発明対物レンズは、上記第1群のレンズのうち、
少なくとも一面が、最大像高の光束によって定まるレン
ズ表面の有効な面積のうち、すなわち例えば第5図に示
す面ESのようにこのレンズ面上において最大像高の点
に達する光束を全て含む領域の面積のうちの50%以上
について上記の条件(2)を満足することを特徴として
いる。
Furthermore, the objective lens of the present invention includes, among the lenses of the first group,
At least one surface covers the effective area of the lens surface determined by the light beam at the maximum image height, that is, the area including all the light beams that reach the point of the maximum image height on this lens surface, such as the surface ES shown in FIG. It is characterized in that 50% or more of the area satisfies the above condition (2).

本発明の対物レンズは、前述の目的を達成するために、
第1図に示す光学系において、およそ次の式Hllii
)を同時に満たすようにしたちのである。
In order to achieve the above-mentioned object, the objective lens of the present invention has the following features:
In the optical system shown in FIG. 1, approximately the following equation Hllii
) at the same time.

I=fzsinθ、(i) I  = f tanθ、          fii
)ただし、f2は上記第2群の焦点距離である。
I=fzsinθ, (i) I=f tanθ, fii
) However, f2 is the focal length of the second group.

式fil は、従来例の説明においても述べたように、
角θ、が比較的小さい時球面収差、コマ収差等を良好に
補正するために必要な条件で、第2群の正の屈折力を有
するレンズ系において成立つ。
As mentioned in the explanation of the conventional example, the formula fil is
When the angle θ is relatively small, this is a necessary condition for properly correcting spherical aberration, coma, etc., and is satisfied in a lens system having a positive refractive power in the second group.

この時式(1)が成立つ光学系では、O3の増加に関係
なく像の中心から周辺まで明るさが均一になる。
In an optical system in which equation (1) holds, the brightness is uniform from the center to the periphery of the image regardless of the increase in O3.

式(11)は、歪曲収差のない光学系に関して成立つ。Equation (11) holds for an optical system without distortion.

本発明の対物レンズは、瞳位置Sより物体側の第1詳に
おいて上記の第2群に関する正弦条件となる式(1)の
I = f2sinθ、をくずすことなしにI= f 
tanθ1に変換して球面収差、コマ収差が良好に補正
されたまま、歪曲収差を除去すると共に中心から周辺ま
で均一な明るさの像を得るようにしたものである。
The objective lens of the present invention satisfies I=f2sinθ in equation (1), which is the sine condition for the second group at the first detail on the object side of the pupil position S, without destroying I=f2sinθ.
By converting to tan θ1, distortion is removed while spherical aberration and coma aberration are well corrected, and an image with uniform brightness from the center to the periphery is obtained.

上記の第1群に上記変換作用を持たせるためには、内視
鏡対物レンズのように、レンズの外径、レンズ枚数に大
きな制限があるものは、非球面を用いる必要がある。
In order for the first group to have the above-mentioned conversion effect, it is necessary to use an aspheric surface in a lens such as an endoscope objective lens where there are large restrictions on the outer diameter of the lens and the number of lenses.

次に以上の目的のために用いる非球面レンズについて述
べる。
Next, the aspherical lens used for the above purpose will be described.

第1図において、ある像高の主光線Pに注目すると、非
球面Aspより物体側でのIとθ、とは、前述の式1i
i)を満足する必要がある。一方非球面Aspを射出し
た直後のIと02との関係は、前述のように第2群が正
弦条件をほぼ満足しているので次の式(nilが成立つ
In Fig. 1, if we pay attention to the chief ray P at a certain image height, I and θ on the object side from the aspherical surface Asp are expressed by the above equation 1i.
i) must be satisfied. On the other hand, the relationship between I and 02 immediately after ejecting the aspherical surface Asp is as follows, since the second group almost satisfies the sine condition as described above.

ICCs1nθ2    (引 ここである像高に限らず、像の中心から周辺まで全面に
わたって歪曲収差が除去されるようにするためには、前
記の式(ilおよび式(iil が像高によらず成立つ
ことが必要である。つまり上記式fit、 (i)から
次の式目)が導かれ、像高によらず歪曲収差が除去され
るためには次の式(利のKが一定であることが必要であ
る。
ICCs1nθ2 (In order to remove distortion aberration not only at a certain image height but also over the entire image from the center to the periphery, the above formulas (il and (iil) must hold regardless of the image height. In other words, the above formula fit (the following formula) is derived from (i), and in order to eliminate distortion regardless of the image height, the following formula (K of interest must be constant) is necessary.

f tanθ、 CCBinθ2 sinθ、/lanθ、=K    (it)このよう
に上記の式目)が亜満足される視野角又は像高の範囲で
は歪曲収差が一定である。
f tan θ, CCBin θ2 sin θ, /lan θ, =K (it) The distortion is constant within the viewing angle or image height range where the above formula is subsatisfied.

ここでKの値が変化した場合について述べる。Here, a case where the value of K changes will be described.

第2図(Al 、 (Bl に示す主光線Pと非球面A
spとの関係において、第2図(AlはKの値の大きい
非球面、第2図[Blは、Kの値の小さい非球面を夫々
角θ2が(Al  と(B)とで等しくなるように示し
た図である。
Figure 2: Chief ray P and aspherical surface A shown in (Al, (Bl)
In relation to sp, Figure 2 (Al is an aspherical surface with a large value of K, Figure 2 [Bl is an aspherical surface with a small value of K, and the angle θ2 is equal to (Al and (B)). FIG.

第2図において、主光線Pが任意の像高のものであると
すると、像の中心から周辺に行くにしたがってKの値が
大きくなっている部分においては正の歪曲収差が発生す
る。又にの値が小さくなっている部分においては、負の
歪曲収差が発生する。つまり歪曲収差は、Kの値が大き
くなる部分では正に、又にの値が小さくなる部分では負
に発生する。この関係をまとめると次の(a) 、 (
b) 、 fc)id)のようになり、これら(a) 
、 (bl 、 (cl −(d)の関係を有する時の
像の見え方は夫々第3図(Al 、 (B) 。
In FIG. 2, assuming that the principal ray P has an arbitrary image height, positive distortion occurs in portions where the value of K increases from the center to the periphery of the image. In addition, negative distortion occurs in the portion where the value of is small. In other words, distortion occurs positively in a portion where the value of K is large, and negatively in a portion where the value of K is small. To summarize this relationship, we have the following (a), (
b), fc)id), and these (a)
, (bl, (cl - (d)), respectively, are shown in Figure 3 (Al, (B)).

(C) 、 (DJの通りになる。(C)      as per the DJ.

(a)  Ko> Ko、 s>に。(a) Ko > Ko, s >.

ib)   K、<K、、g<XI (CI  Ko<に。、 s > K 1(dl  K
o > Ko、< K IここでK。は光軸近傍の像、
Ka、 sは最大像高の%、K1は最大像高における上
記(〜)式から決まるKの値である。
ib) K,<K,, g<XI (CI Ko<to., s>K 1(dl K
o > Ko, < K I here K. is the image near the optical axis,
Ka and s are percentages of the maximum image height, and K1 is the value of K determined from the above equation (~) at the maximum image height.

今第70図や第72図に示す従来の内視鏡対物レンズの
場合を、第1図にあてはめると、先に述べたように次の
式IV)、1w1lがおよそ成立っている。
Now, when the case of the conventional endoscope objective lens shown in FIGS. 70 and 72 is applied to FIG. 1, the following formula IV), 1w1l, approximately holds true as described above.

I : f sinθl1v) I=fzsinθ、       fvt)また像高に
よらず歪曲収差が除去される時には前述のように次の式
(iil、(ilが成立てばよい。
I: f sin θl1v) I=fzsin θ, fvt) Furthermore, when distortion is removed regardless of the image height, the following equations (iil, (il) should hold true as described above.

r = f tanθ、     (filI = f
asinθ3(i) 前に述べたと同様に、式(V)1式(@)からに’=s
inθ3/sinθ、又式(iil、(Iからに=si
nθ5atanθ。
r = f tanθ, (filI = f
asinθ3(i) As stated before, from equation (V) 1 equation (@), '=s
inθ3/sinθ, and the formula (iil, (from I=si
nθ5atanθ.

と表わした時従来の光学系のに°と歪曲収差を除去した
光学系のKとは、その違いをKとに゛の比で表わすと、
sinθ、/lanθl:cO3θlとなる。
When expressed as the ratio of K and K of the conventional optical system and K of the optical system with distortion aberration removed, we get:
sinθ, /lanθl: cO3θl.

つまり従来の内視鏡対物レンズの場合、Kの値がcos
t、の割合で変化している。したがって光軸近傍の像の
Kの値をに0とすると、視野角θ1の時のKの値は次の
(vi)のように示すことが出来る。
In other words, in the case of a conventional endoscope objective lens, the value of K is cos
It is changing at a rate of t. Therefore, if the value of K of the image near the optical axis is set to 0, the value of K when the viewing angle is θ1 can be expressed as in the following (vi).

KoXcosθ、        (vii)つまり、
像の中心から周辺までの歪曲収差を減少させるためには
、像の中心と最大像高のKの値を夫々に、、に、とじた
時に次の関係を満足する必要がある。
KoXcosθ, (vii) That is,
In order to reduce the distortion aberration from the center of the image to the periphery, it is necessary to satisfy the following relationship when the values of K at the center of the image and the maximum image height are respectively .

I fK+−Ko)/kol< 1cosω+−まただ
しω、は最大像高における視野角である。
IfK+-Ko)/kol<1cosω+-where ω is the viewing angle at the maximum image height.

しかし正弦条件を満足する対物レンズは、歪曲収差が像
の周辺にいくにつれて急激に増加する傾向にある。これ
は第73図に示す従来の光学系の収差曲線図(第74図
)や第79図をみれば明らかである。したがって像の中
心から最大像高のほぼ局の像高までは歪曲収差による像
の歪は充分小さいと言える。そのため、歪曲収差を減少
させる効果は最大像高の局から周辺までが大きく、この
範囲での歪曲収差を補正することが重要である。
However, in an objective lens that satisfies the sine condition, distortion tends to increase rapidly toward the periphery of the image. This is clear from the aberration curve diagram of the conventional optical system shown in FIG. 73 (FIG. 74) and FIG. 79. Therefore, it can be said that image distortion due to distortion aberration is sufficiently small at an image height approximately at the maximum image height from the center of the image. Therefore, the effect of reducing distortion is large from the center of the maximum image height to the periphery, and it is important to correct distortion in this range.

以上のことを考慮すると歪曲収差を充分良好に補正する
ためには前述の条件(2)を満足する必要がある。この
条件(2)よりはずれると歪曲収差の除去が充分ではな
〈従来例の説明にて述べたような欠点が生ずることにな
る。
Considering the above, in order to sufficiently correct distortion aberration, it is necessary to satisfy the above-mentioned condition (2). If this condition (2) is not satisfied, the distortion aberration will not be removed sufficiently (the drawbacks mentioned in the explanation of the conventional example will occur).

また保全体にわたり、歪曲収差を良好に除去するために
は、上記の条件(2)を満足するために配置した前記非
球面レンズにおいて最大像高の光束によって定まるレン
ズ表面の有効面積のうちの少くとち、50%以上につい
て条件(2)を満足する必要がある。もし50%未満し
か満足しない場合は、歪曲収差が除去されている面積が
少なく好ましくない。
In addition, in order to effectively eliminate distortion throughout the maintenance process, it is necessary to minimize the effective area of the lens surface determined by the light beam at the maximum image height in the aspherical lens arranged to satisfy the above condition (2). In other words, condition (2) must be satisfied for 50% or more. If less than 50% is satisfied, the area from which distortion has been removed is small, which is undesirable.

本発明の内視鏡対物レンズにおいて、上記対物レンズに
よって出来る像の最大像高をI max 、上記最大像
高により決まるレンズ系の第1面での最大光線高をり、
とすると、次の条件(3)を満足することが望ましい。
In the endoscope objective lens of the present invention, the maximum image height of the image formed by the objective lens is Imax, the maximum ray height at the first surface of the lens system determined by the maximum image height,
Therefore, it is desirable to satisfy the following condition (3).

(31b+/ I max≦2 第4図(A) 、 filは、本発明の内視鏡対物レン
ズを、ダハプリズムを用いて観察する内視鏡に用いた場
合の断面図である。
(31b+/I max≦2 FIG. 4(A), fil is a cross-sectional view when the endoscope objective lens of the present invention is used in an endoscope for observation using a roof prism.

これらの図かられかるように、内視鏡においては、外径
が制約され、そのためにその先端に配置されるレンズの
外径も大ぎな制約を伴なう、このような枠による制約の
上に、レンズの外径とレンズ面上を通る光線高とは若干
の余裕を持たせる必要があり、この余裕がなかったり光
線が通らない場合には、像の周辺の光量の低下をまわき
又有害の原因にもなる。
As can be seen from these figures, the outer diameter of an endoscope is limited, and therefore the outer diameter of the lens placed at its tip is also severely limited. In addition, it is necessary to provide some margin between the outer diameter of the lens and the height of the ray of light that passes through the lens surface. If there is not this margin or the ray of light does not pass through, it is necessary to avoid reducing the amount of light around the image. It can also cause harm.

上記の点を考慮して最大像高とレンズ系第1而との関係
を規定したのが上記の条件(3)である。
The above condition (3) defines the relationship between the maximum image height and the first element of the lens system in consideration of the above points.

この条件(3)を外れると、Lが大きい場合には、前述
のような不具合が発生し、I naxが小さい場合には
、得られる像が小さくなり明るい良好な像を観察するこ
とが困難となる。
If this condition (3) is not met, if L is large, the above-mentioned problem will occur, and if I nax is small, the obtained image will be small and it will be difficult to observe a bright and good image. Become.

更に本発明の内視鏡対物レンズは、第1群の像側からみ
た非球面を含む凹面のうち最も曲率半径の小さい面の曲
率半径をRwinとし又第2群の焦点距離をf2とする
と、次の条件(41、(5)を満足することが望ましい
Furthermore, in the endoscope objective lens of the present invention, when Rwin is the radius of curvature of the surface with the smallest radius of curvature among the concave surfaces including the aspherical surface when viewed from the image side of the first group, and the focal length of the second group is f2, It is desirable to satisfy the following conditions (41, (5)).

(4)f≦h≦1Of f51  l Rm1n15 f、5f条件(4)は、
第2群の正の屈折力を規定するちのである。
(4) f≦h≦1Of f51 l Rm1n15 f, 5f Condition (4) is
This defines the positive refractive power of the second group.

前述のように、内視鏡の対物レンズでは第2群の焦点路
[zに関して式(1)が成立つ、その際、[2が条件(
4)の下限を越えて小さくなると、■が一定であると考
えると82が大きくなる。第4図に石すように第1群と
第2群の間に視野変換プリズムを設けるための間隔が必
要な場合、この間隔における軸外光線の光軸に対する角
度が大になり、第1群における光線高が高くなって、条
件(3)を満足させることが困難になるので好ましくな
い。
As mentioned above, in the objective lens of the endoscope, formula (1) holds regarding the focal path [z of the second group, and in this case, [2 is the condition (
4) If it becomes smaller than the lower limit, 82 becomes large, assuming that ■ is constant. As shown in Figure 4, if a gap is required between the first group and the second group to install the field conversion prism, the angle of the off-axis rays with respect to the optical axis in this gap becomes large, and the first group This is not preferable because the height of the light ray becomes high and it becomes difficult to satisfy condition (3).

又ftが条件(4)の上限を越えて大きくなると、■が
一定の場合、θ2が小さな値になる。ここで全系の視野
角を広角化しようとすると、第1群の負の屈折力を強く
せざるを得す、収差補正や組立時の偏芯調整が困難にな
り、好ましくない。
Further, when ft increases beyond the upper limit of condition (4), θ2 becomes a small value when ■ is constant. If an attempt is made to widen the viewing angle of the entire system, the negative refractive power of the first group will have to be strengthened, and aberration correction and eccentric adjustment during assembly will become difficult, which is not preferable.

このように第2群の焦点路11ftの値を設定した時、
視野角を広角化するためには、第1群の負の屈折力を比
較的大にする必要がある。しかし第4図に示すような構
成では、第1群に複数の負の屈折力を有するレンズを配
置することは困難である。そのため、第1群の負の屈折
力を有する凹面は、条件(5)を満足することが視野角
を広角化する上で必要である。この条件(5)を満足し
ない場合、視野角を広角化することが困難になる。
When the value of the focal path 11ft of the second group is set in this way,
In order to widen the viewing angle, it is necessary to make the negative refractive power of the first group relatively large. However, in the configuration shown in FIG. 4, it is difficult to arrange a plurality of lenses having negative refractive power in the first group. Therefore, the concave surface having negative refractive power in the first group needs to satisfy condition (5) in order to widen the viewing angle. If this condition (5) is not satisfied, it becomes difficult to widen the viewing angle.

また、本発明対物レンズにおいて、第1nの前述の条件
(2)を満足する非球面が物体側に向いた面である時は
、その形状は、最大像高I max tf) Et光線
が非球面と交わる時、その交点にお6プる非球面と光軸
に対し垂直な平面とのなす角をαとする時、次の条件(
6)を満足するることが好ましい。
In addition, in the objective lens of the present invention, when the 1nth aspherical surface that satisfies the above-mentioned condition (2) is a surface facing the object side, the shape is such that the maximum image height I max tf) Et rays are aspherical. When the angle between the aspherical surface at the point of intersection and the plane perpendicular to the optical axis is α, the following condition (
6) is preferably satisfied.

(6)0≦tanα≦tanω 尚上記αの符号は、第5図のように像側への面の倒れを
正とする。
(6) 0≦tanα≦tanω Note that the sign of the above α is positive when the surface is tilted toward the image side, as shown in FIG.

第5図において、上記交点に入射する光に関してスネル
の法則から次の式が成立つ。
In FIG. 5, the following equation holds true from Snell's law regarding the light incident on the above-mentioned intersection.

sin (θ、−α)=nsin(θ2−α)ただしn
は非球面レンズの屈折率であり、非球面よりの物体側は
空気とする。
sin (θ, -α) = n sin (θ2 - α) where n
is the refractive index of the aspherical lens, and the object side from the aspherical surface is air.

上記の式は次のように展開出来る。The above formula can be expanded as follows.

sinθ、−COSθ1janff =n sinθg
−ncO8θ5tanα(ixlここでtanaは、上
記交点における非球面と光軸に垂直な平面とのなす角を
表わし、上記式(ix)から次の式IXI にて示すこ
とが出来る。
sinθ, -COSθ1janff =n sinθg
-ncO8θ5tanα(ixl where tana represents the angle between the aspherical surface and the plane perpendicular to the optical axis at the above intersection point, and can be expressed by the following equation IXI from the above equation (ix).

tana= (n sinθ、−5inθl)/(nC
O8θt−cosθ1)(x)文武(ivlのに=si
nθ、/lanθ1から次の式が求められる。
tana= (n sinθ, -5inθl)/(nC
O8θt-cosθ1) (x) Bunmu (ivl no ni = si
The following equation is obtained from nθ and /lanθ1.

sinθ、=Ktanθ。sinθ,=Ktanθ.

cosθ、=mσ石π「[ これを上記式(Xlに代入すると次の式(xilが求ま
る。
cos θ, = mσ stone π “[Substituting this into the above equation (Xl) yields the following equation (xil.

tana=(nKtanθ+−8inθ+)/in  
 −tanat−cosθI)xil この式からKの値が大になるとtanaは大になること
がわかる。つまりKが大になると非球面の像側への傾き
αが大になり、逆にKが小になると傾きαは小になる。
tana=(nKtanθ+-8inθ+)/in
-tanat-cosθI)xil From this equation, it can be seen that as the value of K increases, tana increases. That is, as K increases, the inclination α of the aspherical surface toward the image side increases, and conversely, as K decreases, the inclination α decreases.

更にtanaが0になると、前記の非球面交点で傾きは
、光軸に対して垂直であり、その時にに+  Ko、s
が条件(2) を満足する非球面レンズは第6図(A)
に示す形状になる。又tana〈0の時、非球面の形状
は光軸に近づくにつれて、物体側からみて凹面の曲率が
強くなるような形状となり、収差補正が困難になり好ま
しくない。
Furthermore, when tana becomes 0, the inclination at the aspherical intersection point is perpendicular to the optical axis, and at that time +Ko,s
An aspherical lens that satisfies condition (2) is shown in Figure 6 (A).
The shape will be as shown in . Further, when tana<0, the shape of the aspherical surface becomes such that the curvature of the concave surface becomes stronger as viewed from the object side, which is undesirable since it becomes difficult to correct aberrations.

更にtana= tanω1であると、入射光線は、前
記の交点において非球面に対し垂直に入射することを示
しており、上記非球面では屈折せず直進する。この時に
+−Ko、sが条件(2)を満足すると、非球面レンズ
は第6図(Blに示す形状になる。又tana> ta
nω、の時は、非球面の形状が光軸から離れるにつれて
物体側から見て凸面が強くなるような形状になり、非球
面で屈折した光線は、光軸に対して大きな角度を持ち、
第2群へ入射する光を充分に小さくするためには、第1
群の像側を向いた凹面の曲率の絶対値を小さくしたり、
第1群の負の屈折力°のレンズ枚数を増加したりしなけ
ればならず、収差補正や組立上好ましくない。
Furthermore, tana=tanω1 indicates that the incident light ray is incident perpendicularly to the aspherical surface at the above-mentioned intersection point, and is not refracted by the aspherical surface but travels straight. At this time, if +-Ko, s satisfies condition (2), the aspherical lens will have the shape shown in Figure 6 (Bl. Also, tana > ta
When nω, the shape of the aspherical surface becomes more convex as seen from the object side as it moves away from the optical axis, and the light ray refracted by the aspherical surface has a large angle with respect to the optical axis.
In order to make the light incident on the second group sufficiently small, it is necessary to
By reducing the absolute value of the curvature of the concave surface facing the image side of the group,
The number of lenses with negative refractive power in the first group must be increased, which is undesirable in terms of aberration correction and assembly.

したがってtanaは条件(6)を満足することが好ま
しい。
Therefore, tana preferably satisfies condition (6).

本発明の対物レンズにおいて、第1群に用いる前記の条
件(2)を満足する非球面の形状を次の式にて表わした
時に、4枚の非球面係数以上の高次の非球面係数E、F
、G、H,・・・のうち、上記非球面が物体側に向いた
非球面の場合はそのうちの少なくとも一つが正であるか
、又は上記非球面が像側に向いた非球面の場合はそのう
ちの少なくとも一つが負であるかの、少なくと6いずれ
か一方を満足することが望ましい。
In the objective lens of the present invention, when the shape of the aspherical surface satisfying the above condition (2) used in the first group is expressed by the following formula, a high-order aspherical coefficient E that is greater than or equal to the aspherical coefficient of four lenses ,F
, G, H, ..., if the aspherical surface faces the object side, at least one of them is positive, or if the aspherical surface faces the image side, at least one of them is positive. It is desirable that at least one of the six conditions, at least one of which is negative, be satisfied.

x = Cy2/ (1+ q l  + Ey’+F
y6+Gy”+・・・ただしx、yは光軸をXにとり像
の方向を正にとり、文面と光軸との交点を原点としてX
軸に直交した方向をyにとった座標の値、Cは光軸近傍
でのこの非球面と接する円の曲率半径の逆数、EF、G
、・・・は夫々4次、6次、8次5・・・の非球面係数
である。尚りは18次の非球面係数である。シ、たがっ
て非球面係数E、F、G、・・・・・・L。
x = Cy2/ (1+ q l + Ey'+F
y6+Gy”+...However, for x and y, the optical axis is X, the direction of the image is positive, and the origin is the intersection of the text and the optical axis.
The value of the coordinate where y is the direction perpendicular to the axis, C is the reciprocal of the radius of curvature of the circle that touches this aspherical surface near the optical axis, EF, G
, . . . are 4th-order, 6th-order, 8th-order 5, . . . aspheric coefficients, respectively. This is the 18th order aspherical coefficient. Therefore, the aspherical coefficients E, F, G,...L.

・・・がすべて0の場合は、上記の式は球面を表わす。... are all 0, the above equation represents a spherical surface.

本発明の対物レンズに用いる非球面の形状としては、先
に述べた条件(2)を満足すればよく、この条件を満足
する非球面係数E、F、G、・・・は種々な値をとり得
るがその正負は前記のような条件を満足する必要がある
The shape of the aspheric surface used in the objective lens of the present invention may satisfy the condition (2) mentioned above, and the aspheric coefficients E, F, G, etc. that satisfy this condition may have various values. However, the positive and negative values must satisfy the conditions described above.

更に本発明の対物レンズにおいて第1群と第2群との間
に側方を観察するための光軸を曲げて視野方向を変換す
るプリズム又はミラー配置する場合は、次の条件(8)
を満たすことが好ましい。
Further, in the objective lens of the present invention, when a prism or mirror for lateral observation is arranged between the first group and the second group to change the viewing direction by bending the optical axis, the following condition (8) is satisfied.
It is preferable to satisfy the following.

(8)2≦d/Imax≦8 ただしdは第1群と第2群の間の間隔である。(8) 2≦d/Imax≦8 However, d is the distance between the first group and the second group.

この条件(8)の下限を越えdの値が小さくなると、上
記のプリズムやミラーを配置するための間隔がとれない
、又条件(8)の上限を越えdの値が大になると、第1
群と第2群の間隔が大きくなり収差を良好に補正するこ
とがむずかしくなる。
If the lower limit of condition (8) is exceeded and the value of d becomes small, it will not be possible to secure the space for arranging the prisms and mirrors, and if the upper limit of condition (8) is exceeded and the value of d becomes large, the first
As the distance between the lens group and the second lens group increases, it becomes difficult to properly correct aberrations.

上記プリズムの形状を変えることによってさまざまな視
野方向の対物レンズを構成し得る。第71図(Al 、
 (Bl 、 fc)は、上記プリズムの例を示すもの
で、各反射面は、全反射又金属膜のコートを設けた反斜
面で、有効光束を反射させている。尚第71図(C1の
Sは絞りで、プリズムに固着されている。
By changing the shape of the prism, objective lenses with various viewing directions can be constructed. Figure 71 (Al,
(Bl, fc) shows an example of the above-mentioned prism, and each reflecting surface is a reverse slope provided with total reflection or a metal film coating, and reflects an effective light beam. Note that in FIG. 71 (S in C1 is a diaphragm, which is fixed to the prism.

更に上記第1群に含まれる面が非球面である1メンズを
研磨によって形成することは困難である。
Furthermore, it is difficult to form a 1-piece lens whose surfaces included in the first group are aspherical by polishing.

したがって非球面レンズの製作は、モールド又は切削に
よることになる。この場合、非球面レンズは、製作が比
較的容易な形状にすることが好ましい。そのため非球面
は、第7図に示すように、曲率半径の比較的大きな物体
側の面であることが好ましい。そして、第1群をこの像
側の面の近傍に又はその面で接合させて負の屈折力を有
するレンズを配置した構成とすることが前記の非球面レ
ンズの製作上からは好ましい。
Therefore, an aspherical lens is manufactured by molding or cutting. In this case, it is preferable that the aspherical lens has a shape that is relatively easy to manufacture. Therefore, the aspherical surface is preferably an object-side surface with a relatively large radius of curvature, as shown in FIG. From the standpoint of manufacturing the aspherical lens, it is preferable to configure the first group with a lens having a negative refractive power cemented near or at the image side surface.

又第1群を上記のような構成とした場合、互いに近接し
た又は接合された状態にて配置された複数のレンズの屈
折率と分散を適当に選択することによって色収差は勿論
のこと他の諸収差を良好に抽圧する上で有効である。
In addition, when the first group is configured as described above, by appropriately selecting the refractive index and dispersion of the plurality of lenses arranged close to each other or cemented together, it is possible to eliminate not only chromatic aberration but also other factors. This is effective in satisfactorily eliminating aberrations.

尚上記の非球面レンズの材質は、ガラス、プラスチック
、サファイア等の光学結晶が考えられるか、製作コスト
および温湿度や薬品に対する耐性の面から考えると、比
較的低融点のガラスが好ましく、 ガラスをモールド加工して非球面レンズを形成するのが
望ましい。
The material of the aspherical lens mentioned above may be glass, plastic, optical crystal such as sapphire, etc. Considering the production cost and resistance to temperature, humidity, and chemicals, glass with a relatively low melting point is preferable. It is desirable to form an aspherical lens by molding.

[実施例] 次に本発明の内視鏡用対物レンズの各実施例を示す。[Example] Next, examples of the objective lens for an endoscope according to the present invention will be shown.

実施例 ■ f  = 1.000 F15.163 2 (,1= 67.31” ■ H=0.68 物体距離= −8,8496 r、= ■ d、=0.0885 n、= 1.76900 ν1 = 64.15 rt= ■ d、= 0.0590 r、=4.8365 (非球面) da”0.3835 nよ= 1.78472 ν2 =25.71 r4= ω d、= 0.1180 fi、= 1.58144 =40.75 rs”0.3540 d、= 0.2360 r、=(1) d、= 0.7563 Q4= 1.80610 ν4 =40 5 r7=cx)(絞り) d、= 2.0048 rs=−1,2746 d、= 0.0885 r9=2.4460 d9= 0.885O rto  =−0,9310 d、。 =0.2950 rz  =−4,0838 d、  =0.8348 ns=1.80610 n6= 1.60311 Q、= 1.84666 =40.95 、、.60.70 = 23.88 「1□ : −0,8024 d、z  = 0.295On−= 1.58144 
   v−= 40.75r1. = ■ d、3 =0.6785  n、=1.60311  
  v、  =60.70L7z  =−1,1749 非球面係数 E=0.22613.F=−0,16693PズIR,
=0.354  、  Δ K =0.037fK+−
Ko、sl/Ka、s l二0.061.1cosω+
−cosω。 5巨0.119hl/Imax =0.
677 、 lRminl=0.354 、 f、=1
.8[12tanα= 0.1485.  tanω、
  =0.666実施例2 f = 1.000  、  F/6.0811 H=
 0.6686  、物体距離=r =■ d、 = 0.2305   n、= 1.76900
「2=■ dz=0.1153 r3 = 2.1028 (非球面) ds= 0.2882  1.: 1.80610r4
:o、4496 d、= 0.2305 r、=(1) d、 = 0.7927   Q、= 1.8061゜
r、=oo(絞り) do=2.2044  14= 1.8061Or、=
−1,2922 d7= 0.1729 ra=2.8519 ds=1.0663   n5=1.603112 ω
= 69.97’ −17,2911 =64.15 = 40.95 = 40.95 =40.95 =60.70 re=−1,0767 d−” 0.2305   ns= 1.84666 
  シロ  = 23.78rho  =−3,072
6 d、、  =0.2882 r++  =−0,9798 d+ +  = 0.3458  ny= 1.846
66    yt  = 23.78r1□ =−9,
2888 d+a  =0.1556 r、 =2.6974 d、a  =0.6282  na=1.65160 
   v、=58.52r++  =−2,6974 非球面係数 E=0.20175 、 F=−0,65172xlO
−”  P:lR1=0.4496   、  Δ K
=0.058(K+−Kn、 sl/にo、 5l=0
.089.1cosω+−cosω。slJ、128h
、/Imax =0.542 、 lRminl=0.
4496.1z=1.697tana=0.2137.
 janLLI+ =0.700実施例3 f = 1.000  、  F/6.109  、 
2 ω= 70.14”IH=0.67  、物体距離
= −17,3110r1=■ d+”0.2308   旧= 1.76900r2=
ω d、= 0.1154 rs=2.1口52(非球面) dz= 0.2885    Q、= 1.78472
r、=0.4385 d、= 0.2308 ra=■ d、” 0.’/933    n、= 1.8061
0rs=oo(絞り) d、=2.2073     n4= 1.80610
rテ=−1,2937 dy= 0.1731 r8= 2.8552 d、= 1.0675    n、=1.60311r
e=−1,0779 d、=0.2308     na= 1.84666
rta  =−3,0744 d、。 =0.2885 =64t15 = 25.71 = 40.95 = 40.95 = 60.7Q =23゜78 r++  ”−0,9781 d、= 0.3462  nt= 1.84666  
 シフ  = 23.78r1□ = −9,2995 d+2 =o。1558 rho  =2.7005 d、、  =0.6290  na=1.65160 
  v、  =58.67rz  =−2,7005 非球面係数 E=0.20105 、 F=−0,64797xlO
−”  P−LR,l=0.4385   、  Δ 
K=0.059fK+−Ko、i)/に0.!l=0.
090.1cO8ω+−CO8IJo、5l=0.12
9h、/In+ax =0.544 、 lRminl
=0.4385. f2=1.699tana= 0.
2143.  janliJ+  = 0.702実施
例4 f = 1.000  、  F/7.153  、2
 ω= 70.14゜IH=0.67  、物体距離=
−17,4331r+= ■ d、 =0.2324    n+=1.76900 
   v、  =64.15「2=■ di=0.1162 rs = 2.7796 (非球面) ds= 0.5035    fi、=r、=0.44
16 d、= 0.2324 rs” ■ dS= 1.2018 ra=ω(絞り) d、= 1.8199 vt =−1,3028 dt=0.1743 ra=2.8753 da= 1.0750 r9=−1,0855 d、= 0.2324 rho  =−3,0961 fi、= 1.80610 n s ” 1 fi4= 1.80610 na” 1.84666 1.78472 0311 =25.71 = 40.95 = 40.95 = Go、70 = 23.78 d、。 = 0.2906 rz  =−0,9850 ll = 0.3487 ny=1.84666 = 23.78 12 9.3650 I2 = 0.1569 ri3 = 2.7196 d13=0.6334  n−=1.65160   
va  =58.67r+4 =−2,7196 非球面係数 E = 0.14395 、 F =−0,62561
x 1O−2P“IR,l=0.4416  、ΔK 
= 0.037(K、−にo、 s)/Ko、 s l
 =0.056.1cosω+−cosu。S l=o
、 128h+/Imax =0.769 、  lR
minl:0.4416.  f、= 1.711ta
nα= 0.2686. tanす、 =0.702実
施例5 f =1.000  、  F/8.155  、 2
(、l =70.14’IH=0.68  、物体距離
=−17,5213r、= o。
Example ■ f = 1.000 F15.163 2 (,1 = 67.31" ■ H = 0.68 Object distance = -8,8496 r, = ■ d, = 0.0885 n, = 1.76900 ν1 = 64.15 rt= ■ d, = 0.0590 r, = 4.8365 (aspherical surface) da"0.3835 nyo = 1.78472 ν2 = 25.71 r4 = ω d, = 0.1180 fi, = 1.58144 =40.75 rs"0.3540 d, = 0.2360 r, = (1) d, = 0.7563 Q4 = 1.80610 ν4 = 40 5 r7 = cx) (aperture) d, = 2.0048 rs = -1,2746 d, = 0.0885 r9 = 2.4460 d9 = 0.885O rto = -0,9310 d, . = 0.2950 rz = -4,0838 d, = 0.8348 ns = 1.80610 n6 = 1.60311 Q, = 1.84666 = 40.95 ,,.60.70 = 23.88 "1□: -0,8024 d, z = 0.295On- = 1.58144
v-=40.75r1. = ■ d, 3 = 0.6785 n, = 1.60311
v, =60.70L7z =-1,1749 Aspheric coefficient E=0.22613. F=-0, 16693Ps IR,
=0.354, ΔK =0.037fK+-
Ko, sl/Ka, sl20.061.1cosω+
-cosω. 5 giant 0.119hl/Imax =0.
677, lRminl=0.354, f,=1
.. 8[12tanα=0.1485. tanω,
=0.666 Example 2 f = 1.000, F/6.0811 H=
0.6686, object distance = r = ■ d, = 0.2305 n, = 1.76900
"2=■ dz=0.1153 r3 = 2.1028 (aspherical surface) ds=0.2882 1.: 1.80610r4
:o, 4496 d, = 0.2305 r, = (1) d, = 0.7927 Q, = 1.8061°r, = oo (aperture) do = 2.2044 14 = 1.8061Or, =
-1,2922 d7=0.1729 ra=2.8519 ds=1.0663 n5=1.603112 ω
= 69.97' -17,2911 =64.15 = 40.95 = 40.95 =40.95 =60.70 re=-1,0767 d-" 0.2305 ns= 1.84666
Shiro = 23.78 rho = -3,072
6 d,, =0.2882 r++ =-0,9798 d+ + = 0.3458 ny= 1.846
66 yt = 23.78r1□ =-9,
2888 d+a =0.1556 r, =2.6974 d,a =0.6282 na=1.65160
v, =58.52r++ =-2,6974 Aspheric coefficient E=0.20175, F=-0,65172xlO
-”P:lR1=0.4496, ΔK
=0.058(K+-Kn, sl/to o, 5l=0
.. 089.1cosω+−cosω. slJ, 128h
, /Imax=0.542, lRminl=0.
4496.1z=1.697tana=0.2137.
janLLI+ = 0.700 Example 3 f = 1.000, F/6.109,
2 ω = 70.14"IH = 0.67, object distance = -17,3110r1 = ■ d+"0.2308 Old = 1.76900r2 =
ω d, = 0.1154 rs = 2.1 mouth 52 (aspherical surface) dz = 0.2885 Q, = 1.78472
r, = 0.4385 d, = 0.2308 ra = ■ d,” 0.'/933 n, = 1.8061
0rs = oo (aperture) d, = 2.2073 n4 = 1.80610
rte=-1,2937 dy=0.1731 r8=2.8552 d,=1.0675 n,=1.60311r
e = -1,0779 d, = 0.2308 na = 1.84666
rta = -3,0744 d,. =0.2885 =64t15 = 25.71 = 40.95 = 40.95 = 60.7Q =23°78 r++ ”-0,9781 d, = 0.3462 nt = 1.84666
Schiff = 23.78r1□ = -9,2995 d+2 =o. 1558 rho =2.7005 d,, =0.6290 na=1.65160
v, =58.67rz =-2,7005 Aspheric coefficient E=0.20105, F=-0,64797xlO
-” P-LR, l=0.4385, Δ
K=0.059fK+-Ko, i)/0. ! l=0.
090.1cO8ω+-CO8IJo, 5l=0.12
9h, /In+ax =0.544, lRminl
=0.4385. f2=1.699tana=0.
2143. janliJ+ = 0.702 Example 4 f = 1.000, F/7.153, 2
ω = 70.14° IH = 0.67, object distance =
-17,4331r+= ■ d, =0.2324 n+=1.76900
v, = 64.15 "2 = ■ di = 0.1162 rs = 2.7796 (aspherical surface) ds = 0.5035 fi, = r, = 0.44
16 d, = 0.2324 rs” ■ dS = 1.2018 ra = ω (aperture) d, = 1.8199 vt = -1,3028 dt = 0.1743 ra = 2.8753 da = 1.0750 r9 = -1,0855 d, = 0.2324 rho = -3,0961 fi, = 1.80610 ns ” 1 fi4 = 1.80610 na” 1.84666 1.78472 0311 = 25.71 = 40.95 = 40 .95 = Go, 70 = 23.78 d, . = 0.2906 rz = -0,9850 ll = 0.3487 ny = 1.84666 = 23.78 12 9.3650 I2 = 0.1569 ri3 = 2. 7196 d13=0.6334 n-=1.65160
va = 58.67r+4 = -2,7196 Aspheric coefficient E = 0.14395, F = -0,62561
x 1O-2P"IR, l=0.4416, ΔK
= 0.037 (K, - to o, s)/Ko, s l
=0.056.1cosω+-cosu. S l=o
, 128h+/Imax =0.769, lR
minl:0.4416. f, = 1.711ta
nα=0.2686. tansu, =0.702 Example 5 f =1.000, F/8.155, 2
(, l = 70.14'IH = 0.68, object distance = -17,5213r, = o.

d、=0.2336     n、=1.76900 
   v、  =64.15r2=o。
d, = 0.2336 n, = 1.76900
v, =64.15r2=o.

d2= 0.1168 r、== 4.2913 (非球面) d3” 1.012I   n−= 1.78472 
 17= = 25.71r、= 0.4439 d4= 0.2336 rs= ■ d、= 1.5341 (−、=oo(絞り) d、= 1.5029 r、=−1,3094 d?=0.1752 ra=2.8898 d、= 1.01105 r、=−1,0910 de= 0.2336 rzo  =−3,1118 d、、  =0.2920 rz  =−0,9900 n s ” 1 、80610 n4= 1.80610 ni=1.60311 ns” 1.84666 = 40.95 = 40.95 = 60.70 =23.78 d、、  =0.3504 ny” 1.84666 =23.78 rza  =−9,4124 d++a  =O,1577 rzs  ”2.7333 d、、  =0.6366 rz4  =−2,7333 非球面係数 n5=1.65160 = 58.67 P□L 、 E = 0.59647  x 10−’
、  F = −0,61002x 10−”R,、、
,0,4439、ΔK : 0.0231 (K + 
−Ko、 sl/Ko、 s IJ、 035. lc
osw+ −CO8,JJo、 s I=0.128h
+/Imax  =1.176  、  lRminl
=0゜4439.ft= 1.720tar+a= 0
.2973.  tanω、  =0.702実施例6 f=1.ooO,F15.200  2ω= 66.9
9’I H= 0.6062  、物体距離= −8,
3426r1= (1) d、= 0.0834  0.= 1.76900  
 v+ = 64.15r2=の di= 0.0556 r、= 4.6851 (非球面) d−” 0.3615    Q、= 1.78472
    vz  = 25.71ra=  (1) d、=0.1112 n、= 1.58144 ν3 =40.75 rs=0.3337 d、= 0.2225 「6=ω d、= 0.7131 n4= 1.80610 ν4 = 40.95 r、=■(絞り) dt= 1.8898    ns” 1.80610
  1/s  = 40.95ra=−1,2954 d、= 0.0834 re=1.7066 de” 0.8343    na= 1.60311
    v−= 6[1,70rlo  =−0,95
57 d+o =0.2781  nt=1.84666  
  ν?  =23.88r++  =−7,5841 d、、  =0.8089 「1□ =−0,6839 d、、  =0.2781  n、=1.58144 
  v、  =40.75r+3 = (1) dl、=0.6396  Q、= 1.60311  
  v−= 60.70rz  =−1,0340 非球面係数 E=0.20085.F=−0,22420P=11R
,l=0.3337  、 Δに=0.0511 (K
+ −Ko、 sl/Ko、 s l=o、 085.
 IC08LLII −CO3(110,s I=o、
 122h、/Imax = 0.652 、 lRm
inl= 0.3337. ft= 1.733tan
a= 0.1213.  tanω+  = 0.66
1実施例7 f = 1.000  、  F15.210  、 
2 (,1= 67.67”I H= 0.6714 
 、物体距離=−9,2393r1=■ d、 =0.0924   n、=1.7G900  
 v、 =64.15rz= ω d、= 0.0616 rx=6.0741 (非球面) d、= 0.4004  112= 1.78472 
  v、 = 25.71r4=■ d、= 0.1232 Q、= 1.58144 = 40.75 rs=0.3696 d、= 0.2464 r6=■ d6= 0.7894 r、=oo(絞り) d7= 2.0932 rs=−1,2770 d、= 0.0924 n4= 1.80610 ns=1.80610 と40.95 = 40.95 r*=3.0909 ds= 0.9239    ns= 1.60311
   1/s  = 60.7Or+o  =−0,9
192 d+o  =0.3080  nt= 1.84666
    vt  = 23.88rz  =−3,20
67 dll  =0.8442 rlg  =−0,7998 dlz  = 0.3080   na= 1.581
44    vt=  = 40.75r、+3 :■ d、 = 0.7083  0.= 1.60311 
   vs  = 60.70r+4 =−1,214
1 非球面係数 E=0.23807.F=−0,13456P・IR,
−0,3696、ΔK = 0.027(K+−Kn、
s)/Ko、5l=0.045.1cosω+−CO3
1i1o、5l=0.117h、/Imax  =0.
684  、  lRminl=0.3696.fz=
1.865tana= 0.1514.  janlu
+  = 0.670実施例8 f = 1.000  、  F15.240 、2 
(,1= 87.49’I H= 0.9152  、
物体距離= −12,5945r+= ■ d、= 0.1259 r、= ■ d、= 0.0840 ra”−647,3792 d、= 0.5458 r4=■ fi、= 1.76900 (非球面) n、= 1.78472 = 64.15 = 25.71 d4= 0.1679 n、= 1.58144 =40.75 r5= 0.5038 d、=0.3359 r6=■ da=1.0759 r、=co(絞り) d、: 2.8535 ra=−1,7455 d、= 0.1259 rs=4.0568 d、= 1.2594 114= 1.80610 ni=1.80610 na” 1.60300 = 40.95 = 40.95 = 65.48 「1゜ =−1,2564 d+O =0.4198 Q、= 1.84666 = 23.88 r、、  =−3,0412 d、 =0.6504 rrs  =−1,4735 d、、  =0.4198   n、=1.59270
    v。
d2= 0.1168 r, == 4.2913 (aspherical surface) d3" 1.012I n-= 1.78472
17 = = 25.71r, = 0.4439 d4 = 0.2336 rs = ■ d, = 1.5341 (-, =oo (aperture) d, = 1.5029 r, = -1,3094 d? = 0 .1752 ra = 2.8898 d, = 1.01105 r, = -1,0910 de = 0.2336 rzo = -3,1118 d,, = 0.2920 rz = -0,9900 n s ” 1, 80610 n4= 1.80610 ni=1.60311 ns" 1.84666 = 40.95 = 40.95 = 60.70 =23.78 d,, =0.3504 ny" 1.84666 =23.78 rza =- 9,4124 d++a =O,1577 rzs ”2.7333 d,, =0.6366 rz4 =-2,7333 Aspheric coefficient n5 = 1.65160 = 58.67 P□L, E = 0.59647 x 10- '
, F = −0,61002x 10-”R,,,
, 0,4439, ΔK: 0.0231 (K +
-Ko, sl/Ko, s IJ, 035. lc
osw+ -CO8, JJo, s I=0.128h
+/Imax=1.176, lRminl
=0°4439. ft=1.720tar+a=0
.. 2973. tanω, =0.702 Example 6 f=1. ooO, F15.200 2ω= 66.9
9'I H = 0.6062, object distance = -8,
3426r1= (1) d,=0.0834 0. = 1.76900
v+ = 64.15 r2 = di = 0.0556 r, = 4.6851 (aspherical surface) d-” 0.3615 Q, = 1.78472
vz = 25.71ra= (1) d, = 0.1112 n, = 1.58144 ν3 = 40.75 rs = 0.3337 d, = 0.2225 "6 = ω d, = 0.7131 n4 = 1 .80610 ν4 = 40.95 r, = ■ (aperture) dt = 1.8898 ns” 1.80610
1/s = 40.95ra = -1,2954 d, = 0.0834 re = 1.7066 de" 0.8343 na = 1.60311
v-=6[1,70rlo=-0,95
57 d+o =0.2781 nt=1.84666
ν? =23.88r++ =-7,5841 d,, =0.8089 "1□ =-0,6839 d,, =0.2781 n, =1.58144
v, =40.75r+3 = (1) dl, =0.6396 Q, = 1.60311
v-=60.70rz =-1,0340 Aspheric coefficient E=0.20085. F=-0,22420P=11R
, l=0.3337, Δ=0.0511 (K
+ -Ko, sl/Ko, sl=o, 085.
IC08LLII-CO3(110,s I=o,
122h, /Imax = 0.652, lRm
inl=0.3337. ft=1.733tan
a=0.1213. tanω+ = 0.66
1 Example 7 f = 1.000, F15.210,
2 (,1= 67.67”I H= 0.6714
, object distance = -9,2393r1 = ■ d, =0.0924 n, =1.7G900
v, = 64.15 rz = ω d, = 0.0616 rx = 6.0741 (aspherical surface) d, = 0.4004 112 = 1.78472
v, = 25.71r4 = ■ d, = 0.1232 Q, = 1.58144 = 40.75 rs = 0.3696 d, = 0.2464 r6 = ■ d6 = 0.7894 r, = oo (aperture) d7 = 2.0932 rs = -1,2770 d, = 0.0924 n4 = 1.80610 ns = 1.80610 and 40.95 = 40.95 r* = 3.0909 ds = 0.9239 ns = 1. 60311
1/s = 60.7Or+o =-0,9
192 d+o =0.3080 nt= 1.84666
vt = 23.88rz = -3,20
67 dll = 0.8442 rlg = -0,7998 dlz = 0.3080 na = 1.581
44 vt= = 40.75r, +3: ■ d, = 0.7083 0. = 1.60311
vs = 60.70r+4 = -1,214
1 Aspheric coefficient E=0.23807. F=-0, 13456P・IR,
-0,3696, ΔK = 0.027 (K+-Kn,
s)/Ko, 5l=0.045.1cosω+-CO3
1i1o, 5l=0.117h, /Imax=0.
684, lRminl=0.3696. fz=
1.865tana=0.1514. janlu
+ = 0.670 Example 8 f = 1.000, F15.240, 2
(,1=87.49'I H=0.9152,
Object distance = -12,5945r+= ■ d, = 0.1259 r, = ■ d, = 0.0840 ra"-647,3792 d, = 0.5458 r4 = ■ fi, = 1.76900 (Aspherical surface) n, = 1.78472 = 64.15 = 25.71 d4 = 0.1679 n, = 1.58144 = 40.75 r5 = 0.5038 d, = 0.3359 r6 = ■ da = 1.0759 r, = co (aperture) d,: 2.8535 ra = -1,7455 d, = 0.1259 rs = 4.0568 d, = 1.2594 114 = 1.80610 ni = 1.80610 na" 1.60300 = 40.95 = 40.95 = 65.48 "1゜ = -1,2564 d+O = 0.4198 Q, = 1.84666 = 23.88 r,, = -3,0412 d, = 0.6504 rrs = -1,4735 d,, =0.4198 n, =1.59270
v.

rrs  =■ dlz  = 0.9656   ns= 1.517
28    ver+4 =−1,9745 : 35.29 =69.56 非球面係数 E=0.10039  、  F=−0,28591x
 10−’   r”IR,I=0.5038  、 
 ΔK = 0.052(K +−Ko、 sl/We
、 s l =0.098.1cosu+ −CO8ω
o、 s l =0.182h、/Imax  =0.
858  、   Rn1n  =0.5038.  
f2=2.139tana= 0.1443.  ta
nlJ+  = 0.957実施例9 f=1.ooo   、   F15.ロ62 、2 
ω= 87.10゜I H= 0.8613  、物体
距離= −11,8530rl=■ dr= 0.1185    jl、= 1.7690
0    v。
rrs = ■ dlz = 0.9656 ns = 1.517
28 ver+4 =-1,9745: 35.29 =69.56 Aspheric coefficient E=0.10039, F=-0,28591x
10-'r"IR, I=0.5038,
ΔK = 0.052 (K + - Ko, sl/We
, s l =0.098.1 cosu+ −CO8ω
o, s l =0.182h, /Imax =0.
858, Rn1n =0.5038.
f2=2.139tana=0.1443. ta
nlJ+ = 0.957 Example 9 f=1. ooo, F15. b62, 2
ω = 87.10゜I H = 0.8613, object distance = -11,8530 rl = ■ dr = 0.1185 jl, = 1.7690
0v.

=64.15 r2=(1) d!= 0.0790 r、 =−56,3732(非球面) d、= 0.5136    n、= 1.78472
= 25.71 r4=■ d4= o、1580 re = o、4741 d、= 0.3161 r6= ■ d、= 1.0124 rア=■(絞り) ns=1.58144 n4= 1.80610 =40..75 =40.95 d、= 2.6857 fi、= 1.80610 = 40.95 re”−1,7177 ds”0.1185 re = 2.9925 d、= 1.1853 Q、= 1.60300 =65.48 rl。
=64.15 r2=(1) d! = 0.0790 r, = -56,3732 (aspherical surface) d, = 0.5136 n, = 1.78472
= 25.71 r4 = ■ d4 = o, 1580 re = o, 4741 d, = 0.3161 r6 = ■ d, = 1.0124 r a = ■ (aperture) ns = 1.58144 n4 = 1.80610 = 40. .. 75 = 40.95 d, = 2.6857 fi, = 1.80610 = 40.95 re”-1,7177 ds”0.1185 re = 2.9925 d, = 1.1853 Q, = 1.60300 = 65.48 rl.

=−1,3612 dlo  =0.3951 nt=1 4666 =23 = −3,8561 dll = 0.6970 12 =−1,1928 d+z  =0.3951 QB= 1.59270 = 35.29 r、、=o。=-1,3612 dlo = 0.3951 nt=1 4666 =23 = −3,8561 dll = 0.6970 12 =-1,1928 d+z = 0.3951 QB=1.59270 = 35.29 r,,=o.

d、、  =0.9087  n、=1.51728 
   v、=69.56r、 =−1,6083 非球面係数 E = 0.11335 、 F =−0,38725
x 1O−R1=0.4741  、ΔK = 0.0
63fK+−KO,sl/Ko、 s l=0.120
.1cosu+−cosω。、I=0.188h、/L
nax = 0.821 、 lRminl= 0.4
741. f2= 2.090tana= 0.131
6. janLl+ = 0.951実施例10 f=1.000  、  F15.259  、 2ω
= 87.99’I H= 0.9629  、物体距
離= −13,2509r+= ■ d+=0.1325     n、=1.76900 
    v、  =64.15rよ=(1) d、= 0.0883 r、=−12,8271(非球面) d、”0.5742    n、=1.78472  
  v2 =25.71r4= ■ d4= 0.1767 n、= 1.58144 ν3 =40.75 r−= 0.5300 d、= 0.3534 ra= (1) d、= 1.1318 rt”■(絞り) d、= 3.0025 r、=−1,6269 Q4: 1.80610 ns=1 0610 ν4 ν5 = 40.95 =40.95 d、= 0.1325 r、= 5.9867 d、= 1.:1251 Q6= 1.60300 シロ = 65.48 rlo  = 1.0538 dl。 = 0.4417 n7=1 4666 = 23.88 r++ = −2,8854 d、、  =0.6843 「12 =−1,4437 d口 =0.4417 n s ” 1 、59270 シロ = 35.29 13 dll  =1.0159 no=1.51728 ν9 : 69.56 rl4 =−1,8947 非球面係数 E=O,10389,F=−0,22176xlO−’
    P”IR,l = 0.5300  、 Δ 
K=0.039(K+−Ko、al/Ko、s l =
0.078,1cosu+−CO3LIJo、s l 
oO,177h、/l11ax  =0.836  、
   Rmin  =0.5300.  f2=2.3
01tanα= 0.2344.  tanω、  =
[]、966実施例11 f=1.000  、  F/6.051 、2ω=6
9.86゜I H= 0.6674  、  物体距離
= −17,2612r+= ■ d、 =0.1726   n、=1.76900  
 v、 =64.15r2=■ d、=0.1151 rz=2.4550 (非球面) ds=0.2877  02= 1.80610   
V2= 40.95r4=0゜4488 d、= 0.2301 rll=■ da” 0.9394    ns= 1.80610
   1/3  = 40.95r6=oo(絞り) da= 2.0525    n4= 1.80610
    v−= 40.95ry ”−1,2900 d?= 0.1726 rll= 3.7635 da”1.1507     Qa= 1.60311
     Va  = 60.7Or、+=−1,05
98 ds= 0.230I    n、= 1.84666
    va  = 23.78rho  =−1,9
350 dl。 = 0.4603 r、、  =−0,6904 dz  =0.3452  n?=1.78472  
  νt  =25.71rI2 :′:o。
d,, =0.9087 n, =1.51728
v, = 69.56r, = -1,6083 Aspheric coefficient E = 0.11335, F = -0,38725
x1O-R1=0.4741, ΔK=0.0
63fK+-KO, sl/Ko, sl=0.120
.. 1cosu+−cosω. , I=0.188h,/L
nax = 0.821, lRminl = 0.4
741. f2=2.090tana=0.131
6. janLl+ = 0.951 Example 10 f=1.000, F15.259, 2ω
= 87.99'I H= 0.9629, object distance = -13,2509r+= ■ d+=0.1325 n, = 1.76900
v, =64.15r = (1) d, = 0.0883 r, = -12,8271 (aspherical surface) d, "0.5742 n, = 1.78472
v2 = 25.71 r4 = ■ d4 = 0.1767 n, = 1.58144 ν3 = 40.75 r- = 0.5300 d, = 0.3534 ra = (1) d, = 1.1318 rt"■ ( Aperture) d, = 3.0025 r, = -1,6269 Q4: 1.80610 ns = 1 0610 ν4 ν5 = 40.95 = 40.95 d, = 0.1325 r, = 5.9867 d, = 1 .:1251 Q6 = 1.60300 White = 65.48 rlo = 1.0538 dl. = 0.4417 n7 = 1 4666 = 23.88 r++ = -2,8854 d,, =0.6843 "12 = -1 , 4437 d mouth = 0.4417 ns ” 1 , 59270 white = 35.29 13 dll = 1.0159 no = 1.51728 ν9 : 69.56 rl4 = -1,8947 Aspheric coefficient E = O, 10389, F=-0,22176xlO-'
P”IR,l = 0.5300, Δ
K=0.039(K+-Ko, al/Ko, s l =
0.078,1cosu+-CO3LIJo, s l
oO,177h,/l11ax =0.836,
Rmin=0.5300. f2=2.3
01tanα=0.2344. tanω, =
[], 966 Example 11 f=1.000, F/6.051, 2ω=6
9.86゜I H = 0.6674, object distance = -17,2612r+= ■ d, =0.1726 n, =1.76900
v, =64.15r2=■ d, =0.1151 rz=2.4550 (aspherical surface) ds=0.2877 02=1.80610
V2 = 40.95r4 = 0°4488 d, = 0.2301 rll = ■ da” 0.9394 ns = 1.80610
1/3 = 40.95r6=oo (aperture) da= 2.0525 n4= 1.80610
v-= 40.95ry"-1,2900 d?= 0.1726 rll= 3.7635 da"1.1507 Qa= 1.60311
Va = 60.7Or, +=-1,05
98 ds = 0.230I n, = 1.84666
va = 23.78 rho = -1,9
350 dl. =0.4603 r,, =-0,6904 dz =0.3452 n? =1.78472
νt =25.71rI2:':o.

d、、  =0.7250  n、=1.69680 
    v、  =55.52r+x  =−1,14
38 非球面係数 E = 0.19848  、    F = 0.3
9318  x 10−’   P−IR,=0.44
88     Δに=0.0551 (K+ −Ko、
 s)/Ko、 s l=0.087.1cosilJ
+−cosu。5l=0.1z7h、/Imax  =
0.550  、IRminl=0.4488.fz=
1.964tana= 0.1902.  tanω+
  = 0.698実施例12 f=1.ooo  、   F/6.080  、 2
 ω= 70.02゜I H= 0.6686  、 
 物体距離= −28,8184rl=ω d+= 0.1729   1+= 1.76900 
   v+  = 64.15r2=■ d、= 0.1153 r、= 3.0173 (非球面) ds=0.2882    r+自= 1.80610
    Va  = 40.95r:、= 0.423
3 d、= 0.2882 rs=ω da=1.7036    ns= 1.80610 
   v−= 40.951−、=OO(絞り) da= 2.1786    n4= 1.80610
    v4 = 40.95ry=−1,9237 dt= 0.2882 rll= 23.0048 d、=1.0029    na=1.64000  
  vs  =60.09re=−1,0650 d、=0.2478    n、=1.84666  
  v、=23.88r1゜ =−2,1708 d、、  =2.0402 r++  =−0,9691 d、、=0.5764  nt”1.64769   
 v、=33.80r、2=OO dz2 =0.5648  n、=1.78800  
  v、=47.38r++  =−1,6391 非球面係数 E =0.27896  、  F =0.17497
  x 1G−’   P“IR,=0.4233  
  ΔK = 0.0291 (K+−Ko、 a)/
Ko、 s l=0.046.1cosLII+−co
su。、l=0.128h1/In+ax  =0.6
29  、 1R1Ilinl=0.4233.  f
、=2.805tana=0.2272.  tanb
Jt  =0.701実施例13 f=1.000   、   F15.965  、 
2  ω =73.606I H= 0.7432  
、  物体距離= −18,1269r+= ■ d、 =0.2417   n+ =1.76900 
  v、 =64.15r2=ω d、=0.1208 rs” 1.7634 (非球面) ds”0.3021    11.: r4=0.4713 d4= 0.2417 r5=■ d、= 0.8472 r6=oo(絞り) ds”2.2948 r、?=−t、51oq d、= 0.1813 ra= 4.3329 da=1.1178 r、、=−1,2674 d、= 0.2417 r+o  ”−1,8784 d、、  =0.3021 r++  =−1,2270 d1+  =0.3625 r+z  =−5,7567 d1□ =−0,1631 n、= 1.84666 nミニ1.80610 n、= 1.80610 ns= 1.60311 n6= 1.84666 1.80610 = 40.95 =40 = 40.95 =60.70 =23.78 = 23.78 r+3 =6.2536 dls  =0.6586  na=1.651601
.1e  == 53.52 r、 =−3,4067 非球面係数 E=0.17732  、  F=−0,51470x
lO−2PIR,=0.4713   、  ΔK =
 0.060CL−にo、 sl/Ko、 s l=o
、o9o、 1cosω、−cosω。、l=0.13
6h、/Imax  =0.579  、   Rmi
n  =0.4713.  f2=1.757tana
= 0.3070.  janω+  = 0.748
実施例14 f=1.000  、  F/6.564.2ω=74
.77゜I H= 0.6718  、  物体距離=
 −16,3845r、=■ d、=0.1638   n、=1.76900  1
/+ =64.15r2=■ d、= 0.1092 1”、= 3.8668 (非球面) d、=0.2731     Q2= 1.80610
     vz  = 40.95r4= 0.426
0 d4= 0.2185 r、:■ ds=0.8806 r6=oo(絞り) d、= 1.9593 r、=−1,7675 d、= 0.1638 ra: 2.7768 da=1.0923 r、= −o、9650 d9= 0.2185 r+o  =−1,5214 d、o  =0.9508 r++  =−0,5796 dll  =0.3277 nミニ1.80610 n4;1 0610 n5=1 0311 n6= 1.84666 nt=1.78472 = 40.95 =40 = 60.70 = 23.78 =25 d1□ : Q、[1881 na=1.69580 = 55.52 r’+a  =−1,0103 非球面係数 E = 0.15361 F = 0.49078 X 10−’ P・1 =0.426  、  ΔK = 0.0751 (K
+−Ko、 sl/Ko、 sl”0.128.1co
sω、−cosω。slJ、154h+/Inax  
= 0.503  、  lRminl=0.426 
 、  f2=2.036tana= 0.1113.
  janW+  = 0.764実施例15 f=1.000  、  F/6.712 、2ω=7
5.37@I H=0.6751  、  物体距離=
 −16,4654r+= ■ d =0.2195  0+ =1.76900   
v、 =64.15r2=■ d2=0.1口98 r、 = 2.2137 (非球面) ds” 0.2744   Q2= 1.80610 
  v−= 40.95r、=0.4281 d4= 0.2195 rs=■ d8= 0.7695   n、= 1.80610 
  v−= 40.95r、 = 00 (絞り) da” 2.0845     n4= 1.8061
0     v4 =40.95ry =−1,256
2 d、= 0.1647 r、= 1.9566 d、= 1.0154 ns” 1.60311 ν5 = 60.70 r9=−0,9929 d e = D 、 2195    n −= 1 
、84666    v er+o  =−4,867
9 (Lo  =0.2744 r++  =−0,8676 d    = 0.3293   n、= 1.846
66     v。
d,, =0.7250 n, =1.69680
v, =55.52r+x =-1,14
38 Aspheric coefficient E = 0.19848, F = 0.3
9318 x 10-' P-IR, = 0.44
88 Δ=0.0551 (K+ −Ko,
s)/Ko, s l=0.087.1cosilJ
+-cosu. 5l=0.1z7h,/Imax=
0.550, IRminl=0.4488. fz=
1.964tana=0.1902. tanω+
= 0.698 Example 12 f=1. ooo, F/6.080, 2
ω = 70.02°I H = 0.6686,
Object distance = -28,8184rl=ω d+= 0.1729 1+= 1.76900
v+ = 64.15r2=■ d, = 0.1153 r, = 3.0173 (aspherical surface) ds = 0.2882 r+self = 1.80610
Va = 40.95r:, = 0.423
3 d, = 0.2882 rs = ω da = 1.7036 ns = 1.80610
v-= 40.951-, =OO (aperture) da= 2.1786 n4= 1.80610
v4 = 40.95ry = -1,9237 dt = 0.2882 rll = 23.0048 d, = 1.0029 na = 1.64000
vs =60.09re=-1,0650 d, =0.2478 n, =1.84666
v, =23.88r1゜ =-2,1708 d,, =2.0402 r++ =-0,9691 d,, =0.5764 nt"1.64769
v, =33.80r, 2=OO dz2 =0.5648 n, =1.78800
v, =47.38r++ =-1,6391 Aspheric coefficient E =0.27896, F =0.17497
x 1G-'P"IR,=0.4233
ΔK = 0.0291 (K+-Ko, a)/
Ko, s l=0.046.1cosLII+-co
su. , l=0.128h1/In+ax=0.6
29, 1R1Ilinl=0.4233. f
,=2.805tana=0.2272. tanb
Jt = 0.701 Example 13 f = 1.000, F15.965,
2 ω = 73.606 I H = 0.7432
, object distance = -18,1269r+= ■ d, =0.2417 n+ =1.76900
v, =64.15r2=ω d, =0.1208 rs” 1.7634 (Aspherical surface) ds”0.3021 11. : r4=0.4713 d4=0.2417 r5=■ d,=0.8472 r6=oo (aperture) ds"2.2948 r,?=-t,51oq d,=0.1813 ra=4.3329 da=1.1178 r,, =-1,2674 d, = 0.2417 r+o ''-1,8784 d,, =0.3021 r++ =-1,2270 d1+ =0.3625 r+z =-5,7567 d1 □ = -0,1631 n, = 1.84666 n mini 1.80610 n, = 1.80610 ns = 1.60311 n6 = 1.84666 1.80610 = 40.95 = 40 = 40.95 = 60.70 =23.78 = 23.78 r+3 =6.2536 dls =0.6586 na=1.651601
.. 1e == 53.52 r, = -3,4067 Aspheric coefficient E = 0.17732, F = -0,51470x
lO-2PIR,=0.4713, ΔK=
0.060CL-to o, sl/Ko, sl=o
, o9o, 1cosω, -cosω. , l=0.13
6h, /Imax=0.579, Rmi
n=0.4713. f2=1.757tana
= 0.3070. janω+ = 0.748
Example 14 f=1.000, F/6.564.2ω=74
.. 77°I H = 0.6718, object distance =
-16,3845r, =■ d, =0.1638 n, =1.76900 1
/+ =64.15r2=■ d, = 0.1092 1”, = 3.8668 (Aspherical surface) d, = 0.2731 Q2 = 1.80610
vz = 40.95r4 = 0.426
0 d4 = 0.2185 r, : ■ ds = 0.8806 r6 = oo (aperture) d, = 1.9593 r, = -1,7675 d, = 0.1638 ra: 2.7768 da = 1.0923 r, = -o, 9650 d9 = 0.2185 r+o = -1,5214 d, o = 0.9508 r++ = -0,5796 dll = 0.3277 n mini 1.80610 n4; 1 0610 n5 = 1 0311 n6 = 1.84666 nt=1.78472 = 40.95 =40 = 60.70 = 23.78 =25 d1□: Q, [1881 na=1.69580 = 55.52 r'+a =-1,0103 Non Spherical coefficient E = 0.15361 F = 0.49078 X 10-' P・1 = 0.426, ΔK = 0.0751 (K
+-Ko, sl/Ko, sl"0.128.1co
sω, -cosω. slJ, 154h+/Inax
= 0.503, lRminl=0.426
, f2=2.036tana=0.1113.
janW+ = 0.764 Example 15 f=1.000, F/6.712, 2ω=7
5.37@I H=0.6751, object distance=
-16,4654r+= ■ d =0.2195 0+ =1.76900
v, = 64.15 r2 = ■ d2 = 0.1 mouth 98 r, = 2.2137 (aspherical surface) ds” 0.2744 Q2 = 1.80610
v-=40.95r,=0.4281 d4=0.2195 rs=■ d8=0.7695 n,=1.80610
v-=40.95r, = 00 (aperture) da” 2.0845 n4= 1.8061
0 v4 =40.95ry =-1,256
2 d, = 0.1647 r, = 1.9566 d, = 1.0154 ns" 1.60311 ν5 = 60.70 r9 = -0,9929 d e = D, 2195 n - = 1
,84666 ver+o =-4,867
9 (Lo = 0.2744 r++ = -0,8676 d = 0.3293 n, = 1.846
66 v.

r、z  =−33,IrO2 d1□ = o、1482 rIs  =1.8412 d+i  =0.5982   na=1.65160
    vnr14  =−2,9468 =23 = 23.78 =58.52 非球面係数 E = 0.23287  、  F = −0,83
235x 1O−2R,=0.4281   、  △
K = 0.067(K+−Ko、 sl/Ko、 a
 1=0.106.1cO9ω+−CO3Wo、 sh
+/Imax  = 0.547  、  lRmin
I= 0.4281.fz=tana= 0.2159
.  tan山、  =0.772実施例16 P・1 =0.153 1.535 f=1.000  、  F/6.062  、 2ω
=93.65@I H= 1.0191  、  物体
距離:、 −24,855Or+= ■ d、”0.2486    n、=1.76900  
  v、  =64.15r、!=(1) d2= 0.1657 rs= 3.2886 (非球面) d、”0.4143    n、=1.80610  
 1/a  =40.95r4=0.5513 d、= 0.3314 rs= ■ d、” 1.3523    n、= 1.8(161
0v、  = 40.95rs=■(絞り) ds= 2.9559    n4= 1.80610
    v−= 40.95rt” −1,7553・ dア= o、2486 ra= 76.0049 da”1.2428    n、=1.603Ll  
  v、  =60.70r*=−1,1701 de= 0.3314    ns= 1.84666
    )/fi  = 23.78r+o  =−3
,0256 d、、  =0.6628 r、、  ニー10.0965 d、、  =0.4971   ny=1.78472
    v、  =25.68r、 =■ d、i  = 1.0439   na= 1.696
80    ν、  =55.52r+s  =−5,
9017 非球面係数 E = 0.10046  、  F=0.68773
  Xl0−’    P’11R,l=0.5513
   、  Δ K = 0.0741 (K+−Ko
、 s)/Ko、 s l=0.121.1cosil
J+ −CO8klo、 s l・0.200h、/I
wax =0.124 、 IRminl=0.551
3. fz=2.266tana= 0.3913. 
 janl+J+  = 1.066実施例17 f=1.000  、  F/6.396  、2ω=
68゜I H=−0,65、物体距離= −8,965
9rl=■ d+= 0.1195   nl= 1.76900 
  v−= 64.15「、=■ da”0.0598 rs = 7.6111 (非球面) d、= 0.3885 nミニ1.78472 =25.71 r4= ■ d4= 0.1195 rs”0.3752 d、= 0.2391 j、= ω d、= 0.7553 r、=oo(絞り) d、= 2.0420 re”−1,2914 d、= 0.0897 to=2.4782 d、=0.8966 r、。 = −0,9432 d、。 = 0.2989 r++  =−4,1375 d、、  =0.8458 「1□ =−0,8129 d1□ = 0.2989 n3=1.58144 nミニ1.80610 na=1.80610 ns” 1.60311 nt= 1.8466(+ na=1.58144 =40.75 = 40.95 = 40.95 =60.70 : 23.88 = 40.75 r+s  = ■ d+s =0.6874  n、=1.60311  
 νe =60.7Or、  =−1,1904 非球面係数 E=0.19416   P=1 R,=0.3752  、ΔK = 0.032I (
K+ −Ka、 sl/Ko、 s l=0.055.
1cosu+ −cosklo、 Is I =Q、 
121h+/Imax  =  1.005  、  
lRminl= 0.3752.  fz=  1.8
26tana=0.1223. t、anωr =0.
675実施例18 f = 1.000  、  F/6.449  、 
2 (J = 68aIH=0.65  、物体距離=
 −9,0009rl= ω d+=o、1200   nミニ1.76900   
v+ =64.15rm= ■ da=0.0600 rs = 2.4002 (非球面) ds=0.390On、=1.78472   v2=
25.71r4=ω d、 =0.1200   na=1.58144  
 v、=40.75rs = o、2856 d5= 0.2400 r8= ■ d、= 0.7583 rt=■(絞り) d、= 2.0500 rs=−1,2964 n4= 1.80610 nミニ1.80610 = 40.95 =40.95 d、= 0.0900 re=2.4878 d、= 0.9001 nミニ1.60311 = 60.70 「 l 12 r+5 =−0,9469 dl。 = o、3000 =−4,1536 d、、  =0.8491 = −0,8161 dlz  =0.3000 = 00 jl、= 1.84666 na” 1.58144 = 23.88 =40.75 dos  =0.6901 nミニ1.60311 =60.70 r+a  =−1,1950 非球面係数 F=0.45780     P″I R,=o、zas6  、  ΔK = 0.027(
K+−Ko、 sl/Ko、 sl”o、041.1c
osω+−cosωo、 sl□o、119h、/In
ax  = L、238  、  lRminl= 0
.2856.f、= 1.833tanα= 0.10
10.  tanωI  =0.675実施例19 f=1.000  、  F/4.966 、 2ω=
 69.886゜I H= 0.6431  、物体距
離= −8,8496r1=■ d+” 0.0885   n+” 1.76900 
  v+ = 64.15r2=■ d、= 0.0590 r、= 4.8865 (非球面) ds” 0.3835   nx= 1.78472 
  v−= 25.71r4=■ d、=0.1180   n、=1.58144   
v、 =40.75rs=0.3540 d、=o、2360 r6=■ ds=0.7563   n4= 1.80610  
 v−= 40.95r、=oo(絞り) d?= 2.0048 rs=−1,2746 d、= 0.0885 r*=2.4460 nミニ1.80610 = 40.95 d、= 0.11850 ns” 1.60311 =60゜70 : −0,9310 d、。 −11,2950 ny=1 4666 : 23.88 =−4,08:18 d。
r, z = -33, IrO2 d1□ = o, 1482 rIs = 1.8412 d+i = 0.5982 na = 1.65160
vnr14 = -2,9468 =23 = 23.78 =58.52 Aspheric coefficient E = 0.23287, F = -0,83
235x 1O-2R,=0.4281, △
K = 0.067 (K+-Ko, sl/Ko, a
1=0.106.1cO9ω+-CO3Wo, sh
+/Imax=0.547, lRmin
I=0.4281. fz=tana=0.2159
.. tan mountain, =0.772 Example 16 P・1 =0.153 1.535 f=1.000, F/6.062, 2ω
=93.65@I H= 1.0191, Object distance:, -24,855Or+= ■ d,"0.2486 n, =1.76900
v, =64.15r,! =(1) d2= 0.1657 rs= 3.2886 (aspherical surface) d,”0.4143 n,=1.80610
1/a = 40.95r4 = 0.5513 d, = 0.3314 rs = ■ d,” 1.3523 n, = 1.8 (161
0v, = 40.95rs=■ (aperture) ds= 2.9559 n4= 1.80610
v-=40.95rt"-1,7553・da=o,2486ra=76.0049da"1.2428n,=1.603Ll
v, =60.70r*=-1,1701 de= 0.3314 ns= 1.84666
)/fi = 23.78r+o =-3
,0256 d,, =0.6628 r,, knee 10.0965 d,, =0.4971 ny=1.78472
v, =25.68r, =■ d,i = 1.0439 na = 1.696
80 ν, =55.52r+s =-5,
9017 Aspheric coefficient E = 0.10046, F = 0.68773
Xl0-'P'11R, l=0.5513
, ΔK = 0.0741 (K+−Ko
, s)/Ko, s l=0.121.1cosil
J+ -CO8klo, s l・0.200h, /I
wax=0.124, IRminl=0.551
3. fz=2.266tana=0.3913.
janl+J+ = 1.066 Example 17 f=1.000, F/6.396, 2ω=
68°I H=-0,65, object distance=-8,965
9rl=■ d+= 0.1195 nl= 1.76900
v-= 64.15 ", = ■ da"0.0598 rs = 7.6111 (aspherical surface) d, = 0.3885 n mini 1.78472 = 25.71 r4 = ■ d4 = 0.1195 rs"0 .3752 d, = 0.2391 j, = ω d, = 0.7553 r, =oo (aperture) d, = 2.0420 re”-1,2914 d, = 0.0897 to = 2.4782 d, =0.8966 r,. = −0,9432 d,. = 0.2989 r++ =-4,1375 d,, =0.8458 "1□ =-0,8129 d1□ = 0.2989 n3=1.58144 n mini 1.80610 na=1.80610 ns" 1. 60311 nt = 1.8466 (+ na = 1.58144 = 40.75 = 40.95 = 40.95 = 60.70: 23.88 = 40.75 r+s = ■ d+s = 0.6874 n, = 1. 60311
νe = 60.7 Or, = -1,1904 Aspheric coefficient E = 0.19416 P = 1 R, = 0.3752, ΔK = 0.032I (
K+ -Ka, sl/Ko, sl=0.055.
1 cosu+ −cosklo, Is I =Q,
121h+/Imax=1.005,
lRminl=0.3752. fz=1.8
26tana=0.1223. t, anωr =0.
675 Example 18 f = 1.000, F/6.449,
2 (J = 68aIH = 0.65, object distance =
-9,0009rl=ω d+=o, 1200 n mini 1.76900
v+ =64.15rm= ■ da=0.0600 rs = 2.4002 (aspherical surface) ds=0.390On, =1.78472 v2=
25.71r4=ω d, =0.1200 na=1.58144
v, = 40.75rs = o, 2856 d5 = 0.2400 r8 = ■ d, = 0.7583 rt = ■ (aperture) d, = 2.0500 rs = -1,2964 n4 = 1.80610 n mini 1 .80610 = 40.95 =40.95 d, = 0.0900 re = 2.4878 d, = 0.9001 n mini 1.60311 = 60.70 "l 12 r+5 = -0,9469 dl. = o, 3000 = -4,1536 d,, =0.8491 = -0,8161 dlz =0.3000 = 00 jl, = 1.84666 na" 1.58144 = 23.88 =40.75 dos =0.6901 n Mini 1.60311 = 60.70 r+a = -1,1950 Aspheric coefficient F = 0.45780 P″I R, = o, zas6, ΔK = 0.027 (
K+-Ko, sl/Ko, sl”o, 041.1c
osω+−cosωo, sl□o, 119h, /In
ax = L, 238, lRminl = 0
.. 2856. f, = 1.833tanα = 0.10
10. tanωI =0.675 Example 19 f=1.000, F/4.966, 2ω=
69.886゜I H= 0.6431, object distance = -8,8496r1=■ d+” 0.0885 n+” 1.76900
v+ = 64.15r2=■ d, = 0.0590 r, = 4.8865 (aspherical surface) ds” 0.3835 nx = 1.78472
v-=25.71r4=■ d,=0.1180 n,=1.58144
v, =40.75rs=0.3540 d, =o, 2360 r6=■ ds=0.7563 n4= 1.80610
v-=40.95r, =oo (aperture) d? = 2.0048 rs = -1,2746 d, = 0.0885 r* = 2.4460 n mini 1.80610 = 40.95 d, = 0.11850 ns" 1.60311 = 60°70: -0, 9310 d,. -11,2950 ny=1 4666: 23.88 =-4,08:18 d.

= 0.8348 = −0,8024 13 14 r+a d、□ = 0.2950 = oO dl3 =0.6785 =−1,1749 d、、  =2.0649 : 5.5838 a、、  =12.8909 na=1.58144 no= 1.60311 = 1.62004 =40.75 = 60.70 ν、。= 36.25 r+s la : 0.7611 I7 = 4.1673 dos  =0.2950 11 = 1.8061G 、=40.95 I6 : 1.9038 r+e rh。= 0.8348 = −0,8024 13 14 r+a d, □ = 0.2950 = oO dl3 = 0.6785 =-1,1749 d,, =2.0649 : 5.5838 a,, =12.8909 na=1.58144 no=1.60311 = 1.62004 =40.75 = 60.70 ν,. = 36.25 r+s la : 0.7611 I7 = 4.1673 dos = 0.2950 11 = 1.8061G ,=40.95 I6 : 1.9038 r+e rh.

21 ag d、、  =0.8850 ニー7.4569 dos  =0.5310 = OO d、。 = 12.8909 =−5,5838 dz+  =2.3599 =5.5838 d2□ = 12.8909 n+z n+4 = 1.65160 = 1.62004 = 1.62004 ν12=58.52 コ=36.25 、=36.25 zs xa 2s oll d、、  =0.7611 = 4.1673 d、、  =0.2950 = 1.9038 d、、  =0.8850 = −7,4569 d、a  =0.531.0 nl@ 116 : 1.80610 = 1.65160 シ、、=40.95 、=58.52 r3 = 4.6340 3 =0.9280 = 1.80610 、=40.95 a2 =2.0149 dsa  =1.5447 = 1.[+5160 ν+5=58.67 Z3 =−9,4871 dsa = 0.6801 14 zs 3g r3? d、、  =14.9914 ニー6.8830 d、5  =2.3055 =6.8830 d、、  =14.9914 = 00 nx。21 ag d,, =0.8850 Knee 7.4569 dos = 0.5310 = OO d. = 12.8909 =-5,5838 dz+=2.3599 =5.5838 d2□ = 12.8909 n+z n+4 = 1.65160 = 1.62004 = 1.62004 ν12=58.52 Co=36.25 ,=36.25 zs xa 2s oll d,, =0.7611 = 4.1673 d,, =0.2950 = 1.9038 d,, =0.8850 = −7,4569 d, a = 0.531.0 nl@ 116 : 1.80610 = 1.65160 C,,=40.95 ,=58.52 r3 = 4.6340 3 =0.9280 = 1.80610 ,=40.95 a2 =2.0149 dsa = 1.5447 = 1. [+5160 ν+5=58.67 Z3 =-9,4871 dsa = 0.6801 14 zs 3g r3? d,, =14.9914 knee 6.8830 d, 5 = 2.3055 =6.8830 d,, =14.9914 = 00 nx.

nl+ = 1.62004 = 1.62004 ν2.= 36 シ、、=36.25 d、、  =1.4525 za = 4.6340 d3.  =0.9280 t2 = 1.80610 シ2□=40,95 311 40 = 2.0749 d、、  =1.5447 =−9,4871 d、、  =0.6801 xs 5160 シー3=58.67 r41 :l d4.  ==14.9914 r4□ =−6,8830 L2 =2.3055 r*3  =6.8830 d、、  =14.9914 「44 =■ d4.  =1.4525 r4s  = 4.6340 d4.  :U、9280 r4s  =2.0749 d4e  ”1.5447 rat  =−9,4871 d4.  =0.6801 r4s  = ■ d4.  =14.4150 r49  ” ■ d、、  =0.5764 r、。 = −18,2640 実施例21 24 n宜5 za zt tB ze = 1.62004 = 1.62004 =1.806.lO = 1.65160 =  1.62004 = 1.62004 シ114=36.25 シ2S=:16.25 ν28= 40.95 シ27= 58.67 シ2.= 36.25 シ、、= 36.25 f=4.330  、  2(,1=80.4’I )
l = 1.712 、物体距離=50r、= 7.5
850 (非球面) dl= 1.000On、= 1.78471r2=1
.9040 dz=1.2000 r、=o。
nl+ = 1.62004 = 1.62004 ν2. = 36 ci, , = 36.25 d, , = 1.4525 za = 4.6340 d3. =0.9280 t2 = 1.80610 C2□=40,95 311 40 = 2.0749 d,, =1.5447 =-9,4871 d,, =0.6801 xs 5160 C3=58.67 r41 :l d4. ==14.9914 r4□ =-6,8830 L2 =2.3055 r*3 =6.8830 d,, =14.9914 "44 =■ d4. =1.4525 r4s = 4.6340 d4. :U ,9280 r4s =2.0749 d4e ”1.5447 rat =-9,4871 d4. =0.6801 r4s = ■ d4. =14.4150 r49 ” ■ d,, =0.5764 r,. = -18,2640 Example 21 24 n y5 za zt tB ze = 1.62004 = 1.62004 = 1.806.lO = 1. 65160 = 1.62004 = 1.62004 S114 = 36.25 S2S = : 16.25 ν28 = 40.95 S27 = 58.67 S2. = 36.25 S, , = 36.25 f = 4 .330, 2(,1=80.4'I)
l = 1.712, object distance = 50r, = 7.5
850 (Aspherical surface) dl= 1.000On, = 1.78471r2=1
.. 9040 dz=1.2000 r,=o.

d、= 6.700On、=” 1.8061Or4=
 (1) d4= 8.0000    jl、= 1.8061
0r s = −7、1300 d、= 2.0000 r6= 9.1560 ds= 5.000On4= 1.51633ry=−
6,0310 d、” 1.5000    ns= 1.84666
rs =−95,7310 F15.69 =25.71 = 40.95 = 40.95 =64.15 =23 d、= 3.0OGO rs=29.4330 d−” 5.0000    na= 1.51633
= 64.15 r+。
d,=6.700On,=”1.8061Or4=
(1) d4 = 8.0000 jl, = 1.8061
0r s = -7, 1300 d, = 2.0000 r6 = 9.1560 ds = 5.000On4 = 1.51633ry = -
6,0310 d,” 1.5000 ns= 1.84666
rs = -95,7310 F15.69 = 25.71 = 40.95 = 40.95 = 64.15 = 23 d, = 3.0 OGO rs = 29.4330 d-" 5.0000 na = 1.51633
= 64.15 r+.

d、、  =13.[1O00 nt=1 5に!533 =64.15 11 = −40,9980 d。d,, =13. [1000 nt=1 To 5! 533 =64.15 11 = −40,9980 d.

= 44.0000 Iz = 37.6000 r+s r’+4 r+a 16 r+++ d12 =4.5110 = −14,9830 d+s  =2.0000 = −33,7510 d、、 =25.6200 =I)o(絞り) d、r、 =25.6200 = 33.7510 d、、  =z、ooo。= 44.0000 Iz = 37.6000 r+s r'+4 r+a 16 r+++ d12 = 4.5110 = −14,9830 d+s = 2.0000 = −33,7510 d,, =25.6200 =I) o (aperture) d, r, = 25.6200 = 33.7510 d,, =z, ooo.

= 14.9830 d、、  =4.511O =−37,6000 d 1g  = 40.9500 = 55.0600 d19 = 22.3000 na=1.51009 nx: 1.74950 4950 = 1.51009 = 1.51633 = 63.46 =35 ν、。= 35.27 、=63.46 シ1□= 64.15 r2゜ : −55,0600 dzo=40.9500 r、 = 37.6000 d2.  =4.5110 r、、  =−14,9830 daa=2.0000 raz  =−33,7510 d、、  =51.2400 rH= 33.7510 d、、  =2.0000 rzs  = 14.9830 da−=4.5110 raa  =−37,60ロO d2.  =72.9351 r2□ = 57.4060 da7 =1.0000 ras  = 16.3250 die  = 4.500On’5 r2−  =−21,9620 非球面係数 n+s n+4 n+a 16 n1テ = 1.51009 = 1.74950 = 1.74950 = 1.51009 = 1.80518 = 1.66998 シ+3=63.46 シ+4=35.27 シ+5=35.27 シ、、=63.46 シ、7=25.43 ν+5=39.27 P  =−7,0000、E  = 0.62003 
 x 10−’F =−0,77473X 10−’ R+/fl= 0.439 、  I [K+−Ko、
 s)/に0. sl= 0.1061cosω1−C
08LLlo、s   =口、158h、/Imax 
 = 0.493  、   fa/f= 1.664
IRminl/f= 0.439  、  tana=
 0.3115tanω+  =0.846    、
   d/Imax=4.58実施例22 f  = 4.330 、2 ω = 80.2’I 
H= 1.708 、物体距離=50  、 F15.
69rl = 7.5850 (非球面) d、 =1.000On、=1.78471   v、
 =25.71r、=1.9040 d、= 1.2000 rs” ■ da” 6.700On、 = 1.80610  1
72= 40.95r、=■ d4= 8.0000   jl、= 1.80610
   vz = 40.957”、= −7,1302 d、= 2.0000 r、= 9.1562 d、= 5.0000 Q4= 1.51633 = 64.15 ry=−6,0314 d、= 1.5000 ns” 1.84666 = 23.78 ra=−95,7314 d、= 3.0000 rs=29.4333 d*= 5.0000 n a =1 、51680 =64.14 rlo  :OO d、。 = 13.000゜ rll  =−40,9983 dll  =44.0005 r、、  = 36.5571 d、、  =4.511O r、、  =−14,7648 dll =2.000O r+4 =−33,5416 d、、  =25.6200 (”、5=oo (絞り) d、、  =25.6200 fi、= 1.51680 jl、= 1.50657 no= 1.74950 =64.14 =61.94 = 35.27 rlm  = 33.5416 d、、  =2.000O r、、  = 14.7648 d、?  =4.511O r、、  =−36,5571 d、、  =40.950O r+9  =54.9614 d、、  =22.300O r、、  =−54,9614 d2゜ = 40.950O r、  = 36.5571 dg+  =4.5110 rat  =−14,7648 d、、  =2.000O rms  =−33,5416 dss  :51.240O r、4 = 33.5416 d、、  =2.0000 n+。
= 14.9830 d,, = 4.511O = -37,6000 d 1g = 40.9500 = 55.0600 d19 = 22.3000 na = 1.51009 nx: 1.74950 4950 = 1.51009 = 1.51633 = 63.46 = 35 ν,. = 35.27, = 63.46 si1□ = 64.15 r2゜: -55,0600 dzo=40.9500 r, = 37.6000 d2. =4.5110 r,, =-14,9830 daa=2.0000 raz =-33,7510 d,, =51.2400 rH= 33.7510 d,, =2.0000 rzs = 14.9830 da-= 4.5110 raa = -37,60 ro d2. =72.9351 r2□ = 57.4060 da7 =1.0000 ras = 16.3250 die = 4.500On'5 r2- =-21,9620 Aspheric coefficient n+s n+4 n+a 16 n1 te = 1.51009 = 1. 74950 = 1.74950 = 1.51009 = 1.80518 = 1.66998 Shi + 3 = 63.46 Shi + 4 = 35.27 Shi + 5 = 35.27 Shi, , = 63.46 Shi, 7 = 25.43 ν + 5 = 39.27 P = -7,0000, E = 0.62003
x 10-'F = -0,77473X 10-' R+/fl= 0.439, I[K+-Ko,
s)/to 0. sl=0.1061cosω1-C
08LLlo, s = mouth, 158h, /Imax
= 0.493, fa/f= 1.664
IRminl/f=0.439, tana=
0.3115tanω+ =0.846,
d/Imax=4.58 Example 22 f = 4.330, 2 ω = 80.2'I
H=1.708, object distance=50, F15.
69rl = 7.5850 (aspherical surface) d, =1.000On, =1.78471 v,
=25.71r, =1.9040 d, = 1.2000 rs" ■ da" 6.700On, = 1.80610 1
72 = 40.95r, = ■ d4 = 8.0000 jl, = 1.80610
vz = 40.957", = -7,1302 d, = 2.0000 r, = 9.1562 d, = 5.0000 Q4 = 1.51633 = 64.15 ry = -6,0314 d, = 1. 5000 ns" 1.84666 = 23.78 ra = -95,7314 d, = 3.0000 rs = 29.4333 d* = 5.0000 na = 1, 51680 = 64.14 rlo :OO d,. = 13.000゜rll =-40,9983 dll =44.0005 r,, = 36.5571 d,, =4.511O r,, =-14,7648 dll =2.000O r+4 =-33,5416 d ,, =25.6200 ('', 5=oo (aperture) d,, =25.6200 fi, = 1.51680 jl, = 1.50657 no= 1.74950 =64.14 =61.94 = 35. 27 rlm = 33.5416 d,, =2.000O r,, = 14.7648 d,? =4.511O r,, =-36,5571 d,, =40.950O r+9 =54.9614 d,, =22.300O r,, =-54,9614 d2゜ = 40.950O r, = 36.5571 dg+ =4.5110 rat =-14,7648 d,, =2.000O rms =-33,5416 dss: 51.240O r, 4 = 33.5416 d,, =2.0000 n+.

11 n+z 13 14 l11 = 1.74950 : 1.50657 = 1.51680 = 1.50657 = 1.74950 = 1.74950 ν1゜= 35.27 シ、、=61.94 シ1□=64.14 、= 61.94 シ、、=35.27 シ+5=35.27 raa = 14.7648 ZS = 4.5110 16 = 1.50657 シ、、=61.94 rza  =−36,5571 dzs  = 73.4215 may  = 57.4059 d、、  ” 1.000On、t  = 1.805
18  ν、、: 25.43ras  =16.32
53 d、、= 4.500Onlj  = 1.66998
  v、、= 39.27r、、  =−21,961
5 非球面係数 P =−7,0000、E = 0.62003 x 
10−”F =−0,77437X 10”’ R1/fl=0.439 、1(K+−Ka、sl/K
o、l=0.106cosω、−cosωo、sl =
0.157h、/Imax =0.494  、  f
z/f =1.664Rminl/f=: 0.439
  、tana= 0.3103janlal+ =0
.842   、  d/I++ax=4.48実施例
23 f=4.330  2ω=81.8゜ I H= 1.742 、物体距離=50.F15.6
9r、 = 7.5850 (非球面) d+= 1.0000   nI= 1.78471 
  ν1= 25.71r、= 1.9040 d2= 1.2000 rs= ■ d、= 6.7000 nz= 1.80610 = 40.95 ra= ■ d4= 8.0000 1gニー7.1302 ds”2.00F+(1 r6=9、■562 d、= 5.0000 rt=−6,0314 d7= 1.500O r、=−95,7314 ds= 3.000O r==29.4333 de= 5.000O rlG  = ■ n、= 1.80610 114= 1.51633 ns”1 4666 nミニ1.51680 = 40.95 =64.15 =23゜78 = 64.14 d、、  =13.0000 Q、= 1.51680 =64.14 11 = −40,9983 d++ = 44.0005 r+i r+s r+y = 38.1046 d、、  =4.5110 = −14,7435 d、、  =2.0000 = −:14.0380 d、、  =25.6200 =ct3(絞り) d ls  = 25.6200 = 34.0380 d、、  =2.0000 = 14.7435 na=1−51633 n、=1.74950 ne。
11 n+z 13 14 l11 = 1.74950 : 1.50657 = 1.51680 = 1.50657 = 1.74950 = 1.74950 ν1゜= 35.27 shi, , = 61.94 shi1□=64.14 , = 61.94 shi,, = 35.27 shi + 5 = 35.27 raa = 14.7648 ZS = 4.5110 16 = 1.50657 shi, , = 61.94 rza = -36,5571 dzs = 73.4215 may = 57.4059 d,, ” 1.000On, t = 1.805
18 ν, ,: 25.43ras = 16.32
53 d,, = 4.500Onlj = 1.66998
v,, = 39.27r,, =-21,961
5 Aspheric coefficient P = -7,0000, E = 0.62003 x
10-"F =-0,77437X 10"' R1/fl=0.439, 1(K+-Ka, sl/K
o, l = 0.106cosω, -cosωo, sl =
0.157h, /Imax =0.494, f
z/f=1.664Rminl/f=: 0.439
, tana= 0.3103janlal+ =0
.. 842, d/I++ax=4.48 Example 23 f=4.330 2ω=81.8°I H=1.742, object distance=50. F15.6
9r, = 7.5850 (aspherical surface) d+= 1.0000 nI= 1.78471
ν1 = 25.71r, = 1.9040 d2 = 1.2000 rs = ■ d, = 6.7000 nz = 1.80610 = 40.95 ra = ■ d4 = 8.0000 1g knee 7.1302 ds”2. 00F+(1 r6=9, ■562 d, = 5.0000 rt=-6,0314 d7= 1.500O r,=-95,7314 ds= 3.000O r==29.4333 de= 5.000O rlG = ■ n, = 1.80610 114 = 1.51633 ns”1 4666 n mini 1.51680 = 40.95 = 64.15 = 23°78 = 64.14 d,, = 13.0000 Q, = 1. 51680 = 64.14 11 = -40,9983 d++ = 44.0005 r+i r+s r+y = 38.1046 d,, =4.5110 = -14,7435 d,, =2.0000 = -:14.0380 d, , =25.6200 = ct3 (aperture) d ls = 25.6200 = 34.0380 d,, =2.0000 = 14.7435 na = 1-51633 n, = 1.74950 ne.

= 1.74950 =64.15 ;35.27 o= 35.27 d、7 =4.5110 = 1.51633 =64 =−38,1046 19 20 rat d+8  =40.9500 = 54.8163 d+*  =22.3000 ニー54.8163 d、、  =40.9500 : 38.1046 da+  =4.5110 nla 13 = 1.51680 = 1.51633 シ、、=64.14 シ、、=84.15 rat  =−14,7435 d2□ = 2.0000 「2. :〜34.0380 dos  = 51.2400 rz4 = 34.0380 d、、  =2.0000 rxs  = 14.74:15 +i2. =4.5110 r、*  =−38,1(146 d2.  :74.1754 rオ、  =54.5508 d、、  =1.0000 rz8 ”16.8816 dzs  =4.5000 rz−=−22,0046 非球面係数 P = −7,0000、E = 0.62003F 
= −0,77437x 10−’lR1/f l =
 0.439 、 l (K1−Ko、 sl/に0C
O3ωl−CO3ω。、  =0.162×10 = 1.74950 = 1.74950 ” 1.51633 : 1.80518 = 1.65128 14 nls n+11 nl 丁 4=35.27 5=35.27 シ、、=、64.15 、=25 νIa”38.25 =0.111 h、/Imax  = 0.491  、   fz/
f= 1.664Rmin/f=0.439  、  
 tana=0.3200tanω+  =0.866
    、   d/Imax=4.48実施例24 f=4.330  、 2ω=80.0”I H= 1
.700 、物体距離=50r + = 7.5850
 (非球面)d+=1.000On+= 1.7847
1r2=1.9040 d、= 1.2000 rs= ■ ds=6.7000   n*= 1.80610r4
= (1) d4” 8.0000   ns= 1.80610r
5=−7,1302 dS= 2.0000 ra=9.1562 d、=5.000On、= 1.51633rt = 
−6,0314 d7= 1.5000   ns= 1.84666F
15.69 = 25.71 = 40.95 = 40.95 =64.15 =23.78 r、1=−95,7314 d、= 3.0000 r*=29.4333 d、= 5.000O rIO:o。
= 1.74950 = 64.15; 35.27 o = 35.27 d, 7 = 4.5110 = 1.51633 = 64 = -38,1046 19 20 rat d+8 = 40.9500 = 54.8163 d+* = 22.3000 knee 54.8163 d,, =40.9500: 38.1046 da+ =4.5110 nla 13 = 1.51680 = 1.51633 shi,, =64.14 shi,, =84.15 rat =- 14,7435 d2□ = 2.0000 '2. :~34.0380 dos = 51.2400 rz4 = 34.0380 d,, =2.0000 rxs = 14.74:15 +i2. =4.5110 r, * =-38,1(146 d2. :74.1754 ro, =54.5508 d,, =1.0000 rz8 ''16.8816 dzs =4.5000 rz-=-22,0046 Aspheric coefficient P = - 7,0000, E = 0.62003F
= -0,77437x 10-'lR1/f l =
0.439, l (K1-Ko, 0C to sl/
O3ωl−CO3ω. , =0.162×10 = 1.74950 = 1.74950 ” 1.51633 : 1.80518 = 1.65128 14 nls n+11 nl D4 = 35.27 5 = 35.27 C,, =, 64.15 , = 25 νIa”38.25 = 0.111 h, /Imax = 0.491, fz/
f=1.664Rmin/f=0.439,
tana=0.3200tanω+ =0.866
, d/Imax=4.48 Example 24 f=4.330, 2ω=80.0"I H=1
.. 700, object distance = 50r + = 7.5850
(Aspherical surface) d+=1.000On+=1.7847
1r2=1.9040 d, = 1.2000 rs= ■ ds=6.7000 n*= 1.80610r4
= (1) d4” 8.0000 ns= 1.80610r
5=-7,1302 dS=2.0000 ra=9.1562 d,=5.000On,=1.51633rt=
-6,0314 d7= 1.5000 ns= 1.84666F
15.69 = 25.71 = 40.95 = 40.95 = 64.15 = 23.78 r, 1 = -95,7314 d, = 3.0000 r* = 29.4333 d, = 5.000O rIO :o.

n a ” 1 、51680 =64.14 d、、  =13.0000 Q7= 1.51680 : 64.14 11 = −40,9983 d、、  =44.0005 r+i = 42.4824 13 r+4 r+@ 18 tt d、、  =4.5110 =−15,1077 d、、 =z、ooo。n a    1 , 51680 =64.14 d,, =13.0000 Q7=1.51680 : 64.14 11 = −40,9983 d,, =44.0005 r+i = 42.4824 13 r+4 r+@ 18 tt d,, =4.5110 =-15,1077 d,, =z, ooo.

= −32,6979 d、、  =25.6200 =oo(絞り) d、、  =25.6200 = 32.6979 d、、  =z、ooo。= −32,6979 d,, =25.6200 =oo (aperture) d,, =25.6200 = 32.6979 d,, =z, ooo.

= 15.1077 na=1.51633 11、= 1.74950 n+。= 15.1077 na=1.51633 11, = 1.74950 n+.

==: 1.74950 = 64.15 = 35.27 シ、。= 35.27 d、、  =4.5110 n+ = 1.51633 シ、、=64.15 r+a = −42,4824 d+a  =40.9500 19 = 53.3038 d、、  =22.3000 = 1.51680 シ、、=64.14 20 = −53,3038 dzs  =40.9500 21 = 42.4824 Z2 23 z4 zs 2B dzl =4.5110 =−15,1077 d2□ = 2.0000 =−32,6979 dz3 =51.2400 = 32.6979 dz−=2.0000 = 15.1077 d2s  =4.5110 =−42,4824 dzs  = 73.3230 n+3 n+a Is ta = 1.51633 = 1.74950 = 1.74950 = 1.51633 シ、、=64.15 シ、4= 35.27 シ+5=35.27 シ、、=64.15 r2? = 50.5778 42丁 = 1.0000 nl? = 1.80518 ν、1=25.43 rsa  =15.8191 dia  = 4.5000 01a  = 1.65
128  シ、8= 38.25rm’*  = −2
1,6085 非球面係数 P  =−7,0000、E=0.62003  xl
OすF =−0,77437x 10−’ R1/fl=0.439  、   +(に+−Ko、
  sl/K 0.  sl=  0.106CO8ω
+−CO8ωo、sl =0.157h、/fmax 
= 0.494  、  f、/f= 1.664IR
minl/f= 0.439  、  tana= 0
.3080tanω+ = 0.3080  、  d
/Imax= 4.62実施例25 で=4.093  、 2ω=79.9”I H=2.
603 、物体距離=50  、 F15.69r、、
= 20.4600  (非球面)d+=1.ロ0ロO
n+=1.78471     v−=25.71r、
=2.7218 d2= 1.2000 rs= (1) d、= 15.0000 nt=1.7880口 =47.38 r、=−7,6691 d、= 0.2003 rs : 24.2126 d、=4.5000 ra::−5,0000 d、= 1.483O r、=−18,6930 d、= 5.6100 rs: 12.2983 d、= 5.0000 r9=■ dt+= t3.ooo。
==: 1.74950 = 64.15 = 35.27. = 35.27 d,, =4.5110 n+ = 1.51633 ci,, =64.15 r+a = -42,4824 d+a =40.9500 19 = 53.3038 d,, =22.3000 = 1.51680 ,, =64.14 20 = -53,3038 dzs =40.9500 21 = 42.4824 Z2 23 z4 zs 2B dzl =4.5110 = -15,1077 d2□ = 2.0000 = -32,6979 d z3 =51.2400 = 32.6979 dz-=2.0000 = 15.1077 d2s =4.5110 =-42,4824 dzs = 73.3230 n+3 n+a Ista = 1.51633 = 1.74950 = 1.749 50 = 1.51633 shi, , = 64.15 shi, 4 = 35.27 shi + 5 = 35.27 shi, , = 64.15 r2? = 50.5778 42 guns = 1.0000 nl? = 1.80518 ν, 1 = 25.43 rsa = 15.8191 dia = 4.5000 01a = 1.65
128 shi, 8 = 38.25rm'* = -2
1,6085 Aspheric coefficient P = -7,0000, E = 0.62003 xl
OsF=-0,77437x 10-' R1/fl=0.439, +(ni+-Ko,
sl/K 0. sl=0.106CO8ω
+-CO8ωo, sl =0.157h, /fmax
= 0.494, f, /f= 1.664IR
minl/f=0.439, tana=0
.. 3080tanω+ = 0.3080, d
/Imax=4.62 in Example 25=4.093, 2ω=79.9”I H=2.
603, object distance = 50, F15.69r,,
= 20.4600 (aspherical surface) d+=1. ro0roo
n+=1.78471 v-=25.71r,
= 2.7218 d2 = 1.2000 rs = (1) d, = 15.0000 nt = 1.7880 mouth = 47.38 r, = -7,6691 d, = 0.2003 rs: 24.2126 d, =4.5000 ra::-5,0000 d, = 1.483O r, =-18,6930 d, = 5.6100 rs: 12.2983 d, = 5.0000 r9=■ dt+= t3. ooooo.

rlo  = −29,0938 d、。 = 43.9999 r、、  = 69.2137 d、、  =4.511゜ rl2  =−14,3232 n、=1 0311 n、=1 4666 nS= i、51680 ns= 1.51680 n、= 1.51680 = 611.70 = 23.78 : 64.14 =64.14 =64 d、z  =2.0000 jl、= 1.66446 = 35.81 rl3 = −29,8775 13 =:25.62・00 14 rls rls 11丁 1s rle rz。rlo = −29,0938 d. = 43.9999 r,, = 69.2137 d,, =4.511゜ rl2 = -14,3232 n,=1 0311 n,=1 4666 nS=i, 51680 ns= 1.51680 n, = 1.51680 = 611.70 = 23.78 : 64.14 =64.14 =64 d, z = 2.0000 jl, = 1.66446 = 35.81 rl3 = −29,8775 13 =:25.62.00 14 rls rls 11 guns 1s rle rz.

r2+ =(1)(絞り) d、、  =25.6200 = 29.8750 dls  =2.0000 : 14.3232 d、、  =4.5110 = −69,2137 d、、  =40.9500 == 59.9772 dls  =22.3000 =−59,9772 dls  =40.9500 = 69.2137 dzo  =4.5110 = −14,3232 r+*=1.66445 lQ 1680 : 1.51680 n+z = 1.516130 = 35.81 o= 64.14 、=64.14 シ、2=64.14 d21  =2.0000 I3 = 1.66446 シ13二35.81 2g = −29,8775 d8□ = 51.2400 ro : 29.8750 113 = 2.0000 = 1.66446 4=35.81 rz4 = 14.3232 d、4 = 4.5110   n、、= 1.516
80  v、、= 64.14r2.=−69,213
7 d2s =73.5603 rag  = 108.6187 dis  = 1.9869   n1g  = 1.
78472  VI8= 25.71rz7 ” 16
.4237 d、、  ” 4.500On、t  =、1.669
98 1/l?”= 39.27r、、  =−19,
3120 非球面係数 P = −33,9147E = 0.38319 X
 10−”F = −0,77360x 10−’  
 G = 0.14079 x to−”L =−0,
87328x 10−” IR,/fl=0.665 、 l(K+−Ko、s)
/Ko、5l=0.0201cosiIJ+−cosω
o、sl =0.1’i0h+#max =0.761
  、  f*/f=2.111Rmin /f= 0
.665  、  tana= 0.3170tanu
、 =0.838   、  d/Imax=4.74
実施例26 f=4.449  2ω=79.6” I H= 1.699 、物体距離=5゜r+= 6.
3185 (非球面) d、= 1.000On、= 1.78471rg=1
.9000 d、= 0.9000 rs= ■ F15.88 = 25.71 d−= 6.7000   1.: 1.80610=
40.95 r4= ■ d、= 8.2000 n、= 1.80610 = 40.95 rs=−7,0109 d%= 2.0000 rs=11.8936 d、= s、ooo。
r2+ = (1) (aperture) d,, =25.6200 = 29.8750 dls =2.0000: 14.3232 d,, =4.5110 = -69,2137 d,, =40.9500 == 59 .9772 dls =22.3000 = -59,9772 dls =40.9500 = 69.2137 dzo =4.5110 = -14,3232 r+*=1.66445 lQ 1680 : 1.51680 n+z = 1.51613 0 = 35 .81 o = 64.14 , = 64.14 shi, 2 = 64.14 d21 = 2.0000 I3 = 1.66446 shi 13 2 35.81 2g = -29,8775 d8□ = 51.2400 ro: 29 .8750 113 = 2.0000 = 1.66446 4 = 35.81 rz4 = 14.3232 d, 4 = 4.5110 n,, = 1.516
80 v,, = 64.14r2. =-69,213
7 d2s = 73.5603 rag = 108.6187 dis = 1.9869 n1g = 1.
78472 VI8= 25.71rz7 ” 16
.. 4237 d,,”4.500On,t=,1.669
98 1/l? ”= 39.27r,, =-19,
3120 Aspheric coefficient P = -33,9147E = 0.38319 X
10-"F = -0,77360x 10-'
G = 0.14079 x to-”L =-0,
87328x 10-” IR, /fl=0.665, l(K+-Ko,s)
/Ko, 5l=0.0201cosiIJ+-cosω
o, sl =0.1'i0h+#max =0.761
, f*/f=2.111Rmin/f=0
.. 665, tana=0.3170tanu
, =0.838, d/Imax=4.74
Example 26 f=4.449 2ω=79.6” I H=1.699, object distance=5°r+=6.
3185 (Aspherical surface) d, = 1.000On, = 1.78471rg = 1
.. 9000 d, = 0.9000 rs= ■ F15.88 = 25.71 d-= 6.7000 1. : 1.80610=
40.95 r4= ■ d, = 8.2000 n, = 1.80610 = 40.95 rs = -7,0109 d% = 2.0000 rs = 11.8936 d, = s, ooo.

rv=−5,7154 n4= 1.51633 =64.15 d?= 1.5000 n s ” 1 、84666 =23,78 ra=−28,9737 d、= 3.0000 re=21.4710 d、= 5.0000 ns” 1.51680 = 64.14 rl。rv=-5,7154 n4=1.51633 =64.15 d? = 1.5000 n s        ,84666 =23,78 ra=-28,9737 d, = 3.0000 re=21.4710 d, = 5.0000 ns” 1.51680 = 64.14 rl.

r++ r+2 dl。= 13.0(to。r++ r+2 dl. = 13.0 (to.

= −98,口103 dr 、 = 44.0004 = 42.4824 ny”1.5161SO =64.14 d、2 =4.5110 ns=1.51633 =64.15 ti =−15,1077 d、、=2.0000 jl、= 1.74950 : 35.27 14 ls 16 17 111 rt。= -98, mouth 103 dr, = 44.0004 = 42.4824 ny”1.5161SO =64.14 d, 2 = 4.5110 ns=1.51633 =64.15 Ti =-15,1077 d,,=2.0000 jl, = 1.74950 : 35.27 14 ls 16 17 111 rt.

= −32,6979 d、、  =25.6200 =oo(絞り) (Ls  =25.6200 = 32.6979 dls  =2.0O00 = 15.1077 dl7 ”4.5110 =−42,4824 dl8  =40.9500 =53.3038 dl、  =22.3000 =−53,3038 nl。= −32,6979 d,, =25.6200 =oo (aperture) (Ls = 25.6200 = 32.6979 dls = 2.0O00 = 15.1077 dl7 ”4.5110 =-42,4824 dl8 = 40.9500 =53.3038 dl, =22.3000 =-53,3038 nl.

n+1 01重 = 1.74950 = 1.51633 : 1.516U シ、、=35.27 シ、、=s4.is シtm=64.14 d2G  =40.9SO0 r2.  = 42.4824 d*+  =4.5110 rzz  =−L5.1077 d2□ = 2.0000 ram  =−32,6979 dis  =51.2400 rs4 =32.6979 ct24 =2.0000 rzs  = 15.1010 77d  =4.5110 rxll  =−42,4824 dt6 =73.8245 rat  = 50.5778 (ht  =1.OOoo ram  =15.8191 die  =4.5000 ram  =−21,6085 非球面係数 P = −10,0000、E = 0.70425=
 1.65128 = 1.80518 = 1.74950 = 151633 = 1.74950 = 1.51633 l11 14 nla 13 18 シ13=64.15 シ、、=35.27 シ+5=35.27 シ+a=64.15 シ、、=25.43 ν、、=38.25 X 10−” F=−0,77432xlO−’  、   G=0.
14068  xlG−”L = −0,87328x
 10−”IR,/fl=0.427 .1(Kl−に
、、s)/KO,5l=0.119cosωビcosω
、、、1 =0.154h+/In+ax  = 0.
477  、   fz/f= 1.709IRmin
l/f= 0.427  、   tancr= 0.
3365tallω+  =0.834    、  
d/Imax=4.44実施例27 f=4.449  、 2ω=79.6”I H= 1
.699 、物体距離=50r、 = 6:3185 
(非球面) d、=1.口000     n、= 1.78471
r、= 1.9000 F15.8g =25.71 ν奪 di= 0.9000 ram ω d、= 6.7000 r4= (1) d、=8.2000 rs”−7,口109 d、= 2.0OQO nt=1.80610 n3= 1.80610 ν2 ν3 = 40.95 =40.95 ram11.8936 d、= 5.0000 ram−5,7154 dt”1.5000 ram−28,9737 d、= 3.000O r−= 21.4710 d9=5゜0000 rIO:o。
n+1 01 weight = 1.74950 = 1.51633 : 1.516U shi, , =35.27 shi, , =s4. is sitm=64.14 d2G=40.9SO0 r2. = 42.4824 d*+ =4.5110 rzz =-L5.1077 d2□ = 2.0000 ram =-32,6979 dis =51.2400 rs4 =32.6979 ct24 =2.0000 rzs = 15.10 10 77d =4.5110 rxll =-42,4824 dt6 =73.8245 rat = 50.5778 (ht =1.OOoo ram =15.8191 die =4.5000 ram =-21,6085 Aspheric coefficient P = -10, 0000, E=0.70425=
1.65128 = 1.80518 = 1.74950 = 151633 = 1.74950 = 1.51633 l11 14 nla 13 18 C13=64.15 C,, =35.27 C+5=35.27 C+a=64. 15 ci,,=25.43 ν,,=38.25 X 10-"F=-0,77432xlO-', G=0.
14068xlG-”L=-0,87328x
10-”IR,/fl=0.427.1(Kl-to,,s)/KO,5l=0.119 cosω bicosω
,,,1=0.154h+/In+ax=0.
477, fz/f=1.709IRmin
l/f=0.427, tancr=0.
3365tallω+ =0.834,
d/Imax=4.44 Example 27 f=4.449, 2ω=79.6”I H=1
.. 699, object distance = 50r, = 6:3185
(Aspherical surface) d, = 1. Mouth 000 n, = 1.78471
r, = 1.9000 F15.8g = 25.71 ν deprivation di = 0.9000 ram ω d, = 6.7000 r4 = (1) d, = 8.2000 rs”-7, mouth 109 d, = 2 .0OQO nt=1.80610 n3= 1.80610 ν2 ν3 = 40.95 =40.95 ram11.8936 d, = 5.0000 ram-5,7154 dt"1.5000 ram-28,9737 d, = 3 .000O r-=21.4710 d9=5°0000 rIO:o.

dlo  =13.000O r、、  =−98,tHO3 d、 =44.0004 r++a  = 42.4824 d1□ =4.511O rrs  =−15,1077 d、、  =2.000O r+4 =−32,6979 dl4 =25.620(1 rrs =■(絞り) d、、  =25.6200 114= 1.51633 ns=1.84666 ng=1 1680 ny=1 1680 ns= 1.51633 n、: 1.74950 = 64.15 = 23.73 =64.14 = 64.14 =64.15 = 35.27 rIt rlll 19 = 32.6979 d+−=2.0000 = 15.1077 41丁 == 4.5110 = −42,4824 d、、  =40.9500 = 53.3038 n、@ 1 = 1.74950 = 1.51633 ν1゜=35.27 1=64.15 d、、  =22.3000 n1為 = 1.51680 *=64.14 rt。dlo = 13.000O r,, =-98,tHO3 d, =44.0004 r++a = 42.4824 d1□ = 4.511O rrs = -15,1077 d,, =2.000O r+4 = -32,6979 dl4 = 25.620 (1 rrs = ■ (aperture) d,, =25.6200 114=1.51633 ns=1.84666 ng=1 1680 ny=1 1680 ns=1.51633 n: 1.74950 = 64.15 = 23.73 =64.14 = 64.14 =64.15 = 35.27 rIt rllll 19 = 32.6979 d+-=2.0000 = 15.1077 41 pieces == 4.5110 = −42,4824 d,, =40.9500 = 53.3038 n, @ 1 = 1.74950 = 1.51633 ν1゜=35.27 1=64.15 d,, =22.3000 For n1 = 1.51680 *=64.14 rt.

2 「22 z3 24 r2に : −53,3038 d、、  =40.9500 = 42.4824 d、、  =4.5110 ニー15.1077 d2□ = 2.0[1(10 = −32,6979 d2.  =51.2400 = 32.6979 d、4 =2.0000 = 15.1077 d++s  ”4.5110 n、j n+4 1r nl( = 1.51633 4950 = 1.74950 = 1.51633 νI 3 = 64.15 ν++””35.27 シ+t=35.27 シ目= 64.15 rag  =−42,4824 d、、  =73.8203 r、、  = 57.4060 dat  = 1.0(100nly  = 1.80
518 1/17= 25.43raa  = 16.
3250 d2m  =4.500On+1  =1.66998
  シ+5=39.27rzs  =−21,9620 非球面係数 P=−10,0000、E=0.70425 xlO−
”F=−〇。77432xlO−’ 、  G=0.1
4068 xlO−’L =−0,87328x 10
−” IR,/f+=0.427 、 I(K、−に、、51
/に、、、I=0.1191eosω、−cosωo、
sl =[1,153h+/imax = 0.478
  、  i’2/r” 1.709Rminl/f=
 0.427  、  tana= 0.3363ta
nLJ+ =0.833   、  d/Imax=4
.45実施例28 f=4.449  2ω=79.6@ I H= 1692 、物体距離=50  、 F15
.88r、=6.3185 (非球面) d、=1.0000 r、= 1.9(100 d2= 0.9000 rs= ■ d、= 6.700O r、= (1) Q、= 1.78471 n2= 1.80610 =25.71 =40.95 d4= 8.2000 n、= 1.80610 =40 rs=−7,0109 d、= 2.0000 「6= 11.8936 d6.= 5.f)000 Q、= 1.51633 = 64.15 r7=−5,7154 d7=1.5000 ns : 1.84666 = 23.73 re”−28,9737 da= 3.0000 re=21.4710 d9= 5.000O r、。 = (1) d、。 = 13.000O r、、  =−98,0103 n8= 1.51680 nア;1 1680 = 64.14 = 64.14 = 44.0004 rIt = 56.2382 d、2 =4.5110 n8= 1.51633 二64.15 rIt = −15,4029 14 rIt d+3 =2.0000 = −29,6340 d、、  =25.6200 =■(絞り) d+ s  = 25.[)200 = 29.6340 d、、  =2.0000 =15.4029 ns”1 4950 111J = 1.74950 = 35.27 、=35.27 d、、  =4.5110 = 1.51633 シ、、=64.15 19 「20 rz+ =−56,2382 d、、  =40.9500 = 51.1534 d、9  =22.3000 =−51,1534 d2゜ = 40.9500 = 56.2382 12 = 1.51680 2:6.4.14 d21  = 4.5110  n+s  = 1.5
1633 1J+s= 64.1r2.”−15,40
29 dxa  = 2.000On+4= 1.74950
  シ、4:35.2rzs  =−29,6340 dat  =51.240O rza  = 29.6340 dt4 ”2.000On、、  = 1.74950
   v、、= 35.2rzs  = 15.402
9 dzs  =4.5110  r++s  =1.51
633  シ+a=64.1r、、  =−56,23
82 d、、  =73.8203 ray  =57.4060 dat  = 1.QOOOnet  = 1.805
18 17+t= 25.4r2g  ” 16.32
50 d、a  = 4.5000  n+a  = 1.6
6998  ν+a= 39.2r2.  ”−21,
9620 非球面係数 P=−10−0000、E=0.70425 xlO−
”F=−0,77432xlO−’ 、  G=O,1
4068xlO−’L =−0,87328x 10−
” IR,/fl=0.427  。
2 "22 z3 24 to r2: -53,3038 d,, =40.9500 = 42.4824 d,, =4.5110 knee 15.1077 d2□ = 2.0[1(10 = -32,6979 d2 . = 51.2400 = 32.6979 d, 4 = 2.0000 = 15.1077 d++s ”4.5110 n, j n+4 1r nl ( = 1.51633 4950 = 1.74950 = 1.51633 νI 3 = 64. 15 ν++””35.27 shi + t = 35.27 shi = 64.15 rag = -42,4824 d,, = 73.8203 r,, = 57.4060 dat = 1.0 (100nly = 1.80
518 1/17 = 25.43raa = 16.
3250 d2m =4.500On+1 =1.66998
C+5=39.27rzs=-21,9620 Aspheric coefficient P=-10,0000, E=0.70425 xlO-
"F=-〇.77432xlO-', G=0.1
4068 xlO-'L = -0,87328x 10
−”IR,/f+=0.427, I(K,−,,51
/to,,,I=0.1191eosω,-cosωo,
sl = [1,153h+/imax = 0.478
, i'2/r" 1.709Rminl/f=
0.427, tana=0.3363ta
nLJ+ =0.833, d/Imax=4
.. 45 Example 28 f = 4.449 2ω = 79.6 @ I H = 1692, object distance = 50, F15
.. 88r, = 6.3185 (Aspherical surface) d, = 1.0000 r, = 1.9 (100 d2 = 0.9000 rs = ■ d, = 6.700O r, = (1) Q, = 1.78471 n2 = 1.80610 =25.71 =40.95 d4 = 8.2000 n, = 1.80610 =40 rs = -7,0109 d, = 2.0000 "6 = 11.8936 d6. = 5.f )000 Q, = 1.51633 = 64.15 r7 = -5,7154 d7 = 1.5000 ns: 1.84666 = 23.73 re”-28,9737 da = 3.0000 re = 21.4710 d9 = 5.000Or. = (1) d,. = 13.000O r,, =-98,0103 n8 = 1.51680 na; 1 1680 = 64.14 = 64.14 = 44.0004 rIt = 56.2382 d, 2 = 4.5110 n8 = 1. 51633 264.15 rIt = -15,4029 14 rIt d+3 =2.0000 = -29,6340 d,, =25.6200 =■(Aperture) d+ s = 25. [)200 = 29.6340 d,, =2.0000 =15.4029 ns”1 4950 111J = 1.74950 = 35.27, =35.27 d,, =4.5110 = 1.51633 si,, =64.15 19 "20 rz+ =-56,2382 d,, =40.9500 = 51.1534 d, 9 =22.3000 =-51,1534 d2゜ = 40.9500 = 56.2382 12 = 1. 51680 2:6.4.14 d21 = 4.5110 n+s = 1.5
1633 1J+s=64.1r2. ”-15,40
29 dxa = 2.000On+4 = 1.74950
shi, 4:35.2rzs = -29,6340 dat = 51.240O rza = 29.6340 dt4 ”2.000On,, = 1.74950
v,, = 35.2rzs = 15.402
9 dzs = 4.5110 r++s = 1.51
633 shi+a=64.1r,, =-56,23
82 d,, =73.8203 ray =57.4060 dat = 1. QOOOnet = 1.805
18 17+t= 25.4r2g ” 16.32
50 d, a = 4.5000 n+a = 1.6
6998 ν+a= 39.2r2. ”-21,
9620 Aspheric coefficient P=-10-0000, E=0.70425 xlO-
"F=-0,77432xlO-', G=O,1
4068xlO-'L =-0,87328x 10-
”IR,/fl=0.427.

CoSω+−Cosωa、s h+/Imax  == 0.477 IRminl/f==0.427 tanω+  = [1,833 実施例29 f =4.364  、 2(,1=80.0″″I 
H= 1.684 、物体距離=50r、=5.793
4 d、= 1.0000  14.= 1.78471r
、= 1.7137 (非球面) (K+−Ko、 s)/Ka、 5l== 0.153 f27f= 1.709 tanα=0.3345 d/Imax= 4.45 0.120 F15.59 ν1 = 25.71 d、= 1.2000 rs= ■ d3= 6.7000 r4=O0 d4= 8.0000 「6:−7,0241 n2=1.80610 n、= 1.80610 ν2 υ3 =、40.95 = 40.95 d舊=2.0000 ra=9.4781 d、= 5.0000 n4== 1.51633 ν4 = 64.15 r7= −6,0129 d?= 1.5000 ns’18466G = 23.78 r、=−95,6255 da= 3.0000 re= 28.7313 d、= 5.0000 n、== 1.51633 =64.15 r、0  =o。
CoSω+−Cosωa, sh+/Imax == 0.477 IRminl/f==0.427 tanω+ = [1,833 Example 29 f =4.364, 2(,1=80.0″″I
H = 1.684, object distance = 50r, = 5.793
4 d, = 1.0000 14. = 1.78471r
, = 1.7137 (Aspherical surface) (K+-Ko, s)/Ka, 5l = = 0.153 f27f = 1.709 tanα = 0.3345 d/Imax = 4.45 0.120 F15.59 ν1 = 25.71 d, = 1.2000 rs= ■ d3= 6.7000 r4=O0 d4= 8.0000 "6:-7,0241 n2=1.80610 n, = 1.80610 ν2 υ3 =, 40.95 = 40.95 d = 2.0000 ra = 9.4781 d, = 5.0000 n4 = = 1.51633 ν4 = 64.15 r7 = -6,0129 d? = 1.5000 ns'18466G = 23. 78 r, = -95,6255 da = 3.0000 re = 28.7313 d, = 5.0000 n, = = 1.51633 = 64.15 r, 0 = o.

d、、=13.0O00 rl1  =−40,9980 d、、  =44.0000 r1□ = 34.0398 d1□ = 4.5110 r、、  ==−14,1661 d、= 2.0000  fi、= 1.7495Or
+4 =−34,5603 d、4 =25.6200 r、、 :OO(絞り) d、s  =25.6200 rla  ”34.5603 d、、  =2.0000 = 1.74950 nア= 1.51633 na=1.51112 +110 =64.15 = 60.48 =35.27 シ+o”:15゜27 rlt  =14.1661 d+t  =4.5110 r+a=−34,0398 dla  =40.9500 r、=55.5131 dB  =22.3QOOnB r、o  =−55,5131 d、。 = 40.9500 ra+=34゜0398 dH=4.5110  n+3 r*z  =−14,1661 d2□ ==2.0000 ras  =−34,5603 d2.=51.2400 r、、  = 34.5603 d、、  =2.0000 r、、  = 14.1661 dzs  = 4.511On、a  = 1.511
12= 1.51112 = 1.51633 = 1.51112 = 1.74950 = 1.74950 11 n+a n+6 シz=611.48 シ、、=64 シ13=60.48 シ、、=35.27 シ+5=35.27 シ+5=60.48 ff18 = −34,0398 rl、−==1 r、、= 57.4060 d2.  =1.0000 rzll = 16.3250 d28 =4.5000 ra−”−21−9620 et = 1.80518 nea  ” 1.66998 シ、、= 25.43 ν+s”39.27 非球面係数 P = 0.4234   、  E =−0,200
21x 10−”F =−0,35366x 10−’ R,/fl=0.392 、 1fK、−に、、、)/
に、、5l=O,015cosω+−CO3Ldo、s
l  =0.089h、/Imax  = 0.474
  、   f、/f= 1.652Rminl/f=
 0.392   、   d/Imax= 4.58
実施例30 f=4.370  、 2ω=79.9’I H= 1
.683 、物体距離= 50  、 F15.59r
+=7.0000 d、=1.0O00n、=1.78471   v、 
=25−71r、= 1.8724 (非球面) d、= 1.2000 rs= ■ d、=6.700O r<= ■ d4= 8.0000 rs=−7,1300 ds’=2.000゜ r、= 9.1560 d、= 5.0000 rt=−6,0310 d、=1.5000 re”−95,7310 da” 3.000O r、= 29.4330 r+z= 180610 n、= 1.80610 114= 1.51633 Ql: 1.84666 = 40.95 =40 = 64.15 = 23.78 d、= 5.0000 ne : 1 、51633 =64 r+ r+z r+s d、o =12.9381 =−40,9980 d、、  =44.0OOO : 31.9122 dl2 =4.5110 =−13,6341 n−= 1.51633 11、= 1.51602 =64.15 = 56.80 r1θ r+e za rat d、、=2.0000 = −35,8745 d、、  =25.6200 =oo(絞り) dos  =25.6200 = 35.8745 d、、  =2.0O00 = 13.6341 dl、  =4.5110 = −31,9122 d、、  =40.9500 50.9974 d、、  =22.3000 = −50,9974 d、。 =40.9500 = 31.9122 ns= 1.74950 ne。
d,, =13.0O00 rl1 =-40,9980 d,, =44.0000 r1□ = 34.0398 d1□ = 4.5110 r,, ==-14,1661 d, = 2.0000 fi, = 1.7495Or
+4 = -34,5603 d, 4 = 25.6200 r,, :OO (aperture) d, s = 25.6200 rla "34.5603 d,, = 2.0000 = 1.74950 na = 1.51633 na=1.51112 +110 =64.15 = 60.48 =35.27 shi+o":15°27 rlt=14.1661 d+t=4.5110 r+a=-34,0398 dla=40.9500 r,=55 .5131 dB =22.3QOOnB r,o =-55,5131 d,. = 40.9500 ra+=34°0398 dH=4.5110 n+3 r*z =-14,1661 d2□ ==2.0000 ras =-34,5603 d2. =51.2400 r,, = 34.5603 d,, =2.0000 r,, = 14.1661 dzs = 4.511On, a = 1.511
12 = 1.51112 = 1.51633 = 1.51112 = 1.74950 = 1.74950 11 n+a n+6 z=611.48 shi,, =64 shi13=60.48 shi,, =35.27 shi+5 =35.27 shi+5=60.48 ff18=-34,0398 rl,-==1 r,,=57.4060 d2. =1.0000 rzll = 16.3250 d28 =4.5000 ra-"-21-9620 et = 1.80518 nea" 1.66998 ci,, = 25.43 ν+s"39.27 Aspheric coefficient P = 0. 4234, E = -0,200
21x 10-”F =-0,35366x 10-' R,/fl=0.392, 1fK,-,,,)/
,,5l=O,015cosω+−CO3Ldo,s
l = 0.089h, /Imax = 0.474
, f, /f= 1.652Rminl/f=
0.392, d/Imax=4.58
Example 30 f=4.370, 2ω=79.9'I H=1
.. 683, object distance = 50, F15.59r
+=7.0000 d, =1.0O00n, =1.78471 v,
=25-71r, = 1.8724 (aspherical surface) d, = 1.2000 rs= ■ d, = 6.700O r<= ■ d4= 8.0000 rs=-7,1300 ds'=2.000° r, = 9.1560 d, = 5.0000 rt = -6,0310 d, = 1.5000 re"-95,7310 da" 3.000O r, = 29.4330 r+z = 180610 n, = 1.80610 114 = 1.51633 Ql: 1.84666 = 40.95 = 40 = 64.15 = 23.78 d, = 5.0000 ne: 1, 51633 = 64 r+ r+z r+s d, o = 12.9381 = -40 ,9980 d,, =44.0OOO : 31.9122 dl2 =4.5110 =-13,6341 n-= 1.51633 11, = 1.51602 =64.15 = 56.80 r1θ r+e za rat d,, =2.0000 = -35,8745 d,, =25.6200 =oo (aperture) dos =25.6200 = 35.8745 d,, =2.0O00 = 13.6341 dl, =4.5110 = -31 ,9122 d,, =40.9500 50.9974 d,, =22.3000 = -50,9974 d,. = 40.9500 = 31.9122 ns = 1.74950 ne.

= 1.74950 n+1 = 1.51602 = 1.51633 = 35.27 シ、。=35.27 +=ss、g。= 1.74950 n+1 = 1.51602 = 1.51633 = 35.27 Shi,. =35.27 +=ss, g.

シ、、=64.15 d2+  =4.5110 13 = 1.51602 シ、、= 56.80 =−13,6341 d2□ = 2.0000 = 1.74950 4=35.27 rz3 = −35,8745 d++s  =51.2400 rz−=35.8745 da4 = 2.0000   n’s  = 1.7
4950rzs  =13.6341 dis  = 4.5110   nl−= 1.51
602rag  =−31,9122 s”35.27 1ノ、、=56.80 dxa  =72.9351 rat  = 57.4060 d、、  = 1.000On、、  = 1.805
18   v、7= 25.43rig  = 16.
3250 d、、  = 4.500f)   n、、  ” 1
.66998   v、、= 39.27r、、  =
−21,91320 非球面係数 P = 1.0000  、 E =−0,12829
x 10−’F =−0,61773x to−” 、
  G =−0,20560x 10−’R1/fl=
 0.428 、 l (K+−Ko、 sl/に0.
 sl= 0.004CO9IJ+−CO3ido、 
s  = 0.080h、/Imax =0.486 
 、  f、/f =1.649IRminl/f =
 0.428  、  d/Imax = 4.60実
施例31 f=4.323  、  2ω=ao、o@IH= 1
.721 、物体距離=50rl=7.oo00 (非
球面) dl= 1.0000   旧: 1.78471r 
t = 1 、8392 (非球面)dam 1.20
00 rx= ■ dam6.700o    n□= 1.80610r
4= (1) d4=8.0000    na= 1.80610r
s”−7,1300 dam2.0000 ra=9.1560 d、= 5.000On、= 1.51633r?ニー
5.口310 d7= 1.5000    ns= 1.84666
r、=−95,7310 d、= 3.0QQQ rs=29.4330 d−= 5.0000   na= 1.51633F
15.69 = 25.71 = 40.95 : 40.9’1 = 64.15 = 23.78 =64.15 rh。
C,, = 64.15 d2+ =4.5110 13 = 1.51602 C,, = 56.80 = -13,6341 d2□ = 2.0000 = 1.74950 4 = 35.27 rz3 = -35,8745 d++s = 51.2400 rz- = 35.8745 da4 = 2.0000 n's = 1.7
4950rzs = 13.6341 dis = 4.5110 nl- = 1.51
602rag = -31,9122 s"35.27 1 no,, = 56.80 dxa = 72.9351 rat = 57.4060 d,, = 1.000On,, = 1.805
18 v, 7 = 25.43 rig = 16.
3250 d,, = 4.500f) n,, ” 1
.. 66998 v,, = 39.27r,, =
-21,91320 Aspheric coefficient P = 1.0000, E = -0,12829
x 10-'F =-0,61773x to-'',
G =-0,20560x 10-'R1/fl=
0.428, l (K+-Ko, 0. to sl/
sl=0.004CO9IJ+-CO3ido,
s = 0.080h, /Imax = 0.486
, f, /f = 1.649IRminl/f =
0.428, d/Imax = 4.60 Example 31 f=4.323, 2ω=ao, o@IH=1
.. 721, object distance=50rl=7. oo00 (Aspherical surface) dl= 1.0000 Old: 1.78471r
t = 1, 8392 (aspherical surface) dam 1.20
00 rx= ■ dam6.700o n□= 1.80610r
4= (1) d4=8.0000 na= 1.80610r
s"-7,1300 dam2.0000 ra=9.1560 d, = 5.000On, = 1.51633r? knee 5. mouth 310 d7 = 1.5000 ns = 1.84666
r, = -95,7310 d, = 3.0QQQ rs = 29.4330 d- = 5.0000 na = 1.51633F
15.69 = 25.71 = 40.95: 40.9'1 = 64.15 = 23.78 = 64.15 rh.

d、o =13.0282 Q、=  1.51633 = 64.15 II = −40,9980 ti l1コ d++  = 44.0000 = 37.6000 1Lz  =4.5110 = −14,9830 (16: 1.51009 =63.46 dos  =2.0000 Q、:: 1.74950 =35.27 r、、=−33,7510 ls l6 rl? rha dl、=25.6200 =Cx3(絞り) dos  =25.6200 =33.7510 dos  ”2.0QOO = 14.9830 dly  =4.5110 = −37,6000 ne。d, o = 13.0282 Q, = 1.51633 = 64.15 II = −40,9980 Ti l1 ko d++ = 44.0000 = 37.6000 1Lz = 4.5110 = −14,9830 (16:1.51009 =63.46 dos = 2.0000 Q:: 1.74950 =35.27 r,,=-33,7510 ls l6 rl? rha dl,=25.6200 =Cx3 (aperture) dos = 25.6200 =33.7510 dos   2.0QOO = 14.9830 dly = 4.5110 = −37,6000 ne.

= 1.74950 = 1.51009 o= 35.27 = 63.46 d、、=40.9500 rll+ = 55.0600 d。= 1.74950 = 1.51009 o=35.27 = 63.46 d,,=40.9500 rll+ = 55.0600 d.

= 22.3000 et = 1.51633 シ1□=64.15 2a l2+ tz = −55,0600 d、、=40.9500 =37.60ロO d2.=4.5110 = −14,9830 = 1.51009 νIs= 63.46 daz  =2.0000 = 1.74950 ν、=35 rws  =−33,7510 d、、  =51.2400 l24 = 33.7510 d、、  =2.0000 rzs  = 14.9830 d、、=4.5110 rza  =−37,6000 dam  =73.0000 l2y  = 57.4060 dz7 =1.0000 r、、= 16.3250 d、B  =4.500O l2.=−21,9620 非球面係数 I6 = 1.74950 = 1.51009 = 1.80518 = 1.66998 シ、5=35.27 シ+a=63.46 シ1□=25.43 シ、、= 39.27 (第1面) P = 1.0000   E = 0.53146 
x 1O−2F =−0,61228x 10−’ 、
  G =−0,48942x to−’(第2面) P = 1.0000   E = 0.61486 
x 10−”F = 0.37818 x to−5G
 = 0.11647 x 10−”Rdfl= 0.
425 、 l (K、−Ko、 sl/Ko、 sl
= 0.0621 C08LLI 1−CO3ωQ、%
l =0.155h、/Imax = 0.496  
、  fa/f= 1.667Rmin /f= 0.
425  、  tana= 0.3563tanω+
  ”0.839     、   d/Imax= 
4.58ただしrl+ rl−・・・はレンズ各面の曲
率半径、dl、d2.・・・は各レンズの肉厚および空
気間隔、n + +n2.・・・は各レンズの屈折率、
シ、シ2.・・・は各レンズのアツベ数である。
= 22.3000 et = 1.51633 1□ = 64.15 2a l2+ tz = -55,0600 d,, = 40.9500 = 37.60 ro d2. =4.5110 = -14,9830 = 1.51009 νIs = 63.46 daz =2.0000 = 1.74950 ν, =35 rws = -33,7510 d,, =51.2400 l24 = 33.7510 d ,, =2.0000 rzs = 14.9830 d,, =4.5110 rza =-37,6000 dam =73.0000 l2y = 57.4060 dz7 =1.0000 r,, = 16.3250 d, B = 4.500O l2. =-21,9620 Aspherical coefficient I6 = 1.74950 = 1.51009 = 1.80518 = 1.66998 Shi, 5 = 35.27 Shi + a = 63.46 Shi1 = 25.43 Shi, , = 39 .27 (first side) P = 1.0000 E = 0.53146
x 1O-2F = -0,61228x 10-',
G = -0,48942x to-' (second surface) P = 1.0000 E = 0.61486
x 10-”F = 0.37818 x to-5G
= 0.11647 x 10-”Rdfl=0.
425, l (K, -Ko, sl/Ko, sl
= 0.0621 C08LLI 1-CO3ωQ,%
l = 0.155h, /Imax = 0.496
, fa/f=1.667Rmin/f=0.
425, tana=0.3563tanω+
”0.839, d/Imax=
4.58 However, rl+ rl-... is the radius of curvature of each lens surface, dl, d2. ... is the wall thickness and air gap of each lens, n + +n2. ... is the refractive index of each lens,
C, C2. ... is the Atsube number of each lens.

上記の各実施例のうち実施例1乃至実施例20は夫々第
8図乃至第27図に示すようなレンズ構成であって、負
の作用を有する第1群と正の作用を有する第2群とから
構成されている。そして絞りより物体側の負の作用を有
する第tit¥中のレンズのうち物体側を向いた面に非
球面を設しすたことを特徴とするレトロフォーカスタイ
プの対物レンズである。
Among the above embodiments, Examples 1 to 20 have lens configurations as shown in FIGS. 8 to 27, respectively, with a first group having a negative effect and a second group having a positive effect. It is composed of. It is a retrofocus type objective lens characterized by providing an aspherical surface on the surface facing the object side of the lens having a negative effect on the object side than the aperture.

また第2群の正の屈折力を有する最も物体側の面と・第
1群の負の屈折力を有する最も像側の面との間に、内視
鏡の長手方向に対して視野方向を変換するための視野方
向変換プリズムを設けるだけの硝路長を有している。
Also, between the surface of the second group that is closest to the object side and has a positive refractive power, and the surface of the first group that is closest to the image side and has a negative refractive power, there is a field of view in the longitudinal direction of the endoscope. It has a glass path length sufficient to provide a viewing direction conversion prism for conversion.

実施例1は、第8図に示す構成で第1群が接合レンズに
なっており、その両レンズにアツベ数の異なる材質を使
用することによって色収差を良好に補正している。また
それらレンズのうち、非球面を含む物体側のレンズは、
像側の布が平面であり、このレンズを研磨によらずにモ
ールド成形による場合、片側が平面であるために非球面
レンズ加工上の障害が少ない。
Embodiment 1 has the configuration shown in FIG. 8, in which the first group is a cemented lens, and both lenses are made of materials with different Abbe numbers, thereby satisfactorily correcting chromatic aberration. Among these lenses, the object-side lens that includes an aspherical surface is
If the cloth on the image side is flat and the lens is molded instead of polished, there will be fewer obstacles in machining the aspherical lens because one side is flat.

このレンズの非球面は、負の歪曲収差を小さくし一方こ
こで発生する負の像面わん曲は第2群に含まれる物体側
を向いた凹面で発生する正の像面わん曲によって打ち消
し、更にこの正の像面わん曲によりリレー系で発生する
負の像面わん曲も打ち消し得るようにしている。そのた
めにこの実施例の対物レンズは、第39図に示すように
正の像面わん曲が発生している。
The aspheric surface of this lens reduces negative distortion, while the negative curvature of field that occurs here is canceled out by the positive curvature of field that occurs on the concave surface facing the object included in the second group. Furthermore, this positive field curvature can also cancel the negative field curvature generated in the relay system. Therefore, the objective lens of this embodiment has a positive field curvature as shown in FIG.

実施例2は、第9図に示す構成で、第1群の負のメニス
カスレンズが単レンズであり、又第2群の接合レンズが
2枚のレンズに分離されている点で実施例1と異なって
いる。
Example 2 has the configuration shown in FIG. 9, and is different from Example 1 in that the negative meniscus lens in the first group is a single lens, and the cemented lens in the second group is separated into two lenses. It's different.

内視鏡は、先端が細く視野方向変換プリズムを設ける場
合、厚さの大である接合レンズを置くことは好ましくな
い。又レンズを薄<シてもlノンズ加工や接合作業が面
倒であるので単レンズの方が好ましい。
When an endoscope has a narrow tip and is provided with a viewing direction converting prism, it is not preferable to use a thick cemented lens. Furthermore, even if the lens is made thinner, processing and bonding operations are troublesome, so a single lens is preferable.

実施例2の第20の作用は実施例1と同じであるが、接
合レンズを分離することによって面の数が増加し、物体
側を向いた凹面の曲率を弱く出来る。そのためここで屈
折する光線の角度が小さくなるためにコマ収差の発生量
を小さくすることが出来る。更にレンズの偏芯による諸
収差のくずれも少なくなり好ましい。
The 20th effect of the second embodiment is the same as that of the first embodiment, but by separating the cemented lens, the number of surfaces increases, and the curvature of the concave surface facing the object side can be weakened. Therefore, since the angle of the light ray refracted here becomes small, the amount of comatic aberration generated can be reduced. Furthermore, distortion of various aberrations due to eccentricity of the lens is also reduced, which is preferable.

実施例3乃至実施例5は夫々第10図乃至第12図に示
す構成で、第1群の非球面L/、ズ。材質が実施例2と
は異なっている。またこれらの実Fa例は、非球面レン
ズの光軸方向の厚みが夫々異なっている。前述のように
、非球面レンズを研磨によらずにモールド成形により作
る場合は、材質によって成形温度などの条件が異なるた
め、材質の適切な選択によって加工上の障害を少なくす
ることが出来る。したか−)で例えば実施例2とこの実
施例のように材質の異なる非球面レンズを用いた実施例
があれば、適切な材料の選択が可能になり好ましい。又
非球面レンズの厚みを変えて外径を許容出来る範囲内で
大きくすることにより、モールド成形時に外径が小さい
ことによる加工上の障害を少なくすることが出来る9例
えば厚みが小さいまま外径を大きくした場合、レンズの
外周部の縁の厚みが小さくなり加工上の障害になる。
Examples 3 to 5 have the configurations shown in FIGS. 10 to 12, respectively, and the aspheric surfaces L/, Z of the first group. The material is different from that of the second embodiment. Further, in these actual Fa examples, the thickness of the aspherical lens in the optical axis direction is different. As mentioned above, when an aspherical lens is made by molding instead of polishing, conditions such as molding temperature vary depending on the material, so it is possible to reduce processing obstacles by appropriately selecting the material. For example, it would be preferable to have an example using aspherical lenses made of different materials, such as Example 2 and this example, since it would enable selection of an appropriate material. In addition, by changing the thickness of the aspherical lens and increasing the outer diameter within an allowable range, it is possible to reduce processing problems caused by the small outer diameter during molding9. If it is made larger, the thickness of the outer peripheral edge of the lens becomes smaller, which becomes an obstacle in processing.

実施例6乃至実施例1Oは、夫々第13図乃至第17図
に示す構成であるが、視野角および歪曲収差の補正量が
夫々異なっており、又実施例1とも異なっている。
Examples 6 to 1O have the configurations shown in FIGS. 13 to 17, respectively, but have different viewing angles and distortion aberration correction amounts, and are also different from Example 1.

これら実施例のうち実施例6.7は、画角が70”で実
施例1と同じであるが像周辺の歪曲収差を−4,5%か
ら夫々−1O%、−0,5%にした点で異なる。このよ
うに歪曲収差の補正量を変えることは、被写体の形状が
平面のみならず、僅かな球面である等の凹凸がある場合
には必要に応じて中間像高や周辺の像の歪などをとるこ
とが出来るために有効である。
Among these examples, Example 6.7 has an angle of view of 70" and is the same as Example 1, but the distortion around the image is changed from -4.5% to -10% and -0.5%, respectively. Changing the amount of correction for distortion aberration in this way is useful when the shape of the subject is not only flat, but also uneven, such as a slight spherical surface, by adjusting the intermediate image height and surrounding images as necessary. This is effective because it can remove distortion, etc.

また実施例8乃至実施例1Oは、共に画角が90°でか
つ歪曲収差の補正量が異なっている。これらの実施例は
、広角にすることによって被写体の広い範囲を歪みなく
観察することが出来るので有効である。
Further, in Examples 8 to 1O, the angle of view is 90°, and the amount of distortion correction is different. These embodiments are effective because the wide angle allows a wide range of objects to be observed without distortion.

実施例11.12は夫々第18図、第19図に示す構成
で、実施例2と同様に第10が単【ノンズであるが、第
2詳が接合されている点で異なっている。これは実施例
2の説明で述べたように、物体側を向いた凹面でのコマ
収差や偏芯による詰i1i差の発生量が多くならない限
り、接合レンズにすれば、レンズ間の間隔環が不要にな
り、部品点数を少なく出来るので有効である。
Embodiments 11 and 12 have the structures shown in FIGS. 18 and 19, respectively, and the 10th part is a single nons as in Embodiment 2, but the difference is that the second part is joined. As mentioned in the explanation of Embodiment 2, unless there is a large amount of I1i difference due to comatic aberration or eccentricity on the concave surface facing the object side, if a cemented lens is used, the spacing ring between the lenses can be reduced. This is effective because it becomes unnecessary and the number of parts can be reduced.

また実施例12は、実施例11に比べて全長が長く、硬
性鏡の先端の長さを自由に選択できるので有効である。
Furthermore, the twelfth embodiment is effective because it has a longer overall length than the eleventh embodiment, and the length of the tip of the rigid endoscope can be freely selected.

実施例13は、第20図に示す構成であり、歪曲収差が
像周辺で−0,5%に補正されている点で実施例2と異
なっている。
Embodiment 13 has the configuration shown in FIG. 20, and differs from Embodiment 2 in that distortion is corrected to -0.5% around the image.

実施例14は、第21図に示す構成のもので。Embodiment 14 has the configuration shown in FIG. 21.

実施例11.12と類似の構成である。しかし像周辺で
の歪曲収差が−10%である点で異なっている。
The configuration is similar to that of Examples 11 and 12. However, the difference is that the distortion aberration around the image is -10%.

実施例15は、第22図に示す構成のもので、像周辺の
歪曲収差が一1O%である点で実施例2と異なっている
。また像面わん曲が他の実施例に比べて小さく、像面に
イメージガイドや固体撮像素子を設けることが出来、種
々の用途に対応できるので有効である。
Example 15 has the configuration shown in FIG. 22, and differs from Example 2 in that the distortion around the image is 110%. In addition, the field curvature is smaller than in other embodiments, and an image guide and a solid-state image pickup device can be provided on the image plane, which is effective because it can be used for various purposes.

実施例16は、第23図に示す構成である。この実施例
は、視野角が40°である点で実施例1112とは異な
っている。
Example 16 has the configuration shown in FIG. 23. This example differs from Example 1112 in that the viewing angle is 40°.

実施例17.18は、夫々第24図、第25図に示す構
成で、非球面形状を決定する非球面係数が夫々4次、6
次の係数−つだけによって設計されている点で、実施例
1と異なっている。このように非球面形状を4次、6次
、8次、・・・の係数のうちの一つだけを選んで設計す
れば設計時に非球面の形状を検討する際、計算が簡単で
あり形状の判断も容易であり、又モールド成形時の型の
設計や形成が容易になり好ましい。
Examples 17 and 18 have the configurations shown in FIGS. 24 and 25, respectively, and the aspheric coefficients that determine the aspheric shape are 4th and 6th order, respectively.
This embodiment differs from the first embodiment in that it is designed using only the following coefficients. In this way, if the aspherical shape is designed by selecting only one of the coefficients of the 4th, 6th, 8th, etc., it will be easier to calculate when considering the shape of the aspherical surface during design, and the shape This is preferable because it is easy to judge, and it is also easy to design and form a mold during molding.

実施例19.20は、夫々第26図、第27図に示すも
ので、実施例1.2の対物レンズに夫々3回及び5回の
リレー系を付けたちのである。
Examples 19 and 20 are shown in FIGS. 26 and 27, respectively, and are provided with three-time and five-time relay systems, respectively, to the objective lens of Example 1.2.

これら実施例のようにリレー系によるリレー回数・を3
,5.7,11.・・・回と選択して像を伝達すること
によって必要な長さ、明るさの硬性鏡を得ることが出来
る。ここでリレー系として屈折率分布型レンズを用いて
もよい。
As in these examples, the number of relays by the relay system is 3.
, 5.7, 11. ...By selecting and transmitting images, it is possible to obtain a rigid scope with the required length and brightness. Here, a gradient index lens may be used as the relay system.

以上述べた本発明の各実施例は、第1群と第2群の間の
光路長を十分長くとってあり、ここに視野方向変換プリ
ズムを配置し得るものである6例えば第71図(Al 
、 (Bl 、 (C)に示すように側視、斜視、後方
視として使用する場合、視野方向変換プリズムの前に第
1群を、その後方に第2群を配置した構成にすればよい
In each of the embodiments of the present invention described above, the optical path length between the first group and the second group is set sufficiently long, and a viewing direction converting prism can be placed here.
, (Bl, When used for side viewing, strabismus, or rear viewing as shown in (C), the first group may be arranged in front of the visual field direction conversion prism, and the second group may be arranged behind it.

このような、斜視あるいは後方視等の対物レンズを用い
れば、硬性鏡のような硬い棒状の6ので先端部分を曲げ
得ない直視の内視鏡では、観察したいものが視野の中央
にあられれない場合や死角になる場合でも、前記の斜視
等の対物レンズを用いれば観察出来るので便利である。
If you use such an objective lens for strabismus or backward viewing, you will not be able to see what you want to observe in the center of your field of view with a direct viewing endoscope such as a rigid endoscope, which has a hard rod-like shape and cannot bend its tip. Even if the object is in a blind spot or in a blind spot, it is convenient because it can be observed using an objective lens such as the above-mentioned oblique lens.

更に実施例2.1乃至実施例31は、いずれち本発明の
内視鏡対物レンズを、上記対物レンズによって得られた
像をリレーレンズを用いて後方へ伝送し、伝送された像
を接眼レンズを用いて拡大観察する硬性内視鏡に用いた
例である。これら実施例の内視鏡対物レンズは、いずれ
も負の屈折作用を有する1枚のレンズからなる第1群と
正の屈折作用を有する第2群とから構成されている。こ
の負の屈折作用を有する1枚のレンズは、実施例21乃
至実施例28においては、物体側に向いた面が非球面形
状を有している。又実施例2つ、実施例30は、上記負
の屈折作用を有する1枚のレンズの像側に向いた面が非
球面形状を有し、実施例31は、物体側に向いた面と像
側に向いた面の両方が非球面形状を有している。
Furthermore, in Examples 2.1 to 31, the endoscope objective lens of the present invention is used to transmit an image obtained by the objective lens to the rear using a relay lens, and transmit the transmitted image to the eyepiece lens. This is an example of a rigid endoscope used for magnified observation. The endoscope objective lenses of these embodiments each include a first group consisting of one lens having a negative refractive effect and a second group having a positive refractive effect. In Examples 21 to 28, this single lens having a negative refractive effect has an aspherical surface facing toward the object side. In addition, in the second example, Example 30, the surface facing the image side of the single lens having the negative refraction effect has an aspherical shape, and in Example 31, the surface facing the object side and the image side have an aspherical shape. Both side facing surfaces have an aspherical shape.

又上記実施例21〜31は、いずれも第1群と第2群の
間隔dが条件(8)を満足しており、第4図や第71図
のような視野方向を変換するためのプリズムを配置する
ことが可能である。又これら実施例で用いられるリレー
レンズによって像が伝送される回数は何回でもよく、リ
レー回tc9.を選択することによって必要な長さの硬
性内視鏡を得ることが出来る。
Moreover, in all of the above-mentioned Examples 21 to 31, the distance d between the first group and the second group satisfies the condition (8), and the prism for converting the viewing direction as shown in FIGS. 4 and 71 is used. It is possible to place Further, the number of times the image is transmitted by the relay lens used in these embodiments may be any number of times, and the number of times the image is transmitted is tc9. By selecting , you can obtain a rigid endoscope of the required length.

また本発明の対物レンズは、硬性内視鏡のみならず、第
71図fA)に示すように対物レンズ像面にイメージガ
イドを設けたファイバースコープや第71図(Bl に
示すように固体撮像素子を設けたビデオスコープとして
使用することが出来る。
Furthermore, the objective lens of the present invention can be used not only for rigid endoscopes but also for fiberscopes with an image guide provided on the objective lens image plane as shown in Fig. 71 fA) and solid-state image sensors as shown in Fig. 71 (Bl). It can be used as a video scope.

[発明の効果〕 本発明の内視鏡対物レンズによれば、視野角が大きいに
も拘らず、歪曲収差が十分良好に補正されておりかつ画
面周辺での光量の損失の少ない良好な像を得ることが出
来る。
[Effects of the Invention] According to the endoscope objective lens of the present invention, although the viewing angle is large, distortion aberration is sufficiently well corrected and a good image with little loss of light amount at the periphery of the screen can be obtained. You can get it.

4、図面の簡単な説明 第1図は本発明の対物レンズの基本構成を示す図、第2
図は本発明の対物レンズで用いる非球面と主光線との関
係を示す図、第3図は上記非球面形状に応じた像の見え
を示す図、第4図は本発明の対物レンズを硬性鏡に用い
た場合の一例を示す断面図、第5図、第6図は本発明の
対物レンズにおける最大像高の主光線の非球面による屈
折状況を示す図、第7図は係数が全て負の非球面形状の
概略図、第8図乃至第38図は夫々本発明の実施例1乃
至実施例3iの断面図、第39図乃至第69図は夫々実
施例1乃至実施例31の収差曲線図、第70図乃至第7
8図はいずれも従来の内視鏡対物レンズの断面図、第7
4図は第75図に示す従来例の収差曲線図、第75図は
従来の内視鏡対物レンズの主光線の傾き角と収差量との
関係を示す図、第76図は従来の内視鏡対物レンズにお
ける主光線の屈折状況を示す図、第77図はカメラレン
ズの主光線の屈折状況を示す図、第78図第79図は内
視鏡対物レンズの歪曲収差による像のみえを示す図であ
る。
4. Brief explanation of the drawings Figure 1 shows the basic configuration of the objective lens of the present invention, Figure 2 shows the basic structure of the objective lens of the present invention.
The figure shows the relationship between the aspherical surface used in the objective lens of the present invention and the principal ray, Figure 3 shows the appearance of an image depending on the shape of the aspherical surface, and Figure 4 shows the objective lens of the present invention when the objective lens of the present invention is hardened. FIGS. 5 and 6 are cross-sectional views showing an example of use in a mirror; FIGS. 5 and 6 are views showing the state of refraction of the principal ray at the maximum image height by an aspheric surface in the objective lens of the present invention; and FIG. 8 to 38 are cross-sectional views of Examples 1 to 3i of the present invention, respectively, and FIGS. 39 to 69 are aberration curves of Examples 1 to 31, respectively. Figures 70 to 7
Figure 8 is a cross-sectional view of a conventional endoscope objective lens.
Figure 4 is an aberration curve diagram of the conventional example shown in Figure 75, Figure 75 is a diagram showing the relationship between the inclination angle of the principal ray of the conventional endoscope objective lens and the amount of aberration, and Figure 76 is the diagram of the conventional endoscope objective lens. Figure 77 shows the refraction of the principal ray in the mirror objective lens, Figure 78 shows the refraction of the principal ray in the camera lens, and Figures 78 and 79 show how the image is viewed due to distortion of the endoscope objective lens. It is a diagram.

出願人 オリンパス光学工業株式会社 代理人   向    寛  二 第1 図 第2 図 (A) (B) 第3 図 第4 図 第70図 第71図 第75図 θスI工θ′ 第76図Applicant: Olympus Optical Industry Co., Ltd. Agent Hiroshi Mukai 1st figure Second figure (A) (B) Third figure Fourth figure Figure 70 Figure 71 Figure 75 θs I θ' Figure 76

Claims (5)

【特許請求の範囲】[Claims] (1)物体側より順に負の屈折力を有する第1群と、正
の屈折力を有する第2群とよりなり、前記第1群が下記
条件(1)を満足する像側に向いた一つの凹面を有し、
かつ一つの面が最大像高の光束によって定まる有効面積
のうちの50%以上について下記の条件(2)を満足す
る非球面であることを特徴とする内視鏡対物レンズ。 (1)|R_1|≦3f
(1) Consisting of a first group having a negative refractive power and a second group having a positive refractive power in order from the object side, the first group is a unit facing the image side that satisfies the following condition (1). has two concave surfaces,
An endoscope objective lens, wherein one surface is an aspheric surface that satisfies the following condition (2) for 50% or more of the effective area determined by the light beam at the maximum image height. (1) |R_1|≦3f
(2)|(K_1−K_0_._5)/K_0_._5
|<|cosω_1−cosω_0_._5|ただしR
_1は前記凹面の曲率半径、fは全系の焦点距離、ω_
1、ω_0_._5は夫々像高 I および最大像高の1
/2の像高における視野角、K_1,K_0_._5は
夫々K=sinθ_2/tanθ_1(θ_1は最も物
体側にある上記非球面に物体側より入射する主光線の光
軸とのなす角、θ_2は上記主光線が最も像側にある非
球面により屈折した直後の光線が光軸とのなす角)とし
た時の像高が I および最大像高の1/2の像高におけ
るKの値である。 (2)下記条件(3)、(4)、(5)を満足する請求
項(1)の内視鏡対物レンズ。
(2) | (K_1-K_0_._5)/K_0_. _5
|<|cosω_1−cosω_0_. _5|However, R
_1 is the radius of curvature of the concave surface, f is the focal length of the entire system, ω_
1, ω_0_. _5 are image height I and maximum image height 1, respectively
Viewing angle at image height of /2, K_1, K_0_. _5 is K=sin θ_2/tan θ_1 (θ_1 is the angle between the optical axis of the principal ray incident from the object side on the aspherical surface closest to the object side, and θ_2 is the angle that the principal ray is refracted by the aspherical surface closest to the image side. The image height is I, and the value of K is at an image height of 1/2 of the maximum image height. (2) The endoscope objective lens according to claim (1), which satisfies the following conditions (3), (4), and (5).
(3)h_1/Imax≦2(3) h_1/Imax≦2 (4)f≦f_2≦10f(4) f≦f_2≦10f (5)|Rmin|≦1.5f ただしh_1は上記第1群の最も物体側の面における最
大像高から決まる最大主光線高、Imaxは上記対物レ
ンズによる像の最大像高、Rminは上記第1群の像側
に向いた非球面を含む凹面のうちの最小の曲率半径、f
_2は上記第2群の焦点距離である。
(5) |Rmin|≦1.5f where h_1 is the maximum chief ray height determined from the maximum image height on the surface closest to the object of the first group, Imax is the maximum image height of the image by the objective lens, and Rmin is the The minimum radius of curvature of the concave surfaces including the aspherical surfaces facing the image side of the first group, f
_2 is the focal length of the second group.
JP1228496A 1988-09-07 1989-09-04 Endoscope objective lens Expired - Fee Related JPH07101254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1228496A JPH07101254B2 (en) 1988-09-07 1989-09-04 Endoscope objective lens

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP63-222215 1988-09-07
JP22221588 1988-09-07
JP1-88115 1989-04-10
JP8811589 1989-04-10
JP1228496A JPH07101254B2 (en) 1988-09-07 1989-09-04 Endoscope objective lens

Publications (2)

Publication Number Publication Date
JPH0339915A true JPH0339915A (en) 1991-02-20
JPH07101254B2 JPH07101254B2 (en) 1995-11-01

Family

ID=27305739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1228496A Expired - Fee Related JPH07101254B2 (en) 1988-09-07 1989-09-04 Endoscope objective lens

Country Status (1)

Country Link
JP (1) JPH07101254B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233473A (en) * 1990-10-09 1993-08-03 Olympus Optical Co., Ltd. Optical system for endoscopes
JPH05297272A (en) * 1992-04-15 1993-11-12 Olympus Optical Co Ltd Objective optical system for hard endoscope
JPH0667090A (en) * 1992-08-14 1994-03-11 Olympus Optical Co Ltd Objective optical system for endoscope
US5424877A (en) * 1992-04-10 1995-06-13 Olympus Optical Co., Ltd. Observation optical system for endoscopes
JPH08122634A (en) * 1994-10-25 1996-05-17 Asahi Optical Co Ltd Objective for endoscope
US5576882A (en) * 1992-04-08 1996-11-19 Olympus Optical Co., Ltd. Endoscope
JPH10509812A (en) * 1994-12-06 1998-09-22 ホーグランド、ジャン Integrated optical system for endoscopes
JPH10301023A (en) * 1997-04-30 1998-11-13 Asahi Optical Co Ltd Objective lens system for endoscope
JP2000241720A (en) * 1999-02-18 2000-09-08 Asahi Optical Co Ltd Micro-lens system for endoscope
JP2001520399A (en) * 1997-10-09 2001-10-30 イマジン メディカル テクノロジーズ,インコーポレイティド Sapphire objective lens system
JP2005173275A (en) * 2003-12-12 2005-06-30 Sigma Corp Super-wide angle lens
JP2006119368A (en) * 2004-10-21 2006-05-11 Konica Minolta Opto Inc Wide-angle optical system, imaging lens device, monitor camera and digital equipment
JP2019061167A (en) * 2017-09-27 2019-04-18 富士フイルム株式会社 Endoscope objective optical system and endoscope
WO2019239578A1 (en) * 2018-06-15 2019-12-19 オリンパス株式会社 Objective optical system, optical system for rigid mirror using same, and rigid mirror
JP2020140026A (en) * 2019-02-27 2020-09-03 株式会社タムロン Imaging optical system and image capturing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169818A (en) * 1984-02-15 1985-09-03 Olympus Optical Co Ltd Objective lens for endoscope

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169818A (en) * 1984-02-15 1985-09-03 Olympus Optical Co Ltd Objective lens for endoscope

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233473A (en) * 1990-10-09 1993-08-03 Olympus Optical Co., Ltd. Optical system for endoscopes
US5576882A (en) * 1992-04-08 1996-11-19 Olympus Optical Co., Ltd. Endoscope
US5424877A (en) * 1992-04-10 1995-06-13 Olympus Optical Co., Ltd. Observation optical system for endoscopes
JPH05297272A (en) * 1992-04-15 1993-11-12 Olympus Optical Co Ltd Objective optical system for hard endoscope
JPH0667090A (en) * 1992-08-14 1994-03-11 Olympus Optical Co Ltd Objective optical system for endoscope
JPH08122634A (en) * 1994-10-25 1996-05-17 Asahi Optical Co Ltd Objective for endoscope
JPH10509812A (en) * 1994-12-06 1998-09-22 ホーグランド、ジャン Integrated optical system for endoscopes
JPH10301023A (en) * 1997-04-30 1998-11-13 Asahi Optical Co Ltd Objective lens system for endoscope
JP2001520399A (en) * 1997-10-09 2001-10-30 イマジン メディカル テクノロジーズ,インコーポレイティド Sapphire objective lens system
JP2000241720A (en) * 1999-02-18 2000-09-08 Asahi Optical Co Ltd Micro-lens system for endoscope
JP2005173275A (en) * 2003-12-12 2005-06-30 Sigma Corp Super-wide angle lens
JP2006119368A (en) * 2004-10-21 2006-05-11 Konica Minolta Opto Inc Wide-angle optical system, imaging lens device, monitor camera and digital equipment
JP2019061167A (en) * 2017-09-27 2019-04-18 富士フイルム株式会社 Endoscope objective optical system and endoscope
US10871641B2 (en) 2017-09-27 2020-12-22 Fujifilm Corporation Objective optical system for endoscope and endoscope
WO2019239578A1 (en) * 2018-06-15 2019-12-19 オリンパス株式会社 Objective optical system, optical system for rigid mirror using same, and rigid mirror
JPWO2019239578A1 (en) * 2018-06-15 2021-07-01 オリンパス株式会社 Objective optical system and optical system for rigid mirrors using it, rigid mirror
US11520135B2 (en) 2018-06-15 2022-12-06 Olympus Corporation Objective optical system, and optical system for rigid endoscope and rigid endoscope using the same
JP2020140026A (en) * 2019-02-27 2020-09-03 株式会社タムロン Imaging optical system and image capturing device
CN111624747A (en) * 2019-02-27 2020-09-04 株式会社腾龙 Optical imaging system and imaging device
CN111624747B (en) * 2019-02-27 2024-01-12 株式会社腾龙 Optical imaging system and imaging device

Also Published As

Publication number Publication date
JPH07101254B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
EP0752606B1 (en) Head-mount display and optical system used for the same
JP5148403B2 (en) Endoscope objective optical system
JPH06324285A (en) Visual display device
JPH0339915A (en) Endoscope objective
JP2876252B2 (en) Endoscope objective lens
JPH04275514A (en) Objective lens for endoscope
JPH04158327A (en) Ocular lens
JP2000241705A (en) Video display optical system
JP2011013536A (en) Zoom lens
JPH05323186A (en) Endoscope
JPH05297274A (en) Kepler type zoom finder optical system
US5099361A (en) Projection lens and projection television system using the same
JPH10232354A (en) Real image type variable power finder
JP3472508B2 (en) Projection lens, image enlargement projection system using the same, video projector, rear projector, and multi-vision system
JP3403235B2 (en) Inner focus type wide field eyepiece
JP3401317B2 (en) Loupe
JP3506796B2 (en) Real image type zoom finder
JPH11326789A (en) Eyepiece lens
JPH06194583A (en) Eyepiece lens and additional optical system constituted by using the lens
JP2001356266A (en) Zoom lens
JP3325011B2 (en) Variable power optical system
JPH03100511A (en) Objective lens for endoscope
JPH07281256A (en) Finder device
JP4685399B2 (en) Objective lens with correction mechanism
JPH095646A (en) Ocular