JPH03100511A - Objective lens for endoscope - Google Patents

Objective lens for endoscope

Info

Publication number
JPH03100511A
JPH03100511A JP23553989A JP23553989A JPH03100511A JP H03100511 A JPH03100511 A JP H03100511A JP 23553989 A JP23553989 A JP 23553989A JP 23553989 A JP23553989 A JP 23553989A JP H03100511 A JPH03100511 A JP H03100511A
Authority
JP
Japan
Prior art keywords
lens
aspherical surface
aspherical
image
field lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23553989A
Other languages
Japanese (ja)
Inventor
Yoshiharu Takasugi
芳治 高杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP23553989A priority Critical patent/JPH03100511A/en
Publication of JPH03100511A publication Critical patent/JPH03100511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To obtain an endoscope objective lens being small-sized, short in overall length and having a wide angle, whose distortion is corrected satisfactorily by providing a specific aspherical surface in the vicinity of a field lens arranged so that a principal ray is made incident perpendicular to the image surface in the vicinity of the image forming surface of a lens group being in the rear of a diaphragm. CONSTITUTION:On the image side of an image forming lens provided with a brightness diaphragm, a field lens LF is provided, and also, on its outgoing side, a solid-state video element CCD is arranged. Also, in the vicinity of the field lens LF of the rear group, an aspherical surface for satisfying expressions I, II is provided. In expressions I, II, (f), fA, fB, and DELTAZmax denote a focal distance of the whole system, a focal distance of the aspherical lens provided in the vicinity of the field lens, a composite focal distance of the rear group, and the deviation quantity in the optical axis direction from the reference spherical surface in a point on the aspherical surface of a principal ray going to the maximum image height, respectively. In such a manner, the generation of distortion is suppressed, and also, other various aberrations are also corrected satisfactorily, and a lens system having a satisfactory performance, being short in overall length and small in size, and having a wide angle is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、内視鏡用対物レンズに関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to an objective lens for an endoscope.

[従来の技術] 内視鏡用対物レンズとして、第17図に示すような、明
るさ絞りSの物体側に負の屈折力の前群を又絞りSより
像側には正の屈折力の後群を配置したレトロフォーカス
タイプのレンズ系が多く知られている。また内視鏡では
、対物レンズの結像面にイメージファイバーを設けて像
を伝達するものが多(、この場合ファイバーへ入射する
光線は、ファイバー東の端面に対しほぼ垂直であること
が要求される。それは、イメージファイバーに入射する
光線の入射角が大きいと、光線がファイバー内を伝播せ
ず透過したり、伝播しても、ファイバー内部での全反射
回数が多くなるために光量損失をまねいてしまうためで
ある。
[Prior Art] As an objective lens for an endoscope, a front group with a negative refractive power is provided on the object side of the aperture diaphragm S, and a front group with a positive refractive power is provided on the image side of the aperture diaphragm S, as shown in FIG. Many retrofocus type lens systems with a rear group are known. In addition, many endoscopes transmit images by installing an image fiber on the imaging plane of the objective lens (in this case, the light rays entering the fiber are required to be approximately perpendicular to the east end face of the fiber). This is because if the angle of incidence of the light ray that enters the image fiber is large, the light ray may not propagate inside the fiber and may pass through the fiber, or even if it does propagate, there will be a large number of total reflections inside the fiber, leading to a loss of light quantity. This is because you will be left alone.

最近は、イメージファイバーの代わりにCCDなどの固
体撮像素子を用いたいわゆる電子内視鏡が多く出されて
いる。そして固体撮像素子として各絵素ごとに対応させ
て微小な色フィルターを配置したいわゆるモザイク式の
撮像素子を用いた場合、フィルターと固体撮像素子の受
光面との間隔が離れていると、素子に対して大きな角度
で入射する光線は、色フィルター通過後に本来入射すべ
き絵素に入射せず、それに隣接する絵素上に入射し、得
られる画像に色むら(以下色シェーデイングという)が
生ずると云う不具合を有する。
Recently, many so-called electronic endoscopes that use solid-state imaging devices such as CCDs instead of image fibers have been released. When a so-called mosaic type image sensor is used as a solid-state image sensor, in which minute color filters are arranged in correspondence with each pixel, if the distance between the filter and the light-receiving surface of the solid-state image sensor is large, the element may On the other hand, light rays that enter at a large angle do not enter the pixel where they are supposed to enter after passing through the color filter, but instead enter the pixel adjacent to it, causing color unevenness (hereinafter referred to as color shading) in the resulting image. There is a problem called.

これを防止する対策としては、固体撮像素子へ垂直に光
線を入射させればよい。しかし従来のファイバースコー
プに用いられているテレセントリック系は、光線のファ
イバーへの入射角が必ずしも一定ではなく、各像高ごと
に数度程度のばらつきがある。そのため、今後固体撮像
素子の絵素がますます縮小化、高密度化されてい(こと
を考慮すると、前記の色シエーデイング防止策では不十
分であり、各像高ごとの結像面への入射角のばらつきが
なくなるように補正しなければならない。
As a measure to prevent this, it is sufficient to make the light beam perpendicularly enter the solid-state image sensor. However, in the telecentric system used in conventional fiberscopes, the angle of incidence of the light beam onto the fiber is not necessarily constant, and varies by several degrees for each image height. Therefore, in the future, the picture elements of solid-state image sensors will become smaller and more dense. must be corrected to eliminate variations in

又、内視鏡対物レンズは、その特有な構成のため、画像
周辺部に行くにしたがって像がつぶれてくるいわゆる樽
型の歪曲収差が発生する。特に画角が100°を越える
広角のものは歪曲収差の発生が顕著になる。
Furthermore, due to the unique structure of the endoscope objective lens, so-called barrel distortion occurs, in which the image collapses toward the periphery of the image. In particular, wide-angle lenses with an angle of view of more than 100° cause significant distortion.

[発明が解決しようとする課題] 本発明は、色シェーデイングの発生しやすいモザイク式
の固体撮像素子と組合わせた場合でもその発生を防止し
得て、しかし諸収差特に歪曲収差を良好に補正した小型
で全長の短い広角の内視鏡対物レンズを提供することを
目的とするものである。
[Problems to be Solved by the Invention] The present invention can prevent the occurrence of color shading even when it is combined with a mosaic solid-state image sensor that tends to occur, and can also satisfactorily correct various aberrations, especially distortion. The object of the present invention is to provide a compact, wide-angle endoscope objective lens with a short overall length.

[課題を解決するための手段] 本発明の内視鏡用対物レンズは、前記の目的を達成する
ために、明るさ絞りを挟んで負の屈折力の全群と正の屈
折力の後群とより構成され、絞りより後方のレンズ群で
ある前記後群の結像面近傍に像面に対して垂直に主光線
が入射するように配置されたフィールドレンズを有し、
前記後群のフィールドレンズの近傍に非球面を設けかつ
次の条件(1)、(2] を満足することを特徴とする
ものである。
[Means for Solving the Problems] In order to achieve the above object, the objective lens for an endoscope of the present invention has a negative refractive power group and a positive refractive power rear group with an aperture diaphragm in between. and a field lens arranged so that the chief ray is incident perpendicularly to the image plane near the image formation plane of the rear group, which is a lens group behind the aperture,
The present invention is characterized in that an aspherical surface is provided near the field lens of the rear group, and the following conditions (1) and (2) are satisfied.

(1)  0.5<fA/fa <10f2+   0
.005f<IAZ、、、l  <O,15fただしf
は全系の焦点距離、fAはフィールドレンズの近傍に設
けられた非球面レンズの焦点距離、f8は後群の合成焦
点距離、ΔZ1.8は最大像高へ向かう主光線の非球面
上の点における基準球面からの光軸方向のずれ量である
(1) 0.5<fA/fa<10f2+ 0
.. 005f<IAZ,,,l <O, 15f but f
is the focal length of the entire system, fA is the focal length of the aspherical lens installed near the field lens, f8 is the combined focal length of the rear group, and ΔZ1.8 is the point on the aspherical surface of the chief ray heading toward the maximum image height. is the amount of deviation in the optical axis direction from the reference spherical surface.

本発明の内視鏡用対物レンズは、例えば第17図に示す
ような、明るさ絞りSを備えた結像レンズの像側にフィ
ールドレンズLFを設は更にその射出側に固体撮像素子
を配置した光学系をもとにしている。このように、フィ
ールドレンズL、を設けることによって像面に対し垂直
に主光線が入射するようにすれば、モザイク式の固体撮
像素子と組合わせても色シェーデーングの発生を抑える
ことが出来る。尚図面中Mはカラーモザイクフィルター
であって、CCDの的に配置されている。
The objective lens for an endoscope of the present invention has a field lens LF on the image side of an imaging lens equipped with an aperture diaphragm S, as shown in FIG. It is based on the optical system. In this way, by providing the field lens L so that the chief ray is incident perpendicularly to the image plane, it is possible to suppress the occurrence of color shading even when combined with a mosaic type solid-state image sensor. Note that M in the drawing is a color mosaic filter, which is placed at the CCD target.

しかし、通常像面への光線の入射角度が各像高ごとに変
化するために、フィールドレンズの近傍に非球面を設け
ることによってこの像面への光線の入射角度の変化が生
じないようにすることが出来る。ここで設ける非球面の
形状としては、光軸から周辺にい(につれて上記非球面
を有するレンズの屈折作用が徐々に弱(なるような部分
を含むようにすればよい。ここで云う屈折作用が弱くな
るとは、正レンズの場合、その収斂作用すなわち正のパ
ワーが弱くなることを示し、又負レンズの場合、その発
散作用すなわちレンズの負のパワーが弱くなることを示
すものとする。
However, since the angle of incidence of light rays on the image plane usually changes for each image height, it is necessary to provide an aspherical surface near the field lens to prevent the angle of incidence of light rays on the image plane from changing. I can do it. The shape of the aspherical surface provided here may include a portion where the refractive effect of the lens having the aspherical surface becomes gradually weaker as it moves from the optical axis to the periphery. In the case of a positive lens, "weakening" means that its converging action, ie, its positive power, becomes weaker, and in the case of a negative lens, it means that its diverging action, ie, its negative power, becomes weaker.

次に前記の構成にすることによって、像面への光線入射
角度の変化を抑えることが可能であることについて説明
する。
Next, it will be explained that by adopting the above configuration, it is possible to suppress a change in the angle of incidence of the light beam onto the image plane.

例えば、各像高ごとに結像面へ主光線が垂直に入射して
いるとすると、光学系中の後群に着目する時、像側より
逆に光線を追跡すれば、各像高より出た光軸に平行な光
線は、すべて明るさ絞りの中心を通る。つまり、内視鏡
用対物レンズのように射出瞳無限大のテレセントリック
な系である後群においては、光線を逆追跡した時に光軸
に平行な光線(物点が無限遠の軸上マージナル光線とみ
なせる)は、すべて絞りの中心を通るため、瞳の球面収
差が0であると考えられる。
For example, assuming that the principal ray is perpendicularly incident on the image plane at each image height, when focusing on the rear group in the optical system, if the ray is traced backwards from the image side, it will emerge from each image height. All rays parallel to the optical axis pass through the center of the aperture stop. In other words, in a rear group that is a telecentric system with an infinite exit pupil, such as an endoscope objective lens, when the ray is traced back, the ray is parallel to the optical axis (the axial marginal ray with the object point at infinity). ), the spherical aberration of the pupil is considered to be 0, since all of them pass through the center of the aperture.

したがって、上記の非球面を設ける場所としては、光線
を逆追跡したときに、球面収差の発生の大きいところ、
即ち光線高が最も高くなるフィールドレンズの近傍に設
けるのがよい。
Therefore, the locations for providing the above aspherical surface are locations where spherical aberration is large when the light ray is traced back;
That is, it is preferable to provide it near the field lens where the height of the light beam is the highest.

また、一般に内視鏡用対物レンズは、絞りを挟んで全体
で負の屈折力を持つ前群と、全体での正の屈折力を持つ
後群とからなるレトロフォーカスタイプの構成になって
おり、さらに通常正レンズは周辺にいくほど屈折作用が
大きくなり、光線が大きく曲がられるために負の球面収
差が発生する。そのため非球面の形状としては、光軸か
ら周辺部にいくにつれてそのレンズの屈折作用が徐々に
弱くなるようにすれば周辺部での収差の発生を抑えるこ
とが出来る。
In addition, objective lenses for endoscopes generally have a retrofocus type structure consisting of a front group with an overall negative refractive power across the aperture, and a rear group with an overall positive refractive power. Furthermore, normally, a positive lens has a larger refractive effect as it moves toward the periphery, and the light rays are bent more significantly, resulting in negative spherical aberration. Therefore, if the shape of the aspherical surface is such that the refractive effect of the lens gradually weakens from the optical axis toward the periphery, it is possible to suppress the occurrence of aberrations in the periphery.

しかし、光線を逆追跡したときに、光軸に平行な光線に
対して球面収差が0であるということは、絞りより像側
の正の屈折力のレンズ群全体に対するものであって1例
えばフィールドレンズに非球面を設けても、このレンズ
だけで瞳の球面収差な0にするわけではない。
However, when tracing back the light ray, the fact that the spherical aberration is 0 for the ray parallel to the optical axis means that it is for the entire lens group with positive refractive power on the image side of the aperture. Even if a lens is provided with an aspherical surface, this lens alone does not eliminate the spherical aberration of the pupil.

本発明では、前記の目的を達成するために条件(1)、
(21を満足することも特徴とするもので、以下これら
条件について説明する。
In the present invention, in order to achieve the above object, condition (1),
(It is also characterized by satisfying 21, and these conditions will be explained below.

第1図に示すように絞りより後方のレンズ群をり、、非
球面を設けたレンズをLAとした時、条件(1)におい
てレンズ群り、の合成焦点距離がf@、非球面レンズL
Aの焦点距離がf、である、ただし絞りより後方のレン
ズ群中に非球面を2面以上、複数のレンズに設けられて
いる場合は、非球面が設けられているレンズ面のうちの
主光線高が最も大になるレンズをLAと考えるものとす
る。
As shown in Figure 1, when the lens group behind the diaphragm is LA, and the lens provided with an aspherical surface is LA, the combined focal length of the lens group is f@, and the aspherical lens L under condition (1).
The focal length of A is f, but if two or more aspherical surfaces are provided in the lens group behind the diaphragm and multiple lenses are provided, the main one of the lens surfaces provided with the aspherical surface is The lens with the highest ray height is considered to be LA.

上記の条件(1)においてf、/faの値が上限の10
よりも大になると非球面レンズL1の焦点距離f、が大
になり、対物レンズの全長が長くなり又レンズの外径も
大になり、内視鏡用としては不都合である。又下限値の
0.5よりも小になると対物レンズの全長が短くなりコ
ンパクト化には有利であるが赤外カットフィルターなど
の光学フィルターを配置するスペースが確保出来ない。
In the above condition (1), the value of f, /fa is the upper limit of 10
If it is larger than , the focal length f of the aspherical lens L1 becomes large, the total length of the objective lens becomes long, and the outer diameter of the lens also becomes large, which is inconvenient for use in endoscopes. If it is smaller than the lower limit of 0.5, the overall length of the objective lens will become shorter, which is advantageous for compactness, but it will not be possible to secure a space for arranging an optical filter such as an infrared cut filter.

なお非球面を設ける場所として、前記のように光線高が
一番高くてなるフィールドレンズ近傍が望ましいが、絞
りより後方のレンズ群全体で瞳の球面収差を0にするこ
とを考えると、必ずしもフィールドレンズに非球面を設
けなければならないことはない、非球面を設ける場所と
しては、最大像高へ向かう光線がその光線の最大光線高
の0.5倍以上の光線高になる個所てあることが望まし
い。
It is preferable to place the aspherical surface near the field lens where the ray height is highest as mentioned above, but considering that the spherical aberration of the pupil should be zero for the entire lens group behind the aperture, it is not necessary to place the aspherical surface near the field lens where the ray height is highest. It is not necessary to provide an aspherical surface on the lens.The location where an aspherical surface is provided is that the ray heading toward the maximum image height has a ray height of 0.5 times or more than the maximum ray height of that ray. desirable.

次に条件(2)は、上記の非球面の形状を定めるもので
ある。
Next, condition (2) defines the shape of the aspherical surface.

一般に非球面の形状は次の式にて表わすことが出来る。Generally, the shape of an aspherical surface can be expressed by the following equation.

z = Cy”/ (1+ Fロチ?l + By” 
+ Ey’+py’ +cy”+・・・ ここでz、yは光軸を2軸にとって像の方向を正方向に
とり、y軸を面と光軸との交点を原点としてZ軸に直交
した方向にとった座標の値、Cは光軸近傍でこの非球面
と接する円の曲率半径の逆数、Pは非球面の形状をあら
れすパラメーターB、E、F、G、・・・は夫々2次、
4次、6次、8次・・・の非球面係数である。
z = Cy”/ (1+ Frochi?l + By”
+ Ey'+py'+cy"+... Here, z and y are the directions perpendicular to the Z-axis with the optical axis as the two axes, the direction of the image in the positive direction, and the y-axis as the origin at the intersection of the surface and the optical axis. , C is the reciprocal of the radius of curvature of the circle that touches this aspherical surface near the optical axis, P is the shape of the aspherical surface, and parameters B, E, F, G, etc. are each quadratic. ,
These are 4th, 6th, 8th, etc. aspherical coefficients.

P=1でB、E、F、G、・・・がすべて0の場合は上
記式は球面を表わす。
When P=1 and B, E, F, G, . . . are all 0, the above equation represents a spherical surface.

非球面と基準球面(光軸近傍で非球面と接する球面)と
の光軸方向のずれ量は、第18 (A1.tB1図に示
すもので、実線が非球面、破線が基準球面である。ここ
で2軸(光軸)を基準にして高さIのところでの球面か
らのずれ量ΔZは球面から2軸の正の方向へずれた場合
は正、逆に負の方向へずれた場合は、ΔZは負の値をと
るものとする。
The amount of deviation in the optical axis direction between the aspherical surface and the reference spherical surface (the spherical surface that contacts the aspherical surface near the optical axis) is shown in Figure 18 (A1.tB1), where the solid line is the aspherical surface and the broken line is the reference spherical surface. Here, the amount of deviation ΔZ from the spherical surface at height I with respect to the two axes (optical axis) is positive if the deviation from the spherical surface is in the positive direction of the two axes, and conversely, if it is deviation in the negative direction , ΔZ assume negative values.

つまり第18 (B1図のように正レンズの前側の面を
図示するような非球面にした場合はずれ量は負となり周
辺部のレンズのパワーは弱くなる方向である。又正レン
ズの像側に第181B1図に示すような非球面を設けた
場合は、そのずれ量は負であるがレンズのパワーとして
は強くなる方向である。負レンズの場合も同様であって
、非球面を物体側に設けるか像側に設けるか、又基準球
面も物体側に向は凹面であるか凸面であるかによって、
非球面の基準球面からのずれ方向が同じであってもレン
ズのパワーの変化は必ずしも同じではない、したがって
前記の条件(2)においてΔZを符号も含めて考えた場
合、そのずれ量は絶対値で表わすことになる。
In other words, if the front surface of the positive lens is made into an aspherical surface as shown in Figure 18 (B1), the deviation amount will be negative and the power of the lens in the peripheral area will be weakened.Also, on the image side of the positive lens When an aspherical surface is provided as shown in Fig. 181B1, the amount of deviation is negative, but the power of the lens becomes stronger.The same goes for the case of a negative lens, with the aspherical surface being moved toward the object side. Depending on whether it is provided or provided on the image side, and whether the reference spherical surface is concave or convex facing the object side,
Even if the direction of deviation of the aspherical surface from the reference spherical surface is the same, the change in lens power is not necessarily the same. Therefore, when considering ΔZ including the sign in the above condition (2), the amount of deviation is the absolute value It will be expressed as

前記の条件(2)において、ΔZ waxが下限値より
も小さ(なると基準球面からのずれ量が小さく非球面を
設けたことの効果はほとんど得られず所望の収差補正を
行なうことが出来ない、逆に上限値よりも大きくなると
、前記理由からレンズ周辺部のパワーが弱くなりすぎて
結像面への光線入射角の変化を抑えることが出来なくな
る。即ち、上記条件(2)はフィールドレンズ近傍に設
けた非球面を基準球面からどの程度変化させたものにす
ればよいかを示すものである。
In the above condition (2), ΔZ wax is smaller than the lower limit value (when the deviation from the reference spherical surface is small, the effect of providing the aspherical surface is hardly obtained, and the desired aberration correction cannot be performed. On the other hand, if the upper limit is exceeded, the power at the lens periphery becomes too weak for the reason mentioned above, making it impossible to suppress changes in the angle of incidence of the rays on the imaging plane.In other words, the above condition (2) is satisfied near the field lens. This shows how much the aspherical surface provided in the spherical surface should be changed from the reference spherical surface.

フィールドレンズ近傍に設けた非球面は、結像面への光
線入射角の像高ごとの変化を補正するために設けたもの
で、各像高に対する入射角の変化の具合が異なり1例え
ば光学系を光軸を含む子午断面で切って考えた場合、周
辺から光軸へ向かって入射する主光線や光軸から周辺へ
向かって入射する主光線がある。したがって非球面形状
も主光線の入射具合に対応しである領域では基準面より
も光線の屈折力を強くし又ある領域では弱くする必要が
ある。しかし既に述べたように、基本的には、球面収差
の発生は、光線高が高い程大きく。
The aspherical surface provided near the field lens is provided to correct changes in the angle of incidence of light rays on the imaging surface for each image height, and the degree of change in the angle of incidence for each image height is different. When considered by cutting along a meridional section that includes the optical axis, there are chief rays that enter from the periphery toward the optical axis and principal rays that enter from the optical axis toward the periphery. Therefore, the shape of the aspherical surface must correspond to the degree of incidence of the principal ray, so that the refractive power for light rays must be made stronger in certain regions than that of the reference surface and weaker in other regions. However, as already mentioned, basically, the higher the ray height, the greater the occurrence of spherical aberration.

これを補正するためには光線高が高いところで屈折力を
弱くすればよい6つまり非球面による効果が得られるの
は最大光線高に近いところであり、ここでの形状を規定
することが重要である。
In order to correct this, the refractive power can be weakened where the ray height is high.6 In other words, the effect of the aspheric surface is obtained near the maximum ray height, and it is important to specify the shape here. .

また絞りより像側の後群を1枚のレンズ系とみなした時
、このレンズ系の球面収差がOであれば第20図に示す
ように光線を逆追跡した時に像面より光軸に平行に出た
光線は、レンズを通過した後に各像高のすべての光線が
絞りの中心で交わることになる。このときの非球面の形
状は、一般に双曲面に近いものである。
Also, when the rear group on the image side of the aperture is regarded as a single lens system, if the spherical aberration of this lens system is O, then when the ray is traced back, it will be parallel to the optical axis rather than the image plane, as shown in Figure 20. After passing through the lens, all the rays at each image height intersect at the center of the aperture. The shape of the aspheric surface at this time is generally close to a hyperboloid.

次に内視鏡用対物レンズにおける歪曲収差の除去につい
て述べる。
Next, the removal of distortion aberration in an objective lens for an endoscope will be described.

一般に光学系における歪曲収差を補正するためには、主
光線の光線高が高い面に非球面を設けるのが良い、しか
し主光線高の高い後群のフィールドレンズ近傍は、前述
の結像面への主光線の入射角度を一定にするための非球
面が設けられており、その非球面形状も決まってしまう
Generally, in order to correct distortion aberration in an optical system, it is good to provide an aspheric surface on the surface where the principal ray height is high. However, the area near the field lens of the rear group where the principal ray height is high is An aspherical surface is provided to make the incident angle of the principal ray constant, and the shape of the aspherical surface is also fixed.

そこで、絞りより前側で主光線高の高い面に非球面を設
けて歪曲収差を補正すればよい。そしてここに設ける非
球面形状としては、光軸から周辺部に行くにつれてその
レンズの屈折力が徐々に弱くなる部分を含むようにすれ
ばよい。
Therefore, distortion can be corrected by providing an aspherical surface on a surface with a high principal ray height in front of the aperture. The aspherical shape provided here may include a portion where the refractive power of the lens gradually weakens as it goes from the optical axis to the peripheral portion.

この絞りより前側で光線高が高くなるのは、通常の内視
鏡用対物レンズでは、第ルンズの物体側の面(第1面)
である。
In a normal endoscope objective lens, the height of the rays increases in front of this aperture because the object-side surface (first surface) of the first lens
It is.

この第1面は1周辺に行(はど光線が大きく外側に曲げ
られるために、大きな負の歪曲収差を発生する。そこで
例えばこの面を非球面にし、光線の屈曲の程度を緩和し
て歪曲収差を補正することが出来る。
This first surface causes a large negative distortion because the rays are bent outward to a large extent. Therefore, for example, by making this surface an aspherical surface, the degree of curvature of the rays is reduced and the distortion is Aberrations can be corrected.

内視鏡用対物レンズのように、射出瞳がほぼ無限大であ
るテレセントリック系の場合、明るさ絞りより後側のレ
ンズ系の焦点距離をf2、その時後群へ入射する主光線
の光軸方向となす角をθ′とすると、像高IはI ” 
fzstnθ°を満足する。又絞りよりも前側の群を含
めた全系に対しても同様に次の式を満足する。
In the case of a telecentric system with an almost infinite exit pupil, such as an objective lens for an endoscope, the focal length of the lens system behind the aperture stop is f2, and the optical axis direction of the principal ray entering the rear group is If the angle between is θ', then the image height I is I''
fzstnθ° is satisfied. Furthermore, the following equation is similarly satisfied for the entire system including the groups in front of the aperture.

I = f sinθ        (1)ここでI
は像高、θは対物レンズ第1面へ入射する主光線と光軸
とのなす角、fは全系の焦点距離である。
I = f sinθ (1) where I
is the image height, θ is the angle between the principal ray incident on the first surface of the objective lens and the optical axis, and f is the focal length of the entire system.

又歪曲収差のない光学系に対しては次の式(11)が成
立つ。
Further, the following equation (11) holds true for an optical system without distortion.

I = f tanθ        (iil更に歪
曲収差DTは、次の式(ii)で示される。
I = f tan θ (ii) Furthermore, the distortion aberration DT is expressed by the following equation (ii).

DT(%) = ([−r。)/用X 100   (
ilここでIは実際の像高、Ioは歪曲収差のない場合
の理想像の像高である。
DT (%) = ([-r.)/for X 100 (
il Here, I is the actual image height, and Io is the ideal image height without distortion.

したがって、内視鏡用対物レンズでは、式(i)。Therefore, in the objective lens for an endoscope, formula (i).

(iil 、 (iilから歪曲収差DTは次式で表わ
すことが出来る。
(iil, (iil), the distortion aberration DT can be expressed by the following equation.

DT(%) =  fcosθ−1)X100つまり内
視鏡対物レンズは、広角になればなるほど負の歪曲収差
いわゆる樽型の歪曲収差の発生が著しくなる。
DT (%) = fcos θ-1)X100 In other words, the wider the angle of an endoscope objective lens, the more significant negative distortion, so-called barrel distortion, occurs.

ところで像高がf tanθで表わされる光学系の場合
、θの増加に伴いCO8’θの割合で周辺光量が減少す
る。しかし内視鏡用対物レンズのようにf sinθで
表わされる光学系の場合、cos’θの割合で周辺光量
が減少するものの、歪曲収差によって周辺像が小さくな
るため、両方の効果によって全体として像面の明るさが
均一になるという特徴を有している。したがって、明る
さを均一に保ちながら歪曲収差を除去しようとすると1
例えば絞りより物体側の前群ではf tanθ型、絞り
より像側の後群ではf sinθ型のままであるような
構成とし。
By the way, in the case of an optical system in which the image height is expressed by f tan θ, the amount of peripheral light decreases at a rate of CO8'θ as θ increases. However, in the case of an optical system expressed by f sin θ, such as an objective lens for an endoscope, although the amount of peripheral light decreases at a rate of cos' θ, the peripheral image becomes smaller due to distortion, so the overall image becomes smaller due to both effects. It has the characteristic that the brightness of the surface is uniform. Therefore, if you try to remove distortion while keeping brightness uniform, 1
For example, the front group on the object side of the aperture is of the f tan θ type, and the rear group on the image side of the aperture is of the f sin θ type.

全系では歪曲収差のないf tanθ型を満足する必要
がありこのように構成するためには、非球面を用いた構
成にするのがよい。
The entire system must satisfy the f tan θ type without distortion, and in order to achieve this configuration, it is preferable to use an aspherical surface.

上記のように非球面によって歪曲収差を補正する場合、
非球面より物体側で主光線と光軸のなす角を01.非球
面で屈折された後の主光線と光のなす角をθ3.像高を
Iとすると、絞りの前側でf tano型、後側でfs
inθ型、全系でf tinθ型であるので、次の式(
細)が成立つ。
When correcting distortion using an aspheric surface as described above,
The angle between the principal ray and the optical axis on the object side of the aspheric surface is 01. The angle between the principal ray and the light after being refracted by the aspherical surface is θ3. If the image height is I, then f tano type at the front side of the aperture and fs type at the rear side.
inθ type, and the entire system is f tinθ type, so the following formula (
) holds true.

1 = f tanθ1    (檜)又非球面の後側
に関しては、fsinθ型であるので、■と08との関
係は次の式fVl で表わされる。
1 = f tanθ1 (cypress) Also, since the rear side of the aspherical surface is of the fsinθ type, the relationship between ■ and 08 is expressed by the following formula fVl.

Iocsinθ2(v) ここでは、この非球面を境にして前後が夫々f’ ta
no型、fsinθ型になっていると考えたが、これを
非球面を設けたレンズを境にして考えても同様のことが
成立つ、この場合、非球面レンズより後側でf sin
θを満足するので、非球面レンズより後方のレンズ群の
焦点距離なfo、このレンズ群へ入射する主光線と光軸
とのなす角をθ°としたとき、前記の式(V)は、次の
式(Vo)のように表わされる。
Iocsinθ2(v) Here, the front and back sides of this aspherical surface are respectively f' ta
I thought that it was a no type and an f sin θ type, but the same thing holds true even if you consider this with a lens with an aspherical surface as a boundary. In this case, f sin θ at the rear side of the aspherical lens
Since θ is satisfied, when fo is the focal length of the lens group behind the aspherical lens, and θ° is the angle between the principal ray incident on this lens group and the optical axis, the above formula (V) is It is expressed as the following equation (Vo).

I=f’sinθ’        (V’)ここで各
像高ごとの歪曲収差を除去するためには、像高によらず
前記の式by) 、 (V)が成立たねばならないので
、これら式を同時に満足する必要がある。したがって次
の式(−)が成立つ。
I=f'sinθ'(V')Here, in order to remove the distortion aberration for each image height, the above equations by) and (V) must hold regardless of the image height, so these equations can be At the same time, you need to be satisfied. Therefore, the following equation (-) holds true.

sinew/lanθ+=k     (@lここでk
はある定数を表わしている。
sinew/lanθ+=k (@l where k
represents a constant.

このkの値は全像高において必ずしも一定でなくとも、
実用上問題のない節回であれば各像高つまり各画角ごと
に多少値が変わってもよい、それは歪曲収差を完全に0
にしなくとも実際上は全く問題にならないからである。
Although the value of k is not necessarily constant over the entire image height,
The value may vary slightly for each image height, that is, each angle of view, as long as it does not cause any practical problems.It is possible to completely eliminate distortion.
This is because even if it is not done, there is no problem at all in practice.

次に具体的に非球面の形状について述べる。第19(A
)図はkが大きい場合、第19(B)図はkが小さい場
合で、非球面にて屈折後の主光線と光軸とのなす角θよ
は、どちらも同一にしたものである。
Next, the shape of the aspherical surface will be specifically described. No. 19 (A
) Figure 19(B) shows the case when k is large, and Figure 19(B) shows the case when k is small, and the angle θ between the chief ray after refraction at the aspherical surface and the optical axis is the same in both cases.

中心から周辺に行くにつれて、kが大きくなる場合には
、正の歪曲収差が発生し、逆にkが小さくなる場合には
逆に負の歪曲収差が発生することになる。したがって内
視鏡の対物レンズのように、負の歪曲収差が発生する場
合には、例えば第19 (A)図のような非球面形状に
するのがよい。
If k increases from the center to the periphery, positive distortion will occur, and conversely, if k decreases, negative distortion will occur. Therefore, when negative distortion occurs, such as in the objective lens of an endoscope, it is preferable to use an aspherical shape as shown in FIG. 19(A), for example.

それは内視鏡用対物レンズの第ルンズ(負レンズ)の第
1面に非球面を設けたとすると、この面の屈折力はレン
ズ周辺部で強くなるがレンズそのものの屈折力は、レン
ズ周辺部で弱くなっている。
If an aspherical surface is provided on the first surface of the first lens (negative lens) of an objective lens for an endoscope, the refractive power of this surface will be stronger at the periphery of the lens, but the refractive power of the lens itself will be stronger at the periphery of the lens. It's getting weaker.

以上のことから本発明の内視鏡用対物レンズは、前記の
式(+W)にて示すkの値が次の条件(3)を満足する
ことが望ましい。
From the above, in the endoscope objective lens of the present invention, it is desirable that the value of k shown in the above formula (+W) satisfies the following condition (3).

+31 0.1< k < 1.5 にの値が条件(3)の下限値0.1をより小さいと、歪
曲収差の補正ができず非球面を用いた効果が得られない
、逆に上限値の1.5より大になると歪曲収差は除去さ
れるが非点収差等の他の収差が補正しにくくなる。また
第ルンズの外径も大になり内視鏡として好ましくない、
更に歪曲収差は必ずしもOでなくともよいため、実用上
からも上記条件を満足することが望ましい。
+31 If the value of 0.1 < k < 1.5 is smaller than the lower limit value 0.1 of condition (3), distortion aberration cannot be corrected and the effect of using an aspheric surface cannot be obtained; When the value is greater than 1.5, distortion is removed, but other aberrations such as astigmatism become difficult to correct. In addition, the outer diameter of the first lunion becomes large, making it undesirable as an endoscope.
Furthermore, since the distortion does not necessarily have to be O, it is desirable from a practical standpoint that the above conditions be satisfied.

更に本発明において、次の条件(4)を満足することが
好ましい。
Furthermore, in the present invention, it is preferable that the following condition (4) is satisfied.

+41 0.0otf < IΔZ1゜l<0.4fた
だしaZ=。は最大像高に対する主光線が上記歪曲収差
補正のために設けた非球面と交わる点における基準球面
からの光軸方向のずれ量である。尚基準球面とは、光軸
近傍において非球面と接する球面をいう。
+41 0.0otf <IΔZ1゜l<0.4f but aZ=. is the amount of deviation in the optical axis direction from the reference spherical surface at the point where the principal ray for the maximum image height intersects with the aspheric surface provided for correction of the distortion aberration. Note that the reference spherical surface refers to a spherical surface that is in contact with an aspherical surface near the optical axis.

ΔZ、0が前記条件(4)の下限値0.001Fよりも
小になると非球面が基準球面とほとんど変わらなくなり
、非球面を設けたことの効果が得られず、歪曲収差の補
正が出来ない。逆に上限値の0.4fよりも大になると
、非球面の効果が大きいが、歪曲収差以外の収差が補正
しにくくなり、またレンズの外径も大になってコンパク
トでなくなる。歪曲収差を除去するためには実用上上記
の条件の範囲内であれば効果は大である。
If ΔZ,0 becomes smaller than the lower limit value 0.001F of the above condition (4), the aspherical surface will hardly differ from the reference spherical surface, the effect of providing the aspherical surface will not be obtained, and distortion cannot be corrected. . On the other hand, when the upper limit value is greater than 0.4f, the effect of the aspherical surface is great, but it becomes difficult to correct aberrations other than distortion, and the outer diameter of the lens also becomes large, making it less compact. In order to remove distortion aberration, it is practically effective if the conditions are within the above range.

以上述べたように、明るさ絞りの前側と後側にそれぞれ
非球面を1面ずつ設けて結像面への光線入射角を垂直に
保ちながら歪曲収差を補正しようとすると、非点収差が
発生する。又この非点収差を抑えようとすると逆に結像
面への光線入射角度がばらつき収差補正を良好になし得
ないことがある。このような場合には、更に非球面を追
加して非点収差等を補正すればよい。
As mentioned above, astigmatism occurs when trying to correct distortion while maintaining the angle of incidence of rays on the image plane perpendicularly by providing one aspherical surface on the front and rear sides of the aperture diaphragm. do. Moreover, if an attempt is made to suppress this astigmatism, the angle of incidence of the light beam on the imaging surface may vary, making it impossible to correct the aberration satisfactorily. In such a case, an aspherical surface may be added to correct astigmatism and the like.

光学系において、口径つまり光線高をρ、半画角をωと
する時1球面収差はβ3に比例して増加し、非点収差、
像面湾曲はρω3に比例して増加する。そのため非球面
2枚のみで、結像面への光線入射角のばらつきと歪曲収
差を補正したのちこの非球面によって他の収差を抑える
のは少し無理があるからである。
In an optical system, when the aperture or ray height is ρ and the half angle of view is ω, spherical aberration increases in proportion to β3, astigmatism,
The field curvature increases in proportion to ρω3. Therefore, it is a little difficult to suppress other aberrations by using only two aspherical surfaces after correcting the variation in the angle of incidence of light rays on the imaging surface and the distortion aberration.

さらに本発明の内視鏡用対物レンズにおいて以下類に述
べる各条件を満足することが尚−層望ましい。
Furthermore, it is even more desirable that the objective lens for an endoscope of the present invention satisfy the following conditions.

(5)   f、<10f ただしf、はフィールドレンズの焦点距離、fは全系の
焦点距離である。
(5) f, <10f where f is the focal length of the field lens, and f is the focal length of the entire system.

本発明の内視鏡用対物レンズは、以上のように構成する
ことにより像面に対して主光線をほぼ垂直に入射させる
ことが出来、前記の色シェーデイングの発生を抑えるこ
とが出来る。
By configuring the objective lens for an endoscope of the present invention as described above, the chief ray can be made to enter the image plane almost perpendicularly, and the occurrence of the color shading described above can be suppressed.

前記のフィールドレンズL1の焦点距離が大きすぎると
レンズ系の全長が長くなるばかりか、レンズの外径も大
になってしまい内視鏡用としては不都合である。したが
ってコンパクト化のためには、frの値が条件(5)を
満足することが望ましい、つまり条件(5)より外れる
と、全長が長くなりレンズ径が大になり好ましくない。
If the focal length of the field lens L1 is too large, not only will the total length of the lens system become long, but the outer diameter of the lens will also become large, which is inconvenient for use in endoscopes. Therefore, for compactness, it is desirable that the value of fr satisfies condition (5); in other words, if it deviates from condition (5), the overall length will become long and the lens diameter will become large, which is undesirable.

本発明の内視鏡用対物レンズは、更に次の条件(6)を
満足することが望ましい。
It is desirable that the objective lens for an endoscope of the present invention further satisfies the following condition (6).

f610.>0.2F ただしDlは、明るさ絞りSとフィールドレンズL、の
間の最大空気換算長である。
f610. >0.2F However, Dl is the maximum air equivalent length between the aperture stop S and the field lens L.

固体撮像素子は、赤外波長にも感度をもつため、そのま
までは色再現性の悪い画像になってしまう。この欠点を
除去するために通常赤外線カットフィルター等の光学フ
ィルター等を結像光路中に設ける必要がある。前記条件
中の値り、はそのために必要な空気換算長であって、あ
る所望の特性をもった光学フィルターを結像光路中に設
けるために前記条件(6)を満足することが好ましい、
この条件を満足しないと前記のフィルター等を配置する
ことがむずかしくなる。
Solid-state image sensors are also sensitive to infrared wavelengths, so leaving them as is will result in images with poor color reproducibility. In order to eliminate this drawback, it is usually necessary to provide an optical filter such as an infrared cut filter in the imaging optical path. The value in the above condition is the air equivalent length necessary for this purpose, and it is preferable that the above condition (6) is satisfied in order to provide an optical filter with a certain desired characteristic in the imaging optical path.
If this condition is not satisfied, it will be difficult to arrange the above-mentioned filter, etc.

本発明の内視鏡用対物レンズにおいて、前記条件(51
,(61の他に次の条件(7)を満足するようにすれば
一層望ましい。
In the objective lens for an endoscope of the present invention, the condition (51
, (61), it is more desirable to satisfy the following condition (7).

(710,2f < D2 < 5f ただし、D2はフィールドレンズL、から結像面までの
空気換算長で、前記フィールドレンズL、が撮像素子と
一体になっている場合は、フィールドレンズL、の前側
の面の面頂から結像面までの空気換算長、フィールドレ
ンズが撮像素子と別体の場合には、フィールドレンズL
2の後側の面頂から結像面までの空気換算長である。
(710, 2f < D2 < 5f However, D2 is the air equivalent length from the field lens L to the imaging plane, and if the field lens L is integrated with the image sensor, the front side of the field lens L The air-equivalent length from the top of the surface to the imaging plane, if the field lens is separate from the image sensor, the field lens L
This is the air-equivalent length from the top of the rear surface of 2 to the imaging plane.

上記のり、の値が小さすぎると、例えばモアレ除去用の
光学的ローパスフィルター等を配置する間隔が取れなく
なってしまい、また逆に大きすぎると光学的ローパスフ
ィルター等を設けるための間隔は十分数れるがレンズ系
の全長が長くなり、コンパクト化出来ないという不具合
を生じてしまう。
If the above value of glue is too small, it will not be possible to provide enough space to place an optical low-pass filter for moiré removal, and on the other hand, if it is too large, there will not be enough space to place an optical low-pass filter, etc. However, the overall length of the lens system becomes long, resulting in a problem that it cannot be made compact.

本発明の光学系において、フィールドレンズよりも前方
、すなわち結像レンズ内又は結像レンズとフィールドレ
ンズとの間に光学フィルターのような平行平面板が配置
されている場合には、この光学系は平行平面板を境にし
て物体側の前群と、像側の後群とに分けて考えることが
出来る。尚平行平面板が2枚以上配置されている時は、
フィールドレンズに近い方の平行平面板を境にして考え
る。そしてこの前群は、収差補正の関係から正レンズと
負レンズを含む複数のレンズより構成することがある。
In the optical system of the present invention, if a parallel plane plate such as an optical filter is disposed in front of the field lens, that is, within the imaging lens or between the imaging lens and the field lens, this optical system It can be divided into a front group on the object side and a rear group on the image side with the parallel plane plate as the boundary. In addition, when two or more parallel plane plates are arranged,
Consider the parallel plane plate closest to the field lens as the boundary. The front group may be composed of a plurality of lenses including a positive lens and a negative lens in order to correct aberrations.

その場合には1次の条件(81、+9) 。In that case, the first-order condition (81, +9).

(101を満足することが望ましい。(It is desirable to satisfy 101.

(8)   fl > 0.3f +91 1f、I < 4f +101 0.:lf < f、 < 5fただしfl
は前記の前群の焦点距離、ffiは前群中の負レンズ(
独立して存在する負レンズで接合レンズ中の負レンズは
含まない)の焦点距離、f、は前群中の負レンズを除い
たレンズ系の焦点距離である。
(8) fl > 0.3f +91 1f, I < 4f +101 0. :lf < f, < 5f but fl
is the focal length of the front group, ffi is the negative lens in the front group (
The focal length, f, of the independently existing negative lens (not including the negative lens in the cemented lens) is the focal length of the lens system excluding the negative lens in the front group.

条件(8)は、前記の前群の焦点距離f、を規定するも
ので、このfIの値か小さすぎると前群と後群の間の空
気換算長が短くなり、条件(8)を満足しないと光学フ
ィルターを配置することが出来なくなる。
Condition (8) defines the focal length f of the front group, and if the value of fI is too small, the air equivalent length between the front group and the rear group becomes short, and condition (8) is satisfied. Otherwise, it will not be possible to place the optical filter.

条件(9)0条件(lO)においてf。およびfpの値
が条件の上限より外れて太き(なりすぎると、レンズ系
の全長およびレンズの外径が大になるため内視鏡用とし
ては好ましくない。
Condition (9) f at 0 condition (lO). If the value of and fp is too thick and exceeds the upper limit of the condition, the total length of the lens system and the outer diameter of the lens will become large, which is not preferable for use in endoscopes.

また条件(10)においてfpの値が条件の下限より外
れて小になりすぎると、光字フィルターを入れるための
空気間隔がなくなってしまう。
Further, in condition (10), if the value of fp deviates from the lower limit of the condition and becomes too small, there will be no air space for inserting the optical filter.

又後に述べる実施例6は、後群がほぼアフォーカルにな
っている部分を含んでいる。ここで後群中のアフォーカ
ルの部分とは、入射する主光線が光軸とほぼ平行でそれ
が射出する時も光軸とほぼ平行になる部分を云う0例^
ば実施例6(第6図)においては、レンズL、とレンズ
L、の間で主光線が光軸とほぼ平行(約6°)となり、
フィールドレンズLrを射出した後に再び光軸と平行に
なっており、ここでアフォーカルな光学系とはレンズL
Further, Example 6, which will be described later, includes a portion where the rear group is almost afocal. Here, the afocal part in the rear group refers to a part where the incident chief ray is almost parallel to the optical axis, and when it exits, it is also almost parallel to the optical axis.
For example, in Example 6 (FIG. 6), the principal ray between the lenses L is approximately parallel to the optical axis (approximately 6°),
After exiting the field lens Lr, it becomes parallel to the optical axis again, and here the afocal optical system means that the lens L
.

とレンズLrによって構成される部分である。このよう
にすることによって、例えば赤外カットフィルターのよ
うな干渉フィルターを挿入した場合でも像高による干渉
フィルターへの光線の大射角の変化が小さくなり1画面
上での色むらを除去することが出来る。
and lens Lr. By doing this, even if an interference filter such as an infrared cut filter is inserted, the change in the angle of incidence of the light beam to the interference filter due to the image height becomes small, and color unevenness on one screen can be eliminated. I can do it.

また上記の実施例6のように後群にほぼアフォーカルな
部分を含むレンズ系は、下記の条件+(1)を満足する
ように構成することが好ましい。
Further, it is preferable that a lens system including a substantially afocal portion in the rear group as in the above-mentioned Example 6 be constructed so as to satisfy the following condition +(1).

(Ill  f、、/fafl<−0,1ここでf。、
 fanは夫々アフォーカル系の正のパワーを持つ群お
よび負のパワーを持つ群の焦点距離である。
(Ill f,,/fafl<-0,1 where f.,
fan is the focal length of the afocal system's positive power group and negative power group, respectively.

条件(illは一般にアフォーカル比と呼ばれるものを
規定したもので、この値が0に近づくと後群への光線の
入射角度が大きくなり、前群と後群の間に挿入したフィ
ルターへの入射角度も大になる。そのため入射角度の変
化によって特性の変わりやすいフィルターは、配置出来
なくなる。一方上記のアフォーカル比の絶対値が太き(
なると、後群への入射光線が下がり、光学系の細径化に
とっては都合が良く、逆に、上記アフォーカル比が−0
,1よりも0に近づくとレンズの径が大きくなり内視鏡
の先端に入らなくなる。
The condition (ill) defines what is generally called the afocal ratio; as this value approaches 0, the angle of incidence of the light ray to the rear group increases, and the angle of incidence of the light ray to the filter inserted between the front group and the rear group increases. The angle also becomes large.As a result, filters whose characteristics tend to change depending on the incident angle cannot be placed.On the other hand, when the absolute value of the afocal ratio mentioned above is large (
In this case, the incident light beam to the rear group decreases, which is convenient for reducing the diameter of the optical system, and conversely, the above afocal ratio becomes -0.
, when it approaches 0 rather than 1, the diameter of the lens becomes too large to fit into the tip of the endoscope.

また下記の条件(12)を満足することが望ましい。Further, it is desirable that the following condition (12) be satisfied.

+121 −4Of < f、、<−0,2fこれは、
後群をほぼアフォーカルに保った状態で、lf、、lが
大になると光学系の全長が長くなる傾向になり、−4O
f >f、、、になると対物レンズが内視鏡の先端に入
らなくなる。一方f0のパワーが強すぎf、、、>−0
,2fになると収差補正がむずかしくなる。
+121 -4Of < f,, <-0,2f This is,
With the rear group kept almost afocal, as lf,,l becomes large, the total length of the optical system tends to become longer, and -4O
When f > f, , the objective lens cannot enter the tip of the endoscope. On the other hand, the power of f0 is too strong f,...>-0
, 2f, it becomes difficult to correct aberrations.

[実施例] 次に本発明の搬像素子用光学系の各実施例を示す。[Example] Next, embodiments of the optical system for an image carrier according to the present invention will be described.

実施例1 f = 1.000 、F/3.723 、2ω= 1
33.584″″I H= 1.0523 r1=■ む= 0.3189   旧= 1.88300   
νt =40.78ra=0.6107 d2= 0.2360 rs=3.6012 d3= 0.3380 nt” 1.84666 「4=−1,1958 d4=0゜0638 「、:CKI(絞り) ds”0.0638 r6=−1,2107 d、= 0.1913 n、= 1.80518 rt=2.0604 d、= 0.6696 r8=−o、8796 d、= 0.0638 re=6.1125 d9= o、1658 rl。 = 2.0098 dlo =0.8610 rz  =−1,6842 d+ +  = 0.1339 r1□ =■ lJ+z  =0.2551 Q4= 1.51633 ns” 1.84666 1)、= 1.51633 ny”1.51633 シ2=23.78 ν、 、=25.43 ν、  =64.15 νs  ”23.78 シロ −64,I5 ν、 =64.15 rl、 =■ d、、=0.4464  n、”1.52000   
 v、=74.0Or14 =■ dz  =0.255I  n++=1.51633 
  1.19  :64.15r16 =■ d、6  =0.2572 r+s  = 2.4259 d、、= 0.7334  n、、” 1.51633
  v、、= 64.15rl? =−28,7961
(非球面)d+□ = 0.3079 r+a=c″ dlo  =1.1926  r+z  ”1.548
69 1/++=45.55r+*  = (資) d、、” 0.2551   n、□ = 1−516
33  v、2= 64.15rzo  = l 非球面係数 P = 1.0000 、  E =0.12395 
x 10−’F = 0.58165 x 10−”f
、=4.368  、  D、=1.0213  、 
 n2=1.2462f、=1.549  、  fn
=−0,692、fP=1.404f8=1.550 
 、  1A/fa  =2.818  、f、=4.
368へZ、、、=0.02234   、  1.、
、=1.044809実施例2 f = 1.000 、 F/3.955 、2ω= 
132.998゜I H= 1.0591 r+= ■ d  =0.3209 n、= 1.88300 r2= 0.6509 dz= 0.2375 r、=3.4933 d、: 0.3402 na” I−,8466G r、=−1,2209 d、= 0.0642 rs=閃(絞り) d、t= 0.0642 rl、=−1,0589 ds”0.1926 rt ” 1.8453 d、= 0.6739 ra=−0,8431 0、= 1.80518 n、= 1.51633 ν1 ν2 ν3 ν4 = 40.78 = 23.78 =25.43 =64.15 d、= 0.0642 re=7.6048 d−= 0.1[169n−= 1.84666   
 v、 = 23.78rho  =2.1084 dlo  =0.8665  n6=1.51633 
   v−=64.15r11  =−1,5072 dz=0.1348 「1. =■ d、z  = 0.2567   ny= 1.516
33    v−= 64.15r+z  = 閃 dli  = 0.4493   n1l= 1.52
00ロ    v、  = 74.00[14=■ d、、  =0.2567   n5=1.51633
    v、  =64.15r、、=c1゜ dls  =0.2710 r、、 =2.56:3G (非球面)d16 = 0
.738I   n、o  = 1.51633   
ν、。=64.15r+t  =−117,1271 d、、  =0.3087 r、a =OO dos  =’ 1.200:I   nl 1  =
 1.54869  1/l l = 45.551.
、=C+Q dle  −0,25670,2=1.51633  
 ν1□= 64.15r20  ” ■ 非球面係数 P = 1.0000 、  E =−0,81344
x 1O−2F = −0,46081x to−”f
F=4.869   、   D、=1.0400  
 、    D2=1.253゜f、=1.483  
、  fo=、−1,063、fP=1.257fs=
1.513  、  LA/f* =3.218 、 
fA=4.869ΔZ、、、、=−0,01602、L
、、=1.049474実施例3 f = 1.000 、 F/3.936 、2ω= 
119.436”I H= 1.0784 r、 = 8.1850 (非球面) d、=0.3268   n、=1.88300   
v、 =40.78ra : o、 5640 d、= 0.2418 ra”3.1632 ds” 0.3464    fi2= 184666
   1/a  = 23.78r4=−1,2492 d、= 0.0654 「、=oo(絞り) d、= 0.0654 ra”−1,1727 d6:= o、1961 ry=1.9701 d、= 0.6863 rs=−0,8505 da= 0.0654 re” 6.8599 d、= 0.1699 rl0  =1.9087 d、。 =0.8824 r++  =−1,6859 d++  =0.1373 rI!:o。
Example 1 f = 1.000, F/3.723, 2ω = 1
33.584″″I H= 1.0523 r1=■ M= 0.3189 Old= 1.88300
νt =40.78ra=0.6107 d2=0.2360 rs=3.6012 d3=0.3380 nt" 1.84666 "4=-1,1958 d4=0°0638 ",:CKI (aperture) ds" 0.0638 r6=-1,2107 d,=0.1913 n,=1.80518 rt=2.0604 d,=0.6696 r8=-o,8796 d,=0.0638 re=6.1125 d9 = o, 1658 rl. = 2.0098 dlo =0.8610 rz =-1,6842 d+ + = 0.1339 r1□ =■ lJ+z =0.2551 Q4= 1.51633 ns” 1.84666 1), = 1.51633 ny”1 .51633 Shi2=23.78 ν, , =25.43 ν, =64.15 νs ”23.78 Shiro -64,I5 ν, =64.15 rl, =■ d, , =0.4464 n, ”1.52000
v, =74.0Or14 =■ dz =0.255I n++=1.51633
1.19:64.15r16 = ■ d, 6 = 0.2572 r+s = 2.4259 d,, = 0.7334 n,,” 1.51633
v,, = 64.15rl? =-28,7961
(Aspherical surface) d+□ = 0.3079 r+a=c'' dlo =1.1926 r+z ''1.548
69 1/++=45.55r++=(fund) d,,” 0.2551 n,□=1-516
33 v, 2 = 64.15 rzo = l Aspheric coefficient P = 1.0000, E = 0.12395
x 10-'F = 0.58165 x 10-"f
,=4.368, D,=1.0213,
n2=1.2462f,=1.549, fn
=-0,692, fP=1.404f8=1.550
, 1A/fa =2.818, f, =4.
Z to 368,,,=0.02234,1. ,
, = 1.044809 Example 2 f = 1.000, F/3.955, 2ω =
I- ,8466G r,=-1,2209 d,=0.0642 rs=Flash (aperture) d,t=0.0642 rl,=-1,0589 ds"0.1926 rt" 1.8453 d,=0. 6739 ra=-0,8431 0, = 1.80518 n, = 1.51633 ν1 ν2 ν3 ν4 = 40.78 = 23.78 =25.43 =64.15 d, = 0.0642 re=7.6048 d-=0.1[169n-=1.84666
v, = 23.78 rho = 2.1084 dlo = 0.8665 n6 = 1.51633
v-=64.15r11 =-1,5072 dz=0.1348 ``1.=■ d, z = 0.2567 ny= 1.516
33 v-= 64.15r+z = flash dli = 0.4493 n1l= 1.52
00ro v, = 74.00[14=■ d,, =0.2567 n5=1.51633
v, =64.15r,, =c1°dls =0.2710r,, =2.56:3G (Aspherical surface) d16 = 0
.. 738I n,o = 1.51633
ν,. =64.15r+t =-117,1271 d,, =0.3087 r,a =OO dos =' 1.200:I nl 1 =
1.54869 1/l l = 45.551.
,=C+Q dle -0,25670,2=1.51633
ν1□=64.15r20 ” ■ Aspheric coefficient P = 1.0000, E = -0,81344
x 1O−2F = −0,46081x to−”f
F=4.869, D,=1.0400
, D2=1.253°f,=1.483
, fo=, -1,063, fP=1.257fs=
1.513, LA/f* =3.218,
fA=4.869ΔZ,,,=-0,01602,L
,,=1.049474 Example 3 f=1.000, F/3.936, 2ω=
119.436"I H= 1.0784 r, = 8.1850 (aspherical surface) d, = 0.3268 n, = 1.88300
v, =40.78ra : o, 5640 d, = 0.2418 ra"3.1632 ds" 0.3464 fi2 = 184666
1/a = 23.78r4 = -1,2492 d, = 0.0654 ``, =oo (aperture) d, = 0.0654 ra''-1,1727 d6: = o, 1961 ry = 1.9701 d, = 0.6863 rs = -0,8505 da = 0.0654 re" 6.8599 d, = 0.1699 rl0 = 1.9087 d,. = 0.8824 r++ = -1,6859 d++ = 0.1373 rI !: o.

dle  =0.2614 r目=00 tLs  =0.4575 ns” 1.80518 vs  =25.43 j14= 1.51633 ν4  =64.15 nミニ1.84666 シs”23.78 na=1.51633 ν、  =64.15 nミニ1.51633 ν、  =64.15 na= 1.52000    lea  = 74.
00r14  =■ d+4 = 0.2614  no= 1.51633
ν、  =64.15 rlS : ■ dls  =0.2553 rls  ”2.3680 d、、”0.7516  nlo  =1.51633
  ν、。= 64.15r1ア= −2:1.833
2 (非球面)d17 =0.3154 r、、==OO d、−=1.2222  n、1 =1.54869 
 V11=45.55ri11  ==QQ dle  =0.2614  n、2 =1.5163
3  シ+a=64.15r20  ” ω 非球面係数 (第1面) P = 1.0000 、  E = 0.27250
 x 10−’F = 0.38296 x 10−2
.G =−0,74369x 10−”(第17面) P=1.0000  、    E=0.25928 
 xlO−’F  = 0.32364  x lロー
斗 、   G = −0,83863x 10−’f
r”4.213  、 0+=1.0384  、  
 l1a=1.277Of、=1.605  、  f
n=−0,7、fp=1.446f、=1.531  
、  fA/fa  =2.752  、  fA=4
.213ΔZ、、、  =0.038713  、 1
.、、=1.070526に=0.2927  、  
Δ Zl+1=0.00206  、 IO= 0.5
21822実施例4 f = 1.000 、 F/3.821 、 2ω=
 119.978゜I H= 1.0949 rl = 7.7641 (非I束面)dI= 0.3
318   n+= 1.88300   v+ = 
40.78r、=0.5903 da”0.2455 ra = 3.2669 ds” 0.3517   nz= 1.84666 
  Va  = 23.78r4=−1,3331 d、 = 0.0664 r5=cx11(絞り) d、= 0.0664 ra=−1,2398 d、”0.199I   n、=1.80518   
v、  =25.43r?= 1.7384 d、= 0.6967 n+=1 1633 ν4 =64.15 reニーo、8023 d8= 0.0664 re=7.1278 d、= 0.1725    n、=1.84666r
+o  =1.7921 d+o = 0.8958   n6= 1.5163
3r、   =−1,6209 d+ 1 = 0.1393 r+z  = ■ d12 = 0.2654   nt= 1.5+63
3r1. : ■ d、3 = 0.4645   Q8= 1.5200
0r14  =■ d、、  = 0.2654   j1g= 1.51
633r15  ” (資) d、、  =0.2554 rla =2.5348 (非球面) d、、  = 0.6172   n、、  ” 1.
51633シ5 =23.78 ν、  =64.+5 ν、  =64.15 ν、  =74.00 ν、  =64.15 ν、。=64.15 r+y  =−35,5610 dl?  =0.2346 rI8 :o。
dle = 0.2614 rth = 00 tLs = 0.4575 ns" 1.80518 vs = 25.43 j14 = 1.51633 ν4 = 64.15 n mini 1.84666 s" 23.78 na = 1.51633 ν, =64.15 n mini 1.51633 ν, =64.15 na= 1.52000 lea = 74.
00r14 =■ d+4 = 0.2614 no= 1.51633
ν, =64.15 rlS: ■ dls =0.2553 rls "2.3680 d,,"0.7516 nlo =1.51633
ν,. = 64.15r1a = -2:1.833
2 (Aspherical surface) d17 =0.3154 r,,==OO d,-=1.2222 n,1 =1.54869
V11=45.55ri11==QQ dle=0.2614 n,2=1.5163
3 C + a = 64.15r20 ” ω Aspheric coefficient (first surface) P = 1.0000, E = 0.27250
x 10-'F = 0.38296 x 10-2
.. G = -0,74369x 10-” (17th surface) P = 1.0000, E = 0.25928
xlO-'F = 0.32364 x lRO-'F, G = -0,83863x 10-'f
r”4.213, 0+=1.0384,
l1a=1.277Of,=1.605, f
n=-0,7, fp=1.446f,=1.531
, fA/fa =2.752, fA=4
.. 213ΔZ,,, =0.038713, 1
.. ,,=1.070526=0.2927,
Δ Zl+1=0.00206, IO=0.5
21822 Example 4 f = 1.000, F/3.821, 2ω=
119.978゜I H = 1.0949 rl = 7.7641 (non-I bundle surface) dI = 0.3
318 n+= 1.88300 v+ =
40.78r, = 0.5903 da"0.2455 ra = 3.2669 ds" 0.3517 nz = 1.84666
Va = 23.78r4 = -1,3331 d, = 0.0664 r5 = cx11 (aperture) d, = 0.0664 ra = -1,2398 d, "0.199I n, = 1.80518
v, =25.43r? = 1.7384 d, = 0.6967 n+=1 1633 ν4 = 64.15 renie o, 8023 d8 = 0.0664 re=7.1278 d, = 0.1725 n, = 1.84666r
+o = 1.7921 d+o = 0.8958 n6 = 1.5163
3r, = -1,6209 d+ 1 = 0.1393 r+z = ■ d12 = 0.2654 nt = 1.5+63
3r1. : ■ d, 3 = 0.4645 Q8 = 1.5200
0r14 = ■ d,, = 0.2654 j1g = 1.51
633r15 ” (Capital) d,, =0.2554 rla =2.5348 (Aspherical surface) d,, = 0.6172 n,, “1.
51633 5 =23.78 ν, =64. +5 ν, =64.15 ν, =74.00 ν, =64.15 ν,. =64.15 r+y =-35,5610 dl? =0.2346 rI8 :o.

d、、  =1.2409 r+s  = ■ (Lq  =0.2654 n+ = 1.54869   ν+ + = 45.55I
2 = 1.51633   シ12=64.15rgo 
 = ■ 非球面係数 (第1面) P=1.01lOO,E=0.27612F = −0
,29431x 10−”(第16面) P = 1.0000 、  E = −0,1399
0xF = −0,37958x 10−”f、= 4
.608  、  D、= 1.[]503f、=1.
461  、  f、=−0,740f、=1.509
  、  fA/fa =3.054 。
d,, =1.2409 r+s = ■ (Lq =0.2654 n+ = 1.54869 ν+ + = 45.55I
2 = 1.51633 shi12 = 64.15rgo
= ■ Aspheric coefficient (first surface) P=1.01lOO, E=0.27612F = -0
,29431x 10-” (16th side) P = 1.0000, E = -0,1399
0xF = -0,37958x 10-”f, = 4
.. 608, D, = 1. []503f, =1.
461, f, = -0,740f, = 1.509
, fA/fa =3.054.

ΔZ、、、 =−0,02779、L、、=1k =0
.2929 、  ΔZ 10: 0.00234実施
例5 XIO−’ io−’ D、= 1.2+09 fP= 1.445 fA= 4.608 1口519 、  L= 0.544149 f = 1.000  、  F/4.847  、 
2 ω=97゜I  H= 0.9810 r+=■(非球面) d、=0.2973 n、= 1.88300 =40.78 r2: 1.1731 da”0.3746 r3=美 r4=■(絞り) d4=0.1189 rs=2.4507 d、= 0.4340 r6=−4,4018 d、=0.1189 rt= ■ d、= 0.8918 ra” (1) d、= 0.8323 r、= 3.1928 d、= 0.7729 n、= 1.72916 n4= 1.52000 jl、= 1.516341 ν、  =54.68 ν、  =74.00 ν5 =64.15 r+o  =−1,0249 +Lo  =0.2973  n6=1.84666 
   v6 =23.78= −1,9712 d、、  =o、3iss r、、 =4.2521 (非球面) d+a  = 0.6421  ny= 1.7291
6   1)7 = 54.68r13:CX:1 d+−= 0.8918  n−= 1.54869 
   va  = 45.55「、4 =OO d、4 :0.2378   ロ、= 1.51633
     ν、  =64.15r16 =閃 非球面係数 (第1面) P=1.0000.  B=0.57318XlO−’
E=0.21885 xlO−’ 、  F=−0,3
4067xlO−2(第12面) P=−44,7174、E=0.26922 xlO−
’F=−0.43239xlO−’  、   G=0
.23067  xlO−’f、=5.832  、 
 D、=1.538  、  D、=1.104f、=
2.325  、  f、=刊564 、  fp=2
.21.8l f、= 2.431 fA/f8  =2.399  、  fA=5.83
2ΔZ、、、  =−0,01688 1、、、= 0.832708 k  =0.4309  、   Δ Z 1゜=0.
05164  、  l0=0.850596実施例6 f = 1.000  、F/3.635  。
ΔZ,,, =-0,02779, L,, =1k =0
.. 2929, ΔZ 10: 0.00234 Example 5 4.847,
2 ω=97゜I H= 0.9810 r+=■ (aspherical surface) d, = 0.2973 n, = 1.88300 = 40.78 r2: 1.1731 da"0.3746 r3 = beauty r4 = ■ (Aperture) d4 = 0.1189 rs = 2.4507 d, = 0.4340 r6 = -4,4018 d, = 0.1189 rt = ■ d, = 0.8918 ra” (1) d, = 0. 8323 r, = 3.1928 d, = 0.7729 n, = 1.72916 n4 = 1.52000 jl, = 1.516341 ν, =54.68 ν, =74.00 ν5 = 64.15 r+o =- 1,0249 +Lo =0.2973 n6=1.84666
v6 =23.78= -1,9712 d,, =o,3iss r,, =4.2521 (Aspherical surface) d+a = 0.6421 ny= 1.7291
6 1) 7 = 54.68r13:CX:1 d+-= 0.8918 n-= 1.54869
va = 45.55'', 4 =OO d, 4:0.2378 ro, = 1.51633
ν, =64.15r16 = Flash aspheric coefficient (first surface) P = 1.0000. B=0.57318XlO-'
E=0.21885 xlO-', F=-0,3
4067xlO-2 (12th surface) P=-44,7174, E=0.26922 xlO-
'F=-0.43239xlO-', G=0
.. 23067 xlO-'f, = 5.832,
D,=1.538, D,=1.104f,=
2.325, f, = publication 564, fp=2
.. 21.8l f, = 2.431 fA/f8 = 2.399, fA = 5.83
2ΔZ,,, =-0,01688 1,,,=0.832708 k =0.4309, ΔZ 1°=0.
05164, l0=0.850596 Example 6 f=1.000, F/3.635.

I  H= 1.2017 r、=oo(非球面) d+=0.3277 r2= 0.5828 d、= 0.7138 rs=−3,7267 d、= 0.3642 r、=−1,27:14 d、= 0.0364 rS=oo(絞り) ds= 0.1092 rs=−1,8059 d、= 0.1821 r、: 1.5570 d、= 0.6336 n、=1.51633   1/4  I64.15n
a=1.84666 i、= 1.84666 n+= 1.80610 2ω= 113.602’ ν、  I40.95 νl  I23.78 ν3  I23.78 ra=−1,2178 d、= 0.0728 re=6.2187 ds”0.5462    ns= 1.6968Or
ho  =−1,8999 d、。 =0.0728 r目=00 d、  =1.0925   na=1.52000r
l=OO d1□ = 0.2986 r+s  =−2,2076 d+−=0.2185   nv=1.84666r、
、  = 43.3086 d14 =0.4224   nm=1.51633r
+s  =−2,5432 dos  =0.3038 rll =2゜3477 (非球面) dts  = 0.619I   Q、= 1.772
5Or、7 =閃 d、t  = 1.0925   n+o  = 1.
54814= 55.52 = 74.00 = 23.78 = 64.15 = 49.66 シ1゜I45.78 r息、I00 d、、=0.2913  n、、=1.51633  
シ、、=64.15r19  ” ■ 非球面係数 (第1面) P=1.0000 、  B=0.23517 、 E
=O,19990F=−0,16297、G=0.43
056  xlO−’(第16面) P=−4,3010、E=−0,I2093X10−’
F = 0.66784 x 10−”fF= 3.0
39  、  D、= 1.09   、  D、= 
1.247f、= t、oat  、  fl、=−1
,1、fP= 1.417f、p/fa、=−0,47
7、f、n=−6,365、f、、=3.039fm=
1.838  、  fA/fa =1.653 、 
fa=3.039ΔZ、、、 =−0,03698、1
,、、=0.935705k  =0.4535  、
   Δ Z 1゜: o、13826  、  Io
=口、[182032実施例7 f  = 1.000 、  F/3.826  、 
2  (,1= 120’I H= 1.0963 r+ = 7.3216 (非球面) d、= 0.3322 rz=0.5839 d2= 0.2458 rs=3.2317 da= 0.3522 r、=−1,3470 d4= 0.0664 rs=oo(絞り) ds= 0.0664 rs=−1,2449 da= 0.1993 r、=1.6804 dy=0.6977 rs”−0,7957 d、= 0.0664 r、−= 7.0988 d、= 0.1728 「1゜ = 1.7664 d、、  =0.8970 rll  =−1,619ti 1)、= 1.88300 nm=1.84666 nm=1.80518 n4= 1.51633 ns= 1.84666 nm=1.51633 = 40.78 I23.78 = 25.43 = 64.15 = 23.78 I64.15 d、、  =0.1395 r目=■ d、、  = 0.2658   n、= 1.516
33r13”00 d+−=0.4651   n−=1.5200Or、
4 =(資) d、4 =0.2658   口、= 1.51633
r、、  =o。
I H = 1.2017 r, =oo (aspherical surface) d+ = 0.3277 r2 = 0.5828 d, = 0.7138 rs = -3,7267 d, = 0.3642 r, = -1,27: 14 d, = 0.0364 rS = oo (aperture) ds = 0.1092 rs = -1,8059 d, = 0.1821 r,: 1.5570 d, = 0.6336 n, = 1.51633 1/ 4 I64.15n
a=1.84666 i,=1.84666 n+=1.80610 2ω=113.602' ν, I40.95 νl I23.78 ν3 I23.78 ra=-1,2178 d,=0.0728 re=6 .2187ds”0.5462ns=1.6968Or
ho = -1,8999 d,. =0.0728 rth=00 d, =1.0925 na=1.52000r
l=OO d1□ = 0.2986 r+s =-2,2076 d+-=0.2185 nv=1.84666r,
, = 43.3086 d14 = 0.4224 nm = 1.51633r
+s = -2,5432 dos = 0.3038 rll = 2°3477 (aspherical surface) dts = 0.619I Q, = 1.772
5Or, 7 = flash d, t = 1.0925 n+o = 1.
54814 = 55.52 = 74.00 = 23.78 = 64.15 = 49.66 C1゜I45.78 r breath, I00 d,, =0.2913 n,, =1.51633
C,,=64.15r19” ■ Aspheric coefficient (first surface) P=1.0000, B=0.23517, E
=O, 19990F=-0,16297, G=0.43
056 xlO-' (16th surface) P=-4,3010, E=-0, I2093X10-'
F=0.66784 x 10-”fF=3.0
39, D,= 1.09, D,=
1.247f,=t,oat,fl,=-1
,1,fP=1.417f,p/fa,=-0,47
7,f,n=-6,365,f,,=3.039fm=
1.838, fA/fa = 1.653,
fa=3.039ΔZ,,, =-0,03698,1
,,,=0.935705k=0.4535,
ΔZ 1゜: o, 13826, Io
= Mouth, [182032 Example 7 f = 1.000, F/3.826,
2 (,1= 120'I H= 1.0963 r+ = 7.3216 (aspherical surface) d, = 0.3322 rz=0.5839 d2= 0.2458 rs=3.2317 da= 0.3522 r, =-1,3470 d4=0.0664 rs=oo (aperture) ds=0.0664 rs=-1,2449 da=0.1993 r, =1.6804 dy=0.6977 rs"-0,7957 d , = 0.0664 r, -= 7.0988 d, = 0.1728 "1° = 1.7664 d,, = 0.8970 rll = -1,619ti 1), = 1.88300 nm = 1.84666 nm=1.80518 n4=1.51633 ns=1.84666 nm=1.51633 = 40.78 I23.78 = 25.43 = 64.15 = 23.78 I64.15 d,, =0.1395 r Eyes = ■ d,, = 0.2658 n, = 1.516
33r13”00 d+-=0.4651 n-=1.5200Or,
4 = (capital) d, 4 = 0.2658 mouth, = 1.51633
r,, =o.

d、、  =0.2543 r、、 =2.5285 (非球面) d、、  =0.6264   n、、  =1.51
&33r、y = −54,0626(非球面)d、、
  =0.2414 rlll  = ■ d、、  =1.2425   n、、  ”1.54
869r目=■ d、、  = 0.2658   n、、  = 1.
51633ν、  =64.15 νa”74.00 ν、  =54.15 ν、。=64.15 シ、、=45.55 ν1□= 64.15 r2゜ = ■ 非球面係数 (第1面) P=1.0OOO、E=0.33020  xlO−’
F =−0,78286X 10−” (第16面) P=1.0000.   E=−0,14437X10
F =−0,24025x 10−” (第17面) P = 1.0000  、   E = 0.992
95  x 10−”F = −0,84124x 1
0−”fr=4.696   、   D、=1.05
04   、    D、=1.2190fl= 1.
.458   、   fr、=−0,736、f、=
 1.447L=1.512   、   fA/fa
  =3.106  、  fA=4.696ΔZ、、
、  =−0,02557、L、、=1.101719
k  =0.2961  、   ΔZ s。= 0.
00272  、  Io= 0.545383実施例
8 f = 1.000 、 F/4.03+ 、 2ω=
120.55゜I H= 1.1371 r、 = 3.8935 (非球面) d+ = 0.3446   n1= 1.88300
   v+ = 40.78r2: 0.6525 d、= 0.3170 「3=−13,5877 d 3=0 、3653    n 2 = 1 、8
4666r4= −1,5462 d4= 0.0689 r5=cX3(絞り) ds= 0.0689 r、=−1,3756 da= 0.2068     ns” 1.8051
8r、= 2.5197 d、= 0.7236    n、= 1.51633
rs=−0,8700 d、= 0.0689 r、 = 5.4855 (非球面) cL= 0.1792    n5= 1.84666
r+o  = 1.8708 d、o  = 0.9304   n、= 1.516
3:1r1+  =−1,7408 d、、  = 0.1203 r+z=c″ ν2 ν5 = 23.78 = 25.4”( = 64.15 =64.15 rl、 =■ d、3 ”0.4824  n、=1.52000  
  v、=74.00r14:QQ d、、  =0.2757  n、”1.51633 
   v、  =64.t5r+s  = ■ dlg  =0.2117 rla ”2−3721 (非球面) d+s  =0.8(112neo  =1.5163
3  シ+o=64.15rlt=20.6589 d、7 =0.3086 rlll =■ d、、  =1.2888  n、、  =1.548
69  νz=45.55r+*  =■ d、、  ”0.2757  n、2 =1.5163
:l  シ、z=64.l5r2G ::QQ 非球面係数 (第1面) p  = t、oooo  。
d,, =0.2543 r,, =2.5285 (aspherical surface) d,, =0.6264 n,, =1.51
&33r, y = -54,0626 (aspherical surface) d,,
=0.2414 rllll = ■ d,, =1.2425 n,, ”1.54
869th r = ■ d,, = 0.2658 n,, = 1.
51633ν, =64.15 νa”74.00 ν, =54.15 ν, .=64.15 ci,, =45.55 ν1□= 64.15 r2゜ = ■ Aspheric coefficient (first surface) P =1.0OOOO, E=0.33020 xlO-'
F = -0,78286X 10-" (16th side) P = 1.0000. E = -0,14437X10
F = -0,24025x 10-” (17th surface) P = 1.0000, E = 0.992
95 x 10-”F = -0,84124x 1
0-”fr=4.696, D,=1.05
04, D,=1.2190fl=1.
.. 458, fr,=-0,736,f,=
1.447L=1.512, fA/fa
=3.106, fA=4.696ΔZ,,
, =-0,02557, L, , =1.101719
k = 0.2961, ΔZ s. = 0.
00272, Io=0.545383 Example 8 f=1.000, F/4.03+, 2ω=
120.55゜I H= 1.1371 r, = 3.8935 (aspherical surface) d+ = 0.3446 n1= 1.88300
v+ = 40.78r2: 0.6525 d, = 0.3170 "3 = -13,5877 d 3 = 0, 3653 n 2 = 1, 8
4666r4 = -1,5462 d4 = 0.0689 r5 = cX3 (aperture) ds = 0.0689 r, = -1,3756 da = 0.2068 ns" 1.8051
8r, = 2.5197 d, = 0.7236 n, = 1.51633
rs=-0,8700 d, = 0.0689 r, = 5.4855 (aspherical surface) cL= 0.1792 n5= 1.84666
r+o = 1.8708 d, o = 0.9304 n, = 1.516
3:1r1+ =-1,7408 d,, = 0.1203 r+z=c'' ν2 ν5 = 23.78 = 25.4''( = 64.15 =64.15 rl, = ■ d, 3''0.4824 n,=1.52000
v, =74.00r14:QQ d,, =0.2757 n,”1.51633
v, =64. t5r+s = ■ dlg =0.2117 rla ”2-3721 (aspherical surface) d+s =0.8 (112neo =1.5163
3 si+o=64.15rlt=20.6589 d, 7 =0.3086 rllll=■ d,, =1.2888 n,, =1.548
69 νz=45.55r+* =■ d,, ”0.2757 n,2 =1.5163
:l si, z=64. l5r2G::QQ Aspheric coefficient (first surface) p = t, oooo.

E=0.10301 F=−0,76500X10−’     G=0.1
2298xlO−’a+z  = 0.2757  n
、= 1.51633= 64.15 (第9面) P = 1.0000  、   E =−0,149
62x 10−’F =O,12839x 10−’ (第16面) P=1.0000.   E= −〇、14686x 
IQ−’F = 0.10545  x 10−”fr
=5.114  、D、=1.0130  、  D*
=1.3226f、=1.532   、   fn=
−0,934、fP=1.581fs=1536   
、   fA/fs  =3.329  、  fA=
5.114ΔZ、、、、  =−0,01943、1,
、、=1.097019k  =0.3956  、 
  ΔZ 10= 0.01318  、  Io= 
0.652576ただしrl+ r7.・・・はレンズ
各面の曲率半径、dl、d2.・・・は各レンズの肉厚
および空気間隔、nI。
E=0.10301 F=-0,76500X10-' G=0.1
2298xlO-'a+z = 0.2757 n
, = 1.51633 = 64.15 (9th surface) P = 1.0000, E = -0,149
62x 10-'F = O, 12839x 10-' (16th surface) P=1.0000. E=-〇, 14686x
IQ-'F = 0.10545 x 10-"fr
=5.114, D, =1.0130, D*
=1.3226f, =1.532, fn=
-0,934, fP=1.581fs=1536
, fA/fs =3.329, fA=
5.114ΔZ, ,, =-0,01943,1,
,,=1.097019k=0.3956,
ΔZ10=0.01318, Io=
0.652576 but rl+r7. ... is the radius of curvature of each lens surface, dl, d2. ... is the wall thickness and air spacing of each lens, nI.

nt、・・・は各レンズの屈折率、シ1.シ2.・・・
は各レンズのアツベ数である。
nt,... is the refractive index of each lens, and 1. C2. ...
is the Atsube number of each lens.

実施例1は、第1図に示すレンズ構成である。Example 1 has a lens configuration shown in FIG.

この実施例等のように絞りよりも前に正のパワーを有す
るレンズ成分を配置することによってコマ収差や倍率の
色収差を良好に補正し得る。これは絞りより前が負レン
ズのみで光学的に非対称な構成になるのを緩和し、特に
下側コマを補正し得るためである。また倍率の色収差を
補正するためにも絞りの前に正レンズ成分を配置するこ
とが有利であり、この正レンズ成分を接合レンズにして
もよい。
By arranging a lens component having positive power in front of the diaphragm as in this embodiment, it is possible to satisfactorily correct comatic aberration and chromatic aberration of magnification. This is because there is only a negative lens in front of the diaphragm, which alleviates the optically asymmetrical configuration, and in particular allows correction of the lower coma. Furthermore, in order to correct chromatic aberration of magnification, it is advantageous to arrange a positive lens component in front of the diaphragm, and this positive lens component may be a cemented lens.

又実施例2は第2図に示すレンズ構成である。Embodiment 2 has a lens configuration shown in FIG.

実施例1.2はフィールドレンズに非球面を1面ずつ設
けて結像面への光線入射角度のばらつきを良好に補正し
たものである。尚実施例1は、フィールドレンズとCC
Dが別体になっているのでフィールドレンズの後側に非
球面を設けている。
In Examples 1 and 2, each field lens is provided with an aspherical surface to satisfactorily correct variations in the angle of incidence of light rays on the imaging plane. Note that Example 1 uses a field lens and a CC
Since D is a separate body, an aspherical surface is provided on the rear side of the field lens.

また実施例2はフィールドレンズの前側に非球面を設け
ている。
Further, in the second embodiment, an aspherical surface is provided on the front side of the field lens.

実施例3乃至6は、第3図乃至第6図に示す構成で、絞
りの前側のレンズ群および後側のレンズ群中に夫々1面
非球面を設けている。
Examples 3 to 6 have the configurations shown in FIGS. 3 to 6, in which one aspherical surface is provided in each of the lens group on the front side and the lens group on the rear side of the aperture.

実施例3は、フィールドレンズとレンズ系の第1面を夫
々非球面にし結像面への入射光線角度および歪曲収差補
正を行なっている。
In the third embodiment, the field lens and the first surface of the lens system are each made into an aspherical surface to correct the incident ray angle to the imaging surface and distortion aberration.

実施例4は、同様に決像面への入射光線角度お゛よび歪
曲収差の補正のために絞り前後のレンズ群に非球面を設
けているが、設けた個所が実施例3とは異なっている6 実施例5は、側視又は斜視用としても用いることの出来
る内視鏡用対物レンズである。つまり絞りの前側に配置
された平fテ平面板の代わりにこれと光路長の等しいタ
ハプリズムなどの視野変換プリズムを用いればよい。
Similarly, in the fourth embodiment, aspherical surfaces are provided in the lens groups before and after the aperture in order to correct the incident ray angle on the image-defining surface and the distortion aberration, but the locations of the aspherical surfaces are different from those in the third embodiment. Embodiment 6 Example 5 is an objective lens for an endoscope that can be used for side viewing or strabismus. In other words, instead of the flat f-square plate placed in front of the diaphragm, a field conversion prism such as a Taha prism having the same optical path length may be used.

実施例6は、絞りより後のレンズ群中にほぼアフォーカ
ルな部分を含んだレンズ系であって、絞り後のレンズ群
中の凹レンズを接合レンズにすることによってレンズの
加工性をよくしている。
Embodiment 6 is a lens system that includes an almost afocal part in the lens group after the aperture, and the workability of the lens is improved by making the concave lens in the lens group after the aperture a cemented lens. There is.

又実施例5.6は、非球面を用いたフィールドレンズを
撮影素子と一体化してフィールドレンズと撮像素子との
間隔を小さくし全長を短くし、フィールドレンズの光線
高が小さくなり細径化し得る。一方他の実施例では、フ
ィールドレンズと撮像素子が別体で空気間隔を有するの
で、組立時のピント調整の時にこの間隔を変え得る。し
かもこの間隔の変化により主光線の撮影素子への光線入
射角度が変化せず、画角の変動も少ない。
In addition, in Examples 5 and 6, the field lens using an aspherical surface is integrated with the photographing element to reduce the distance between the field lens and the imaging element and shorten the overall length, thereby reducing the height of the ray of the field lens and making it possible to reduce the diameter. . On the other hand, in other embodiments, the field lens and the image sensor are separate bodies with an air gap between them, so that this gap can be changed during focus adjustment during assembly. Moreover, due to this change in the interval, the angle of incidence of the principal ray on the photographing element does not change, and the angle of view does not change much.

実施例7.8は夫々第7図、第8図に示す構成で非球面
を3面用いたもので、結像面への光線入射角度と歪曲収
差の補正、更に非点収差なども良好に補正されている。
Examples 7 and 8 use three aspherical surfaces in the configurations shown in FIGS. 7 and 8, respectively, and are able to correct the angle of incidence of the rays on the imaging surface and distortion, as well as astigmatism. It has been corrected.

実施例7は、フィールドレンズが撮像素子と別体である
ので、このフィールドレンズの前後に非球面を設けであ
る。
In the seventh embodiment, since the field lens is separate from the image sensor, aspherical surfaces are provided before and after the field lens.

実施例8は、フィールドレンズでの片面を非球面とし、
絞より後のレンズ群中にもう1面非球面を設けた。これ
によってフィールドレンズの加工性をよくした。
In Example 8, one side of the field lens is aspherical,
Another aspherical surface was provided in the lens group behind the aperture. This improved the workability of the field lens.

これらレンズ系においてレンズ系内に設置された平行平
面板は、物体側から順に固体撮像素子において赤外波長
域の光をカットするための赤外カットフィルターおよび
モザイク式の固体撮像素子を用いた場合のモアレ防止用
の光学的ローパスフィルターである。ここで赤外カット
フィルターは、干渉フィルターでも吸収フィルターでも
よい、又吸収フィルターにコーティングをほどこしたも
のでもよい6更に通常観測波長以外の光なカツトするた
めのカットフィルターでもよい。
In these lens systems, the parallel plane plate installed in the lens system is used in order from the object side to the solid-state image sensor, in which an infrared cut filter and a mosaic type solid-state image sensor are used to cut light in the infrared wavelength range. This is an optical low-pass filter to prevent moiré. Here, the infrared cut filter may be an interference filter or an absorption filter, or may be an absorption filter coated with a coating.6 Furthermore, it may be a cut filter for cutting out light at wavelengths other than those for normal observation.

また光学的ローパスフィルターと光学フィルターの位置
は逆にしてもよく、各々のフィルターを組合わせたもの
を配置してもよい。
Further, the positions of the optical low-pass filter and the optical filter may be reversed, or a combination of each filter may be arranged.

またレーザー光治療時に、そのレーザー光を遮断するた
めのカットフィルターであってもよい。
It may also be a cut filter for blocking laser light during laser light therapy.

無論これらフィルターが必要なければ特に設けることは
なく、その特性も必要に応じたものを設置すればよい。
Of course, if these filters are not needed, there is no need to provide them, and it is sufficient to install filters whose characteristics match the needs.

なお、本発明は、モザイク式の固体撮像素子のみでなく
1面順次式固体撮像素子や他の撮像デバイス、通常のフ
ァイバースコープ等にも充分適用出来る。
Note that the present invention is fully applicable not only to mosaic-type solid-state imaging devices but also to one-plane sequential-type solid-state imaging devices, other imaging devices, ordinary fiberscopes, and the like.

また非球面レンズは、プラスチックや光学ガラス等の材
料を用いることが考えられるが、コスト加工性や、内視
鏡用対物レンズとして要求される耐薬品性等の耐性の点
を考慮するとガラスをモールド加工して製作することが
望ましい。
In addition, it is possible to use materials such as plastic or optical glass for the aspherical lens, but considering cost efficiency and resistance such as chemical resistance required for an objective lens for an endoscope, glass may be molded. It is desirable to process and manufacture it.

[発明の効果1 本発明の内視鏡用対物レンズは、モザイク式の固体撮像
素子を組合わせた場合でも色シェーデイングの発生を充
分抑えることが出来、更に歪曲収差の発生を押え又他の
諸収差も良好に補正した性能が良好で全長が短く小型で
広角なレンズ系である。
[Effect of the invention 1] The endoscope objective lens of the present invention can sufficiently suppress the occurrence of color shading even when a mosaic type solid-state image sensor is combined, and further suppress the occurrence of distortion and other aberrations. It is a compact, wide-angle lens system with a short overall length and excellent performance, with various aberrations well corrected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第8図は夫々本発明の内視鏡用対物レンズの
実施例1乃至実施例8の断面図、第9図乃至第16図は
夫々実施例1乃至実施例8の収差曲線図、第17図は本
発明の基本構成を示す図、第18図は非球面の形状を説
明する図、第19図は非球面と主光線との関係を示す図
、第20図は内視鏡用対物レンズで逆追跡をした際の光
線を示す図である。
1 to 8 are cross-sectional views of Examples 1 to 8 of the objective lens for an endoscope of the present invention, and FIGS. 9 to 16 are aberration curve diagrams of Examples 1 to 8, respectively. , Fig. 17 is a diagram showing the basic configuration of the present invention, Fig. 18 is a diagram explaining the shape of the aspherical surface, Fig. 19 is a diagram showing the relationship between the aspherical surface and the chief ray, and Fig. 20 is a diagram showing the shape of the aspherical surface. It is a figure which shows the light ray when reverse-tracing is carried out with the objective lens for.

Claims (1)

【特許請求の範囲】 明るさ絞りを挟んで負の屈折力の全群と正の屈折力の後
群とより構成され、前記後群の結像面近傍に像面に対し
て垂直に主光線が入射するように配置されたフィールド
レンズを有し、前記後群のフィールドレンズの近傍に非
球面を設けかつ次の条件(1)、(2)を満足する内視
鏡対物レンズ。 (1)0.5<f_A/f_a<10 (2)0.005f<|ΔZ_m_a_x|<0.15
fただしfは全系の焦点距離、f_Aはフィールドレン
ズの近傍に設けられた非球面レンズの焦点距離、f_a
は後群の合成焦点距離、ΔZ_m_a_xは最大像高へ
向かう主光線の前記非球面上の点での基準球面からの光
軸方向のずれ量である。
[Claims] It is composed of an entire group with negative refractive power and a rear group with positive refractive power, with an aperture diaphragm in between, and a principal ray is arranged perpendicularly to the image plane in the vicinity of the image formation plane of the rear group. An endoscope objective lens having a field lens arranged so that the field lens of the rear group is incident, an aspherical surface provided near the field lens of the rear group, and satisfying the following conditions (1) and (2). (1) 0.5<f_A/f_a<10 (2) 0.005f<|ΔZ_m_a_x|<0.15
f However, f is the focal length of the entire system, f_A is the focal length of the aspherical lens provided near the field lens, f_a
is the composite focal length of the rear group, and ΔZ_m_a_x is the amount of deviation in the optical axis direction from the reference spherical surface at a point on the aspherical surface of the principal ray heading toward the maximum image height.
JP23553989A 1989-09-13 1989-09-13 Objective lens for endoscope Pending JPH03100511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23553989A JPH03100511A (en) 1989-09-13 1989-09-13 Objective lens for endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23553989A JPH03100511A (en) 1989-09-13 1989-09-13 Objective lens for endoscope

Publications (1)

Publication Number Publication Date
JPH03100511A true JPH03100511A (en) 1991-04-25

Family

ID=16987480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23553989A Pending JPH03100511A (en) 1989-09-13 1989-09-13 Objective lens for endoscope

Country Status (1)

Country Link
JP (1) JPH03100511A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1020188A (en) * 1996-07-03 1998-01-23 Asahi Optical Co Ltd Photographing lens
JP2013250293A (en) * 2012-05-30 2013-12-12 Nikon Corp Imaging lens, optical device, and method for manufacturing imaging lens
JP5668059B2 (en) * 2010-06-01 2015-02-12 Hoya株式会社 Endoscope objective lens and endoscope
JP2017015893A (en) * 2015-06-30 2017-01-19 株式会社リコー Imaging optical system and imaging device
JP2019008251A (en) * 2017-06-28 2019-01-17 オリンパス株式会社 Endoscope objective optical system
US10527824B2 (en) 2012-07-06 2020-01-07 Largan Precision Co., Ltd. Optical image capturing system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1020188A (en) * 1996-07-03 1998-01-23 Asahi Optical Co Ltd Photographing lens
JP5668059B2 (en) * 2010-06-01 2015-02-12 Hoya株式会社 Endoscope objective lens and endoscope
US9140888B2 (en) 2010-06-01 2015-09-22 Hoya Corporation Objective lens for endoscope, and endoscope
EP2579083A4 (en) * 2010-06-01 2017-04-19 HOYA Corporation Objective lens for endoscope, and endoscope
JP2013250293A (en) * 2012-05-30 2013-12-12 Nikon Corp Imaging lens, optical device, and method for manufacturing imaging lens
US10527824B2 (en) 2012-07-06 2020-01-07 Largan Precision Co., Ltd. Optical image capturing system
US10890740B2 (en) 2012-07-06 2021-01-12 Largan Precision Co., Ltd. Optical image capturing system
US11360291B2 (en) 2012-07-06 2022-06-14 Largan Precision Co., Ltd. Optical image capturing system
US11789242B2 (en) 2012-07-06 2023-10-17 Largan Precision Co., Ltd. Optical image capturing system
JP2017015893A (en) * 2015-06-30 2017-01-19 株式会社リコー Imaging optical system and imaging device
JP2019008251A (en) * 2017-06-28 2019-01-17 オリンパス株式会社 Endoscope objective optical system

Similar Documents

Publication Publication Date Title
JP3625923B2 (en) Retro focus lens
KR100849797B1 (en) Wide-angle lens system
JP3547103B2 (en) Wide-angle imaging lens
JP3753842B2 (en) Super wide-angle lens system
US5162945A (en) Ocular lens system
JPH04275514A (en) Objective lens for endoscope
JP3573575B2 (en) Optical system
US20050168831A1 (en) Zoom Lens System
JPS6146807B2 (en)
JPH0256515A (en) Variable power lens
JP2000089105A (en) Objective optical system
US9778443B2 (en) Three-surface wide field-of-view lens system
JP3821330B2 (en) Zoom lens
JPH07270681A (en) Photographic lens
JP3295027B2 (en) Retrofocus type large aperture ratio wide-angle lens
CN209961992U (en) Optical system and imaging lens
JPH03100511A (en) Objective lens for endoscope
JPH085908A (en) Wide-angle lens
JP2572237B2 (en) Wide angle lens with long back focus
JPH0843731A (en) Wide converter lens
JP3450544B2 (en) Endoscope objective lens
JPH09203861A (en) Zoom lens
JPH0540220A (en) Image formation lens for image pickup
JPH0933802A (en) Wide-angle lens
US6449104B2 (en) Gaussian lens