JPH0933802A - Wide-angle lens - Google Patents

Wide-angle lens

Info

Publication number
JPH0933802A
JPH0933802A JP7186826A JP18682695A JPH0933802A JP H0933802 A JPH0933802 A JP H0933802A JP 7186826 A JP7186826 A JP 7186826A JP 18682695 A JP18682695 A JP 18682695A JP H0933802 A JPH0933802 A JP H0933802A
Authority
JP
Japan
Prior art keywords
lens
object side
wide
concave
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7186826A
Other languages
Japanese (ja)
Inventor
Masahiko Tanitsu
雅彦 谷津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7186826A priority Critical patent/JPH0933802A/en
Publication of JPH0933802A publication Critical patent/JPH0933802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve chromatic aberration performance and aberrations and distortion of the most circumferential part of a picture plane by composing a front lens group of a specific concave plastic lens and a rear lens group of a specific convex plastic lens and a convex-concave glass cemented glass lens. SOLUTION: This wide-angle lens consists of four lenses which are a 1st meniscus lens 1 having its concave surface on an image plane side, a 2nd meniscus lens having its concave surface on the object side, a 3rd biconvex lens 3, and a 4th meniscus lens 4 having its concave surface on the object side in order from the object side. Further, the 1st lens 1 is provided with an aspherical surface on its object side, the 2nd lens 2 is provided with an aspherical surface on its image plane side, and the 3rd lens 3 and 4th lens 4 are cemented into a glass lens. Consequently, a large aperture ratio is obtained, the lens is simplified into 4-lens-element constitution, and the chromatic aberration performance and the aberrations and distortion of the most circumferential part of the picture plane can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は広角レンズに関する。FIELD OF THE INVENTION The present invention relates to a wide-angle lens.

【0002】[0002]

【従来の技術】従来より比較的広画角の撮影レンズには
負の屈折力の前群と正の屈折力の後群の二つのレンズ群
を配置したいわゆるレトロフォーカス型を採用したもの
が多い。レトロフォーカス型の撮影レンズはバックフォ
ーカスを長く採れる長所があり前群で発散させた光束を
後群で収束させるレンズ構成を採っている為に球面収差
や非点収差,歪曲収差等の軸外収差の発生量が多い。一
般にこれらの諸収差を良好に補正するのはレンズ構成が
非対称である為、対称に近いガウス型の撮影レンズに比
べると大変難しい。
2. Description of the Related Art Conventionally, a photographic lens having a comparatively wide angle of view often adopts a so-called retrofocus type in which two lens groups, a front lens group having a negative refractive power and a rear lens group having a positive refractive power, are arranged. . The retrofocus type taking lens has an advantage that it can take a long back focus, and since it adopts a lens configuration that converges the light flux diverged in the front group in the rear group, off-axis aberrations such as spherical aberration, astigmatism, and distortion. There is a large amount of. In general, it is very difficult to satisfactorily correct these various aberrations as compared with a Gauss type taking lens, which is nearly symmetrical, because the lens configuration is asymmetric.

【0003】特にFナンバーを小さくし大口径比化を図
ろうとすると高次の球面収差が多く発生し又像面湾曲が
大きくなり画面全体の像面の平坦性が崩れ更に歪曲収差
が負の方向へ著しく増大してくる。
In particular, when an attempt is made to reduce the F number to achieve a large aperture ratio, a large amount of high-order spherical aberration occurs, the curvature of field increases, the flatness of the image surface of the entire screen is lost, and the distortion aberration becomes negative. To increase significantly.

【0004】明るさ及び撮影画角を一定に保ちつつ良好
なる光学性能を得るには例えばレンズ枚数を増加させる
か、あるいは前群と後群の双方の屈折力を弱める方法が
ある。しかし、これらの方法はいずれもレンズ全長が長
くなりレンズ系全体が大型化してくる。又バックフォー
カスを十分長く採る為には前群と後群との距離を増大さ
せれば良いが、あまり増大させるとレンズ全長が長くな
り撮影レンズの小型化を図るのが困難になってくる。
In order to obtain good optical performance while keeping the brightness and the photographing angle of view constant, for example, there is a method of increasing the number of lenses or weakening the refractive power of both the front group and the rear group. However, in all of these methods, the total lens length becomes long and the entire lens system becomes large. Further, in order to obtain a sufficiently long back focus, it is sufficient to increase the distance between the front group and the rear group, but if it is increased too much, the total lens length becomes long and it becomes difficult to miniaturize the taking lens.

【0005】Fナンバー2.8、撮影画角37〜38度
でレンズ枚数が比較的少ない5枚で構成したレトロフォ
ーカス型の撮影レンズが例えば特開昭54−12723
号公報、特開昭57−163212号公報中に記載され
ている。
An example of a retrofocus type photographic lens composed of five lenses having an F number of 2.8, a photographic field angle of 37 to 38 degrees, and a relatively small number of lenses is disclosed in, for example, Japanese Patent Laid-Open No. 54-12723.
JP-A-57-163212.

【0006】しかし、これらの公報で提案されている撮
影レンズは、レンズ枚数を少なくした為に画面中間にか
けて色のコマ収差や非点収差が残存しており、又画角が
大きくなるにつれて倍率色収差が増大している。
However, in the taking lenses proposed in these publications, chromatic coma and astigmatism remain in the middle of the screen because the number of lenses is reduced, and chromatic aberration of magnification increases as the angle of view increases. Is increasing.

【0007】これらの問題点を解決するために非球面を
用いた広角レンズが特開昭62−78520号公報中に
記載されている。しかし、この特開昭62−78520
号公報で提案されている非球面を有した広角レンズは、
レンズ枚数が依然5枚と多く、レンズ枚数の低減及び小
型化は達成されていなかった。
In order to solve these problems, a wide-angle lens using an aspherical surface is described in JP-A-62-78520. However, this Japanese Patent Laid-Open No. 62-78520
The wide-angle lens having an aspheric surface proposed in Japanese Patent Publication No.
The number of lenses is still as large as 5, and reduction of the number of lenses and downsizing have not been achieved.

【0008】一方、レンズ枚数が3枚構成のレトロフォ
ーカス型の撮影レンズが、特開平6−34878号と特
開平6−34879号と特開平6−82690号公報中
に記載されている。しかし、特開平6−34878号と
特開平6−34879号公報は、非球面が無いもののF
ナンバーが4〜5と大きく、大口径化は達成されていな
かった。また、特開平6−82690号公報は、Fナン
バーが1.4であるものの、非球面ガラスレンズ玉を3
枚用いており、低コスト化が達成されているとは考えら
れない。
On the other hand, a retrofocus type photographing lens having three lenses is described in JP-A-6-34878, JP-A-6-34879 and JP-A-6-82690. However, in JP-A-6-34878 and JP-A-6-34879, the F
The number was as large as 4 to 5, and the increase in diameter was not achieved. Further, in Japanese Patent Laid-Open No. 6-82690, although the F number is 1.4, the aspherical glass lens ball is 3
Since it uses a single sheet, it cannot be considered that the cost reduction has been achieved.

【0009】[0009]

【発明が解決しようとする課題】出願人は、前後群の焦
点距離の規定及び、非球面プラスチックレンズの導入に
よって、Fナンバー1.8を達成した対角画角74〜7
9度の広角レンズを特開平2−208617号公報で提
案している。この中では、凹レンズの前群と凸レンズ・
凹レンズ・凸レンズの後群で構成されたレンズ枚数4枚
の実施例と、凹レンズの前群と凸レンズ(アッベ数7
0)・凸レンズの後群で構成されたレンズ枚数3枚の実
施例を載せている。
The applicant has achieved an F-number of 1.8 by defining the focal lengths of the front and rear groups and introducing an aspherical plastic lens.
A 9-degree wide-angle lens is proposed in Japanese Patent Laid-Open No. 2-208617. Among these, the front group of concave lenses and the convex lens
An example in which the number of lenses is four, which is composed of a concave lens group and a convex lens rear group, and a concave lens front group and a convex lens (Abbe number 7
0) An example with three lenses, which is composed of a rear group of convex lenses, is shown.

【0010】ところで、色収差補正の基本は各レンズ群
にアッベ数の事なる凹凸レンズを用いることであるが、
前群が1枚レンズである場合は、軸上色収差と倍率色収
差の補正を独立に行うことができない。例えば、特開平
2−208617号公報の第3実施例では、軸上色収差
0.040mm、倍率色収差0.017mm(像高2.0m
m)である。また一般的に、広角レンズの歪曲収差は大
きくなりやすいが、特開平2−208617号公報の実
施例でも、通常のビデオカメラ用レンズの2倍以上の値
となっていた。
By the way, the basic of chromatic aberration correction is to use a concave-convex lens having a different Abbe number for each lens group.
When the front group is a single lens, axial chromatic aberration and lateral chromatic aberration cannot be corrected independently. For example, in the third embodiment of Japanese Patent Laid-Open No. 2-208617, the axial chromatic aberration is 0.040 mm, the lateral chromatic aberration is 0.017 mm (image height 2.0 m).
m). Further, generally, the distortion of a wide-angle lens tends to be large, but even in the example of Japanese Patent Laid-Open No. 2-208617, the value is twice or more that of a normal video camera lens.

【0011】一方で、需要が大きく伸びているパソコン
やワークステーションへの内蔵といった分野では、カラ
ー・画面全体の解像度・低歪曲化が重要な課題となる。
これに適用するレンズにとっては、色収差性能・画面最
周辺部の収差・歪曲収差の改善が課題である。さらに、
低コスト化のために、非球面をプラスチックレンズ玉の
みに設け、その非球面による収差補正を実現することが
課題である。
On the other hand, in fields such as built-in personal computers and workstations, for which demand is greatly increasing, important issues are color, resolution of the entire screen and low distortion.
For the lens applied to this, improvement of chromatic aberration performance, aberration at the outermost peripheral portion of the screen, and distortion is a problem. further,
In order to reduce the cost, it is a subject to provide an aspherical surface only on the plastic lens ball and realize aberration correction by the aspherical surface.

【0012】[0012]

【課題を解決するための手段】上記問題点を解決するた
めに本発明は、前群レンズ構成を物体側に非球面を設け
た凹プラスチックレンズとし、後群レンズ構成を、物体
側に凹面を向け像面側に非球面を設けたメニスカス形状
の凸プラスチックレンズと、凸・凹ガラス貼り合わせガ
ラスレンズとしたことである。更に、数1式で定義した
ベンディング係数Bをもとに、第2レンズの形状を数3
の条件を満足するように特定したことである。
In order to solve the above problems, the present invention uses a concave plastic lens having an aspherical surface on the object side as the front lens group structure, and a concave surface on the object side as the rear lens group structure. That is, a meniscus-shaped convex plastic lens having an aspherical surface on the image-side facing side and a convex / concave laminated glass lens. Further, based on the bending coefficient B defined by the formula 1, the shape of the second lens is calculated by the formula 3
That is, it was specified to satisfy the condition of.

【0013】[0013]

【数2】 B=(Rb+Ra)/(Rb−Ra)
…(数2) 但し、Raはレンズ玉の物体側の曲率半径、Rbは像面
側の曲率半径である。
## EQU00002 ## B = (Rb + Ra) / (Rb-Ra)
(Formula 2) where Ra is the radius of curvature of the lens side on the object side, and Rb is the radius of curvature on the image side.

【0014】[0014]

【数3】 −4<B2<−2
…(数3) この他の本発明の特徴は作用において記載される。
[Equation 3] -4 <B 2 <-2
(Equation 3) Other features of the present invention are described in operation.

【0015】[0015]

【作用】本発明の作用を図1をもとに説明する。The operation of the present invention will be described with reference to FIG.

【0016】図1は本発明を適用した広角レンズのレン
ズ構成を表す説明図である。
FIG. 1 is an explanatory view showing the lens structure of a wide-angle lens to which the present invention is applied.

【0017】同図で、1はプラスチックレンズで負の焦
点距離を有する第1レンズ、2はプラスチックレンズで
正の焦点距離を有する第2レンズ、3はガラスレンズで
正の焦点距離を有する第3レンズ、4はガラスレンズで
負の焦点距離を有する第4レンズ、5は絞り(又は固定
の開放絞り)、6はフィルタ・フェイスプレート等を一
つにまとめた平行平面板である。物体側より順に、像面
側に凹面を向けたメニスカスレンズ形状の第一レンズ
1、大きな空気空間をおいて、物体側に凹面を向けたメ
ニスカスレンズ形状の第2レンズ2、両凸の第3レンズ
3、物体側に凹面を向けたメニスカスレンズ形状の第4
レンズ4のレンズ構成4枚としている。さらに、第1レ
ンズ1の物体側に非球面を設け、第2レンズ2の像面側
に非球面を設け、第3レンズ3と第4レンズ4を貼り合
わせガラスレンズとしている。
In the figure, 1 is a plastic lens which is a first lens having a negative focal length, 2 is a plastic lens which is a second lens having a positive focal length, and 3 is a glass lens which is a third lens which has a positive focal length. Reference numeral 4 denotes a glass lens, which is a fourth lens having a negative focal length, 5 denotes a diaphragm (or a fixed open diaphragm), and 6 denotes a parallel plane plate in which a filter face plate and the like are integrated. In order from the object side, a meniscus lens-shaped first lens 1 having a concave surface facing the image side, a large meniscus lens-shaped second lens 2 having a concave surface facing the object side, and a biconvex third lens Lens 3, fourth meniscus lens shape concave on the object side
The lens configuration of the lens 4 is four. Further, an aspherical surface is provided on the object side of the first lens 1, an aspherical surface is provided on the image surface side of the second lens 2, and the third lens 3 and the fourth lens 4 are laminated to form a glass lens.

【0018】本発明では、前述のレンズ構成で広角レン
ズを構成すると共に前述の条件を満足させることによっ
て、大口径比でしかもレンズ枚数4枚という簡素化、更
に、色収差性能・画面最周辺部の収差・歪曲収差の改善
を図った広角レンズを達成している。
According to the present invention, by constructing the wide-angle lens with the above-mentioned lens configuration and satisfying the above-mentioned conditions, the simplification of a large aperture ratio and the number of lenses is 4, and further, the chromatic aberration performance and the peripheral portion of the screen are reduced. We have achieved a wide-angle lens with improved aberration and distortion.

【0019】実施例で数値を示すが、焦点距離が3.3
〜4.4mmと小さい広角レンズの場合、バックフォーカ
スを確保するために撮影レンズをレトロフォーカス型と
する必要がある。レトロフォーカス型の撮影レンズでは
絞りより前方の遠く離れたところに配置した負の第1レ
ンズ群での軸上光線の光線高さが小さく、逆に、主光線
の光線高さが大きくなっている。そして後方で絞りのす
ぐ後に配置した第2レンズ群での軸上光線の光線高さが
大きく、逆に、主光線の光線高さが小さくなっている。
従って、軸上光線の光線高さが大きい第2レンズ群で主
に軸上色収差が発生し、主光線の光線高さが大きい第1
レンズ群で主に倍率色収差が発生する。すなわち、軸上
色収差と倍率色収差を同時に補正するためには、第1レ
ンズ群と第2レンズ群に凹レンズと凸レンズを組み合わ
せて用いることが必要となる。しかし、レンズ枚数が増
えると、レンズ全体が大きく、長くなってしまう。通常
は、第1レンズ群を凹レンズ1枚で構成し、この上で軸
上色収差と倍率色収差のバランスを取っている。例え
ば、凹レンズの第1レンズ群と、凸レンズ・凹レンズ・
凸レンズの第2レンズ群で構成された特開平2−208
617号公報の第3実施例では、軸上色収差0.040
mm、倍率色収差0.017mm(像高2.0mm)である。
Numerical values are shown in the embodiment, but the focal length is 3.3.
In the case of a wide-angle lens as small as ~ 4.4 mm, it is necessary to use a retrofocus type photographing lens in order to secure the back focus. In the retrofocus type photographing lens, the ray height of the axial ray is small in the negative first lens group arranged far away in front of the diaphragm, and conversely, the ray height of the principal ray is large. . The ray height of the axial ray in the second lens group disposed immediately behind the stop at the rear is large, and conversely, the ray height of the principal ray is small.
Therefore, axial chromatic aberration mainly occurs in the second lens group in which the ray height of the axial ray is large, and the ray height of the principal ray is large in the first lens group.
Lateral chromatic aberration mainly occurs in the lens group. That is, in order to correct axial chromatic aberration and lateral chromatic aberration at the same time, it is necessary to use a concave lens and a convex lens in combination in the first lens group and the second lens group. However, as the number of lenses increases, the entire lens becomes larger and longer. Usually, the first lens group is composed of one concave lens, and the axial chromatic aberration and the lateral chromatic aberration are balanced on this. For example, a first lens group of concave lenses, a convex lens, a concave lens,
Japanese Unexamined Patent Publication (Kokai) No. 2-208 composed of a second lens group of convex lenses
In Example 3 of Japanese Patent No. 617, the axial chromatic aberration is 0.040.
mm, chromatic aberration of magnification 0.017 mm (image height 2.0 mm).

【0020】従って、高画素数センサと組み合わせて用
いる場合は、色収差性能の改善が必要とな。しかし、凸
レンズ・凹レンズ・凸レンズという第2レンズ群構成で
色収差補正を行うと、第2レンズ群の各レンズ玉の屈折
力が強くなり過ぎ、単色の収差自体が劣化してしまう。
また、仮に軸上色収差が低減できても、主光線高さが小
さい第2レンズ群では倍率色収差がなかなか低減できな
い。そこで、第2レンズ群の中でも少しでも主光線の光
線高さが大きい、絞りから離れたレンズを凹レンズとす
る為に、第2レンズ群のレンズ構成を凸レンズ・凸レン
ズ・凹レンズとすることが必要となる。このとき逆に、
この凹レンズでの軸上光線の光線高さが小さくなるの
で、軸上色収差の補正効果は小さくなる。従って、色収
差補正の為に第2レンズ群内の各レンズ玉の屈折力を大
きくすることが必要となる。このとき、凸レンズと凹レ
ンズをガラスの貼り合わせレンズとすることによって、
この凸レンズでの光線の全反射の防止することが必要と
なる。
Therefore, when used in combination with a high pixel count sensor, it is necessary to improve chromatic aberration performance. However, if the chromatic aberration correction is performed by the second lens group configuration of the convex lens, the concave lens, and the convex lens, the refracting power of each lens ball of the second lens group becomes too strong, and the monochromatic aberration itself deteriorates.
Even if the axial chromatic aberration can be reduced, the chromatic aberration of magnification cannot be easily reduced in the second lens group having a small chief ray height. Therefore, it is necessary to make the lens configuration of the second lens group a convex lens / convex lens / concave lens in order to make the lens away from the aperture stop which has a ray height of the principal ray as large as possible in the second lens group. Become. At this time, on the contrary,
Since the ray height of the axial ray at this concave lens becomes small, the effect of correcting axial chromatic aberration becomes small. Therefore, it is necessary to increase the refracting power of each lens in the second lens group in order to correct chromatic aberration. At this time, by using a glass-bonded lens for the convex lens and the concave lens,
It is necessary to prevent total reflection of light rays by this convex lens.

【0021】具体的には、実施例1,実施例2,実施例
3,実施例4に以下示すレンズデータで凸レンズ(第3
レンズ)と凹レンズ(第4レンズ)の間に間隔0の空気
層を挿入すると、周辺に向かう光束で凸レンズの像側の
レンズ面で全反射を起こす光線が生じる。この状態で
は、周辺光量比が大幅に劣化し、目標の仕様値を満足で
きない。従って、目標の周辺光量比を確保するため、凸
レンズ(第3レンズ)と凹レンズ(第4レンズ)を貼り
合わせレンズとすることが不可欠となっている。
Specifically, the convex lens (third lens) is used with the lens data shown in Examples 1, 2, 3, and 4 below.
If an air layer with a space of 0 is inserted between the lens) and the concave lens (fourth lens), a light beam that causes total reflection on the image-side lens surface of the convex lens is generated by the light flux traveling toward the periphery. In this state, the peripheral light amount ratio is significantly deteriorated, and the target specification value cannot be satisfied. Therefore, in order to secure a target peripheral light amount ratio, it is essential to use a convex lens (third lens) and a concave lens (fourth lens) as a cemented lens.

【0022】また、小形の広角レンズではレンズ玉径が
小さくなるので、ガラスレンズ玉の研磨加工が困難とな
りコストが上昇する。当初の目的は、このレンズ径の小
さなガラスレンズ玉をプラスチック化し、低コスト化及
びプラスチックレンズ面上の非球面効果によってレンズ
枚数自体も少なくすることであった。特に曲率半径が小
さい第1レンズ1のプラスチック化が最大の目的であっ
た。
Further, since the lens diameter of the small-sized wide-angle lens is small, it becomes difficult to polish the glass lens and the cost increases. The original purpose was to reduce the number of lenses themselves by making these glass lens balls with a small lens diameter into plastics, reducing the cost and aspherical effect on the plastic lens surface. In particular, the first purpose was to plasticize the first lens 1 having a small radius of curvature.

【0023】しかし、プラスチックレンズを使用する場
合は、凹と凸のプラスチックレンズを組み合わせて用い
る温度補償が必要となるので、残りの第2レンズ2がプ
ラスチックレンズと定まる。
However, when a plastic lens is used, temperature compensation using a combination of a concave and a convex plastic lens is required, so the remaining second lens 2 is determined as a plastic lens.

【0024】以上が本発明の基本レンズ構成についての
説明である。次に、プラスチックレンズである第2レン
ズ2の形状についての説明を行う。
The above is the description of the basic lens structure of the present invention. Next, the shape of the second lens 2 which is a plastic lens will be described.

【0025】温度補償を第1レンズ1と第2レンズ2で
行う為には、軸上光線の光線高さが小さい第1レンズ1
の屈折力を大きくし、軸上光線の光線高さが大きい第2
レンズ2の屈折力を小さくする必要がある。しかし、第
1レンズ1の屈折力を大きくすると必然的に第2レンズ
2での軸上光線の光線高さが大きくなるので、逆に、温
度補償の為には第1レンズ1の屈折力を小さくすること
が望ましい。一方、一定量のバックフォーカスを確保す
る為に、第1レンズ1の屈折力はあまり小さく出来な
い。そこで、第2レンズ2の屈折力を小さくし温度補償
を行う必要がある。
In order to perform temperature compensation by the first lens 1 and the second lens 2, the first lens 1 having a small axial ray height is used.
Second, which increases the refracting power of the beam and increases the axial ray height
It is necessary to reduce the refractive power of the lens 2. However, if the refracting power of the first lens 1 is increased, the ray height of the axial ray in the second lens 2 is inevitably increased, and conversely, the refracting power of the first lens 1 is increased for temperature compensation. It is desirable to make it small. On the other hand, the refractive power of the first lens 1 cannot be made too small in order to secure a certain amount of back focus. Therefore, it is necessary to reduce the refractive power of the second lens 2 to perform temperature compensation.

【0026】また、第2レンズ群は見かけ上、凸レンズ
2枚の基本構成となるので、収差補正の点で第2レンズ
群の屈折力を約2等分することが望ましい。また、特開
平2−208617号公報の第3実施例を例に取ると、
第2レンズ群の横倍率が0.8倍なので、第2レンズ2
の形状は物側に凹面を向けたメニスカス形状の凸レンズ
とすることが必要となる。具体的には、数3の条件を満
足するように第2レンズ2のベンディング係数B2を規
定することによって、良好な収差補正が可能となる。
Since the second lens group apparently has a basic structure of two convex lenses, it is desirable to divide the refractive power of the second lens group into two equal parts in terms of aberration correction. Further, taking the third embodiment of JP-A-2-208617 as an example,
Since the lateral magnification of the second lens group is 0.8, the second lens 2
It is necessary that the shape is a meniscus convex lens with a concave surface facing the object side. Specifically, by defining the bending coefficient B 2 of the second lens 2 so as to satisfy the condition of Expression 3, excellent aberration correction can be performed.

【0027】特に、本発明のレンズは歪曲収差をビデオ
カメラ同等の性能とすることも目標としているので、ベ
ンディング係数B2を大幅に負の値とすることが必要と
なる。先ず、歪曲収差を改善した場合での周辺光量比に
ついて説明し、次に、ベンディング係数B2について説
明する。
In particular, the lens of the present invention is aimed at making the distortion aberration equivalent to that of a video camera, so that it is necessary to make the bending coefficient B 2 a significantly negative value. First, the peripheral light amount ratio when the distortion is improved will be described, and then the bending coefficient B 2 will be described.

【0028】周辺光量比R(θ)は、数3式の開口効率
V(θ)を用い、数5で定義される。
The peripheral light amount ratio R (θ) is defined by Equation 5 using the aperture efficiency V (θ) of Equation 3.

【0029】[0029]

【数4】 V(θ)=S(θ)/S(0)×100 …(数4)V (θ) = S (θ) / S (0) × 100 (Equation 4)

【0030】[0030]

【数5】 R(θ)=V(θ)f2・sinθ・cosθ/〔y(dy/dθ)〕 …(数5) 但し、S(θ)は入射傾角θでレンズを通過する平行光
線束の光軸に垂直な断面積、S(0)は光軸に平行に入
射しレンズを通過する平行光線束の光軸に垂直な断面
積、fはレンズの焦点距離、yは入射傾角θに対応する
像高である。
[Equation 5] R (θ) = V (θ) f 2 · sin θ · cos θ / [y (dy / dθ)] (Equation 5) where S (θ) is a parallel light beam passing through the lens at the incident inclination angle θ. The cross-sectional area perpendicular to the optical axis of the bundle, S (0) is the cross-sectional area perpendicular to the optical axis of the parallel ray bundle that is incident parallel to the optical axis and passes through the lens, f is the focal length of the lens, and y is the incident tilt angle θ. Is the image height corresponding to.

【0031】レトロフォーカス型レンズは一般的に歪曲
収差が負の大きな値となるので、入射傾角θが大きくな
っても、像高yはあまり大きくならない。即ち、dy/
dθが小さな値となり、周辺光量比R(θ)を大きくで
きる。一方、歪曲収差が小さい場合は、y=tanθなの
で、周辺光量比R(θ)は数6となる。
Since the distortion of a retrofocus lens generally has a large negative value, the image height y does not increase so much even if the incident tilt angle θ increases. That is, dy /
dθ has a small value, and the peripheral light amount ratio R (θ) can be increased. On the other hand, when the distortion is small, y = tan θ, and thus the peripheral light amount ratio R (θ) is given by the formula 6.

【0032】[0032]

【数6】 R(θ)=V(θ)・cos4θ
…(数6) ここで仮に、水平画角60度を得るには、1/3インチ
センサの場合でレンズの焦点距離fが4.2mm(=2.
4mm/tan30°)となる。このとき、センサの最周辺
部(3.0mm)ではθ=36°なのでcos4θ=0.43
となる。従って、周辺光量比R(θ)≒60%を得るに
は、開口効率V(θ)≒140%が必要となる。即ち、
軸上光線の光束の約1.4倍もの周辺光線の光束が通過
することとなる。
[Equation 6] R (θ) = V (θ) · cos 4 θ
(Equation 6) Assuming that a horizontal angle of view of 60 degrees is obtained, the focal length f of the lens is 4.2 mm (= 2.
4 mm / tan 30 °). At this time, cos 4 θ = 0.43 because θ = 36 ° at the outermost part (3.0 mm) of the sensor.
Becomes Therefore, in order to obtain the peripheral light amount ratio R (θ) ≈60%, the aperture efficiency V (θ) ≈140% is required. That is,
About 1.4 times as many marginal rays as the on-axis rays will pass.

【0033】ところで、光束が第1レンズ1で発散した
のち第2レンズ2を通過しほぼ平行となるので、第2レ
ンズ2での光束の断面積は第1レンズ1での値に比べて
大きくなる。従って、収差補正のためには第2レンズ2
の形状を最適な形状とする必要がある。特に、開口効率
のために周辺光線の光束を優先した形状に定める必要が
あるので、よりメニスカス形状を強調したベンディング
係数B2とすることが不可欠となる。
By the way, since the light beam diverges from the first lens 1 and then passes through the second lens 2 and becomes substantially parallel, the cross-sectional area of the light beam at the second lens 2 is larger than the value at the first lens 1. Become. Therefore, in order to correct the aberration, the second lens 2
It is necessary to make the shape of the optimum shape. In particular, since it is necessary to determine the shape of the light flux of the marginal rays for the sake of aperture efficiency, it is indispensable to set the bending coefficient B 2 that further emphasizes the meniscus shape.

【0034】[0034]

【実施例】以下、本発明の実施例として、F2.8で水
平画角60°の広角レンズでの1/4インチCCDセン
サ用の数値実施例1と2と、1/3インチCCDセンサ
用の数値実施例3と4を示す。数値実施例でr(i)は
物体側より順に第i番目のレンズ面S(i)の曲率半
径、d(i)はレンズ面S(i)からレンズ面S(i+
1)の間の光軸上の距離、N(j)とν(j)はそれぞ
れ物体側より順に第j番目のレンズの屈折率とアッベ数
である。画角は実光線で対角画角を表した。また、非球
面形状は、光軸方向のサグ量Zで表され、光軸からの高
さh、近軸の曲率半径r、円錐定数K、4次,6次,8
次,10次の非球面項の係数を用い、数7で定義され
る。
EXAMPLES As examples of the present invention, numerical examples 1 and 2 for a 1/4 inch CCD sensor and a 1/3 inch CCD sensor with a wide-angle lens of F2.8 and a horizontal angle of view of 60 ° will be described below. Numerical Examples 3 and 4 are shown. In the numerical example, r (i) is the radius of curvature of the i-th lens surface S (i) in order from the object side, and d (i) is the lens surface S (i) to the lens surface S (i +).
The distance on the optical axis between 1), N (j) and ν (j) are the refractive index and the Abbe number of the j-th lens in order from the object side. The angle of view represents the diagonal angle of view with a real ray. Further, the aspherical shape is represented by the sag amount Z in the optical axis direction, and the height h from the optical axis, the paraxial radius of curvature r, the conic constant K, the fourth order, the sixth order, and the eighth order
It is defined by Equation 7 using the coefficients of the aspheric terms of the 10th and 10th orders.

【0035】[0035]

【数7】 Z=(h2/r)/{1+√〔{1−(K+1)h2/r2〕} +A44+A66+A88+A1010 …(数7) (記号:√〔 〕は、〔 〕内の量に就き平方根を取る
ことを意味する) 〔数値実施例 1〕 f=3.28 FNO.=1:2.91 2W=73.0° S r d N ν 1 85.000 0.900 1.49200 57.9 2 2.325 1.770 3 (絞り) 1.715 4 −5.819 0.610 1.49200 57.9 5 −2.523 0.200 6 8.100 2.210 1.71300 53.9 7 −3.150 0.500 1.84666 23.9 8 −10.439 2.015 9 ∞ 3.800 1.52307 58.5 10 ∞ 第1面は非球面であり、数4の係数は以下の通りであ
る。
Z = (h 2 / r) / {1 + √ [{1- (K + 1) h 2 / r 2 ]} + A 4 h 4 + A 6 h 6 + A 8 h 8 + A 10 h 10 (Equation 7) ) (Symbol: √ [] means to take the square root for the amount in []) [Numerical Example 1] f = 3.28 FNO. = 1: 2.91 2W = 73.0 ° S rd N ν 1 85.000 0.900 1.49200 57.9 2 2.325 1.770 3 (aperture) 1.715 4 −5.819 0 .610 1.49200 57.9 5 −2.523 0.200 6 8.100 2.210 1.71300 53.9 7 −3.150 0.500 1.846666 23.9 8 −10439 2. 015 9 ∞ 3.800 1.52307 58.5 10 ∞ The first surface is an aspherical surface, and the coefficient of Equation 4 is as follows.

【0036】 K=0.0 A4=3.469÷1026=−6.580÷1038=1.042÷10310=−6.880÷105 第2面も非球面であり、数4の係数は以下の通りであ
る。
K = 0.0 A 4 = 3.469 / 10 2 A 6 = -6.580 / 10 3 A 8 = 1.042 / 10 3 A 10 = -6.880 / 10 5 The second surface also It is an aspherical surface, and the coefficient of Equation 4 is as follows.

【0037】 K=8.884÷1024=5.769÷1026=1.473÷1028=−1.196÷10210=6.568÷103 第5面も非球面であり、数4の係数は以下の通りであ
る。
K = 8.884 ÷ 10 2 A 4 = 5.769 ÷ 10 2 A 6 = 1.473 ÷ 10 2 A 8 = -1.196 ÷ 10 2 A 10 = 6.568 / 10 3rd 5th The surface is also an aspherical surface, and the coefficient of Equation 4 is as follows.

【0038】 K=−0.2362 A4=1.572÷1046=2.829÷1058=1.087÷10510=−1.341÷105 〔数値実施例 2〕 f=3.26 FNO.=1:2.91 2W=73.2° S r d N ν 1 27.000 0.900 1.49200 57.9 2 2.203 1.770 3 (絞り) 1.715 4 −4.454 1.630 1.49200 57.9 5 −2.430 0.200 6 7.265 2.340 1.71300 53.9 7 −3.200 0.500 1.84666 23.9 8 −10.968 2.015 9 ∞ 3.800 1.52307 58.5 10 ∞ 第1面は非球面であり、数4の係数は以下の通りであ
る。
K = −0.2362 A 4 = 1.572 ÷ 10 4 A 6 = 2.829 ÷ 10 5 A 8 = 1.087 ÷ 10 5 A 10 = −1.341 ÷ 10 5 [Numerical Example 2] f = 3.26 FNO. = 1: 2.91 2W = 73.2 ° S rd N ν 1 27.000 0.900 1.49200 57.9 2 2.203 1.770 3 (aperture) 1.715 4 −4.4454 1 .630 1.49200 57.9 5 -2.430 0.200 6 7.265 2.340 1.71300 53.9 7 -3.200 0.500 1.846666 23.9 8 -10.96 2. 015 9 ∞ 3.800 1.52307 58.5 10 ∞ The first surface is an aspherical surface, and the coefficient of Equation 4 is as follows.

【0039】 K=0.0 A4=3.310÷1026=−5.774÷1038=7.178÷10410=−1.609÷105 第2面も非球面であり、数4の係数は以下の通りであ
る。
K = 0.0 A 4 = 3.310 ÷ 10 2 A 6 = −5.774 ÷ 10 3 A 8 = 7.178 ÷ 10 4 A 10 = −1.609 ÷ 10 5 The second surface is also It is an aspherical surface, and the coefficient of Equation 4 is as follows.

【0040】 K=5.517÷1024=5.619÷1026=1.735÷1028=−1.645÷10210=8.572÷103 第5面も非球面であり、数4の係数は以下の通りであ
る。
K = 5.517 ÷ 10 2 A 4 = 5.619 ÷ 10 2 A 6 = 1.735 ÷ 10 2 A 8 = −1.645 ÷ 10 2 A 10 = 8.572 ÷ 10 3 Fifth The surface is also an aspherical surface, and the coefficient of Equation 4 is as follows.

【0041】 K=−0.3515 A4=−7.586÷1046=−1.408÷1048=2.672÷10510=−1.997÷105 〔数値実施例 3〕 f=4.35 FNO.=1:2.91 2W=73.2° S r d N ν 1 64.885 0.980 1.49200 57.9 2 3.377 2.700 3 (絞り) 1.900 4 −5.534 2.100 1.49200 57.9 5 −3.161 0.200 6 9.095 3.000 1.71300 53.9 7 −4.120 1.000 1.84666 23.9 8 −14.624 2.500 9 ∞ 4.500 1.52307 58.5 10 ∞ 第1面は非球面であり、数4の係数は以下の通りであ
る。
K = -0.3515 A 4 = -7.586 / 10 4 A 6 = -1.408 / 10 4 A 8 = 2.672 / 10 5 A 10 = -1.997 / 10 5 [Numerical value Example 3] f = 4.35 FNO. = 1: 2.91 2W = 73.2 ° S rd N ν 1 64.885 0.980 1.49200 57.9 2 3.377 2.700 3 (aperture) 1.900 4 −5.5342 .100 1.49200 57.9 5 -3.161 0.200 6 9.095 3.000 1.71300 53.9 7 -4.120 1.000 1.846666 23.9 8 -14.624 2. 500 9 ∞ 4.500 1.52307 58.5 10 ∞ The first surface is an aspherical surface, and the coefficient of Equation 4 is as follows.

【0042】 K=317.8 A4=1.892÷1026=−2.091÷1038=1.840÷10410=−5.836÷10 第2面も非球面であり、数4の係数は以下の通りであ
る。
K = 317.8 A 4 = 1.892 ÷ 10 2 A 6 = −2.091 ÷ 10 3 A 8 = 1.840 / 10 4 A 10 = −5.836 ÷ 10 6 The second surface is also It is an aspherical surface, and the coefficient of Equation 4 is as follows.

【0043】 K=0.8639 A=2.625÷1026=4.075÷1038=−2.295÷10310=6.163÷104 第5面も非球面であり、数4の係数は以下の通りであ
る。
K = 0.8639 A 4 = 2.625 / 10 2 A 6 = 4.075 / 10 3 A 8 = -2.295 / 10 3 A 10 = 6.163 / 10 4 The fifth surface is also non- It is a spherical surface, and the coefficient of Equation 4 is as follows.

【0044】 K=−1.600÷1024=8.866÷1046=1.573÷1048=−1.351÷10510=1.734÷106 〔数値実施例 4〕 f=4.36 FNO.=1:2.91 2W=73.3° S r d N ν 1 4.438 0.980 1.49200 57.9 2 1.796 2.849 3 (絞り) 1.950 4 −6.128 2.200 1.49200 57.9 5 −3.216 0.200 6 9.263 3.260 1.71300 53.9 7 −4.335 0.500 1.84666 23.9 8 −15.150 3.000 9 ∞ 4.500 1.52307 58.5 10 ∞ 第1面は非球面であり、数4の係数は以下の通りであ
る。
K = -1.600 / 10 2 A 4 = 8.866 / 10 4 A 6 = 1.573 / 10 4 A 8 = -1.351 / 10 5 A 10 = 1.734 / 10 6 [ Numerical Example 4] f = 4.36 FNO. = 1: 2.91 2W = 73.3 ° S rd N ν 1 4.438 0.980 1.49200 57.9 2 1.796 2.849 3 (aperture) 1.950 4-6.128 2 .200 1.49200 57.9 5 -3.216 0.200 6 9.263 3.260 1.71300 53.97 -4.335 0.500 1.846666 23.9 8-15.150 3. 000 9 ∞ 4.500 1.52307 58.5 10 ∞ The first surface is an aspherical surface, and the coefficient of Equation 4 is as follows.

【0045】 K=1.827 A4=5.002÷1046=−3.620÷1048=8.720÷10510=−1.656÷105 第5面も非球面であり、数4の係数は以下の通りであ
る。
K = 1.827 A 4 = 5.002 ÷ 10 4 A 6 = −3.620 ÷ 10 4 A 8 = 8.720 / 10 5 A 10 = −1.656 ÷ 10 5 Also on the fifth surface It is an aspherical surface, and the coefficient of Equation 4 is as follows.

【0046】 K=1.542÷1024=1.146÷1036=1.159÷1048=−7.620÷10610=2.194÷106 また、数3の条件に対する本発明の数値実施例との関係
は、以下の通りである。
K = 1.542 ÷ 10 2 A 4 = 1.146 ÷ 10 3 A 6 = 1.159 ÷ 10 4 A 8 = −7.620 ÷ 10 6 A 10 = 2.194 ÷ 10 6 The relationship between the numerical example of the present invention and the condition of Expression 3 is as follows.

【0047】 一方、第2レンズの焦点距離f2と第3・4貼り合わせ
レンズの焦点距離f34の各数値実施例での値は以下の通
りであるが、第2レンズ群の屈折力を約2等分している
ことが分かる。
[0047] On the other hand, the values of the focal length f 2 of the second lens and the focal length f 34 of the third and fourth cemented lenses in each numerical example are as follows, but the refracting power of the second lens group is about 2 or the like. You can see that you are sharing.

【0048】 また、本発明の改善点である色収差補正結果について
も、以下に示す。
[0048] The results of chromatic aberration correction, which is an improvement of the present invention, are also shown below.

【0049】 実施例No. 軸上色収差(mm) 倍率色収差(mm) 1 −0.009 0.008(像高1.8mm) 2 −0.004 0.007(像高1.8mm) 3 −0.013 0.010(像高2.3mm) 4 0.013 0.011(像高2.3mm) 撮影距離2mでの各数値実施例に関する収差図を図2,
図4,図6,図8に示す。左側の2列がコマ収差図であ
り、下から順に相対像高0,0.3,0.6,0.9,1
の各5ポイントでのコマ収差を表す。残りは球面収差,
正弦条件,非点収差そして、歪曲収差をそれぞれ表して
いる。収差図座標の最大値は、コマ収差が±0.02m
m、球面収差・正弦条件・非点収差が±0.05mm、歪
曲収差が±10%である。また、コマ収差の表示では、
周辺部の開口効率が100%を超えているので、その分
Fナンバーを小さくしてコマ収差を表示している。具体
的には、数値実施例1の図2ではFナンバー1.8、数
値実施例2の図4ではFナンバー1.8、数値実施例3
の図6ではFナンバー2.2、数値実施例4の図8では
Fナンバー2.55とそれぞれ、設定Fナンバーを小さ
くした収差図を示した。尚、球面収差と正弦条件では、
各数値実施例でのFナンバーそのままを用いて収差図を
表示した。これらの収差図から明らかなように、各数値
実施例のレンズは100%を超える開口効率を有し、且
つ、性能良好であることが分かる。
Example No. Axial chromatic aberration (mm) Magnification chromatic aberration (mm) 1 -0.009 0.008 (image height 1.8 mm) 2 -0.004 0.007 (image height 1.8 mm) 3 -0.013 0.010 ( Image height 2.3 mm) 4 0.013 0.011 (Image height 2.3 mm) Aberration diagrams for each numerical example at a shooting distance of 2 m are shown in FIG.
This is shown in FIGS. 4, 6 and 8. The two columns on the left side are coma aberration diagrams, and the relative image heights are 0, 0.3, 0.6, 0.9, 1 in order from the bottom.
Represents the coma aberration at each of 5 points. The rest is spherical aberration,
The sine condition, astigmatism, and distortion are shown respectively. The maximum value of the aberration diagram coordinate is ± 0.02m for coma.
m, spherical aberration, sine condition, astigmatism ± 0.05 mm, distortion ± 10%. Also, in the display of coma aberration,
Since the aperture efficiency of the peripheral portion exceeds 100%, the coma aberration is displayed by reducing the F number accordingly. Specifically, in the numerical example 1 of FIG. 2, the F number is 1.8, and in the numerical example 2 of FIG. 4, the F number is 1.8 and the numerical example 3
6 shows an F number of 2.2, and FIG. 8 of Numerical Example 4 shows an F number of 2.55, respectively. In addition, in spherical aberration and sine conditions,
Aberration diagrams are displayed using the F numbers as they are in each numerical example. As is clear from these aberration diagrams, it is understood that the lenses of each numerical example have an aperture efficiency of more than 100% and good performance.

【0050】尚、実施例ではFナンバー2.8として広
角レンズの数値実施例を示したが、周辺光量比がビデオ
カメラのワイド端の値30〜40%同等でも充分な用途
では、絞りの径を大きくし、大口径化を図ることも可能
である。例えば、数値実施例3で、周辺光量比が40%
となるまで絞りの径を大きくしていくと、Fナンバー
2.2の広角レンズが得られる。
In the embodiment, a numerical example of a wide-angle lens is shown with an F number of 2.8, but in the case where the peripheral light quantity ratio is equivalent to 30 to 40% at the wide end of the video camera, the aperture diameter is sufficient. It is also possible to increase the diameter to increase the diameter. For example, in Numerical Example 3, the peripheral light amount ratio is 40%.
A wide-angle lens with an F number of 2.2 can be obtained by increasing the diameter of the diaphragm until it becomes.

【0051】また、各数値実施例では、カラー用ビデオ
カメラ対応のレンズ構成図及び収差図を示したが、白黒
用ビデオカメラ対応でも良好な性能を実現できることは
当然である。
In each numerical example, the lens configuration diagram and the aberration diagram corresponding to the color video camera are shown, but it is natural that good performance can be realized even for the black and white video camera.

【0052】以上、プラスチックレンズを第1レンズ1
と第2レンズ2に使用した本発明について説明したが、
当然、プラスチックレンズをガラスレンズとしても、良
好な性能が得られることは言うまでもない。
As described above, the plastic lens is the first lens 1
The present invention used for the second lens 2 has been described above.
It goes without saying that good performance can be obtained even if the plastic lens is a glass lens.

【0053】[0053]

【発明の効果】本発明の方法によれば、Fナンバー2.
8、画角69°程度の良好に収差補正を行った写真用や
ビデオカメラ等に好適な広角レンズを達成することがで
きる。特に、色収差性能も改善できるので高解像度用の
高画素数センサに対応可能な広角レンズを達成すること
ができる。
According to the method of the present invention, the F number 2.
8. It is possible to achieve a wide-angle lens suitable for photographic use, video camera, etc., in which the aberration is satisfactorily corrected with an angle of view of about 69 °. In particular, since the chromatic aberration performance can also be improved, it is possible to achieve a wide-angle lens that is compatible with a high-resolution sensor with a high number of pixels.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の数値実施例1のレンズの説明図。FIG. 1 is an explanatory diagram of a lens according to Numerical Example 1 of the present invention.

【図2】本発明の数値実施例1のd線に対するコマ収
差,球面収差,正弦条件,非点収差,歪曲収差を表す収
差の説明図。
FIG. 2 is an explanatory diagram of aberrations representing a coma aberration, a spherical aberration, a sine condition, an astigmatism, and a distortion aberration with respect to a d-line in Numerical Example 1 of the present invention.

【図3】本発明の数値実施例2のレンズの説明図。FIG. 3 is an explanatory diagram of a lens according to Numerical Example 2 of the present invention.

【図4】本発明の数値実施例2のd線に対するコマ収
差,球面収差,正弦条件,非点収差,歪曲収差を表す収
差の説明図。
FIG. 4 is an explanatory diagram of aberrations representing a coma aberration, a spherical aberration, a sine condition, an astigmatism, and a distortion aberration with respect to a d-line according to Numerical Example 2 of the present invention.

【図5】本発明の数値実施例3のレンズの説明図。FIG. 5 is an explanatory diagram of a lens according to Numerical Example 3 of the present invention.

【図6】本発明の数値実施例3のd線に対するコマ収
差,球面収差,正弦条件,非点収差,歪曲収差を表す収
差の説明図。
FIG. 6 is an explanatory diagram of aberrations representing a coma aberration, a spherical aberration, a sine condition, an astigmatism, and a distortion for a d-line in Numerical Example 3 of the present invention.

【図7】本発明の数値実施例4のレンズの説明図。FIG. 7 is an explanatory diagram of a lens according to Numerical Example 4 of the present invention.

【図8】本発明の数値実施例4のd線に対するコマ収
差,球面収差,正弦条件,非点収差,歪曲収差を表す収
差の説明図。
FIG. 8 is an explanatory diagram of aberrations representing a coma aberration, a spherical aberration, a sine condition, an astigmatism, and a distortion aberration with respect to a d-line according to Numerical Example 4 of the present invention.

【符号の説明】[Explanation of symbols]

1…第1レンズ、2…第2レンズ、3…第3レンズ、4
…第4レンズ、5…絞り、6…平行平面板。
1 ... 1st lens, 2 ... 2nd lens, 3 ... 3rd lens, 4
... 4th lens, 5 ... diaphragm, 6 ... plane parallel plate.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】物体側より順に、負の焦点距離を有する第
1レンズと、大きな空気空間をおいて、正の焦点距離を
有する第2レンズと、正の焦点距離を有する第3レンズ
と、負の焦点距離を有する第4レンズを備えたレンズ系
において、 上記第1レンズを物体側に非球面を設けたプラスチック
レンズとし、上記第2レンズを像面側に非球面を設けた
プラスチックレンズとし、上記第3レンズと上記第4レ
ンズを貼り合わせガラスレンズとしたことを特徴とする
広角レンズ。
1. A first lens having a negative focal length, a second lens having a positive focal length in a large air space, and a third lens having a positive focal length in order from the object side. In a lens system including a fourth lens having a negative focal length, the first lens is a plastic lens having an aspheric surface on the object side, and the second lens is a plastic lens having an aspheric surface on the image side. A wide-angle lens, wherein the third lens and the fourth lens are laminated glass lenses.
【請求項2】上記第1レンズが像面側に凹面を向けたメ
ニスカスレンズ形状の負の焦点距離を有するレンズ、上
記第2レンズが物体側に凹面を向けたメニスカスレンズ
形状の正の焦点距離を有するレンズである請求項1に記
載の広角レンズ。
2. A lens having a meniscus lens-shaped negative focal length in which the first lens has a concave surface facing the image side, and a second lens has a meniscus lens-shaped positive focal length in which a concave surface faces the object side. The wide-angle lens according to claim 1, which is a lens having a.
【請求項3】上記第2レンズのベンディング係数をB2
とするとき、以下の条件を満足することを特徴とする請
求項1に記載の広角レンズ。 【数1】 −4<B2<−2
…(数1) 但し、ベンディング係数Bは、レンズ玉の物側の曲率半
径Raと像側の曲率半径Rbを用いて、B=(Rb+R
a)/(Rb−Ra)で定義する。
3. The bending coefficient of the second lens is B 2
The wide-angle lens according to claim 1, wherein the following condition is satisfied. [Equation 1] -4 <B 2 <-2
(Equation 1) However, the bending coefficient B is B = (Rb + R) using the curvature radius Ra on the object side of the lens ball and the curvature radius Rb on the image side.
a) / (Rb-Ra).
JP7186826A 1995-07-24 1995-07-24 Wide-angle lens Pending JPH0933802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7186826A JPH0933802A (en) 1995-07-24 1995-07-24 Wide-angle lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7186826A JPH0933802A (en) 1995-07-24 1995-07-24 Wide-angle lens

Publications (1)

Publication Number Publication Date
JPH0933802A true JPH0933802A (en) 1997-02-07

Family

ID=16195295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7186826A Pending JPH0933802A (en) 1995-07-24 1995-07-24 Wide-angle lens

Country Status (1)

Country Link
JP (1) JPH0933802A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318876A (en) * 1996-03-22 1997-12-12 Nikon Corp Projecting lens system and projection device provided with the system
JP2001159732A (en) * 1999-12-02 2001-06-12 Nikon Corp Super wide angle lens and photographic device having the lens
US7041958B2 (en) 2003-02-05 2006-05-09 Canon Kabushiki Kaisha Lens system and image-taking apparatus having the same
US7548385B2 (en) * 2006-11-06 2009-06-16 Hoya Corporation Wide-angle lens system
JP2013007968A (en) * 2011-06-27 2013-01-10 Optical Logic Inc Image pickup lens
KR101356401B1 (en) * 2012-04-23 2014-01-29 주식회사 엔투에이 Wide-angle lens system
CN104678535A (en) * 2015-02-11 2015-06-03 福建福光数码科技有限公司 High-resolution day and night dual-purpose economic miniature lens
US11269159B2 (en) 2017-09-14 2022-03-08 Zhejiang Sunny Optical Co., Ltd. Optical imaging lens assembly
CN115407480A (en) * 2022-05-18 2022-11-29 福建福光天瞳光学有限公司 Lightweight security lens and imaging method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318876A (en) * 1996-03-22 1997-12-12 Nikon Corp Projecting lens system and projection device provided with the system
JP2001159732A (en) * 1999-12-02 2001-06-12 Nikon Corp Super wide angle lens and photographic device having the lens
US7041958B2 (en) 2003-02-05 2006-05-09 Canon Kabushiki Kaisha Lens system and image-taking apparatus having the same
US7161132B2 (en) 2003-02-05 2007-01-09 Canon Kabushiki Kaisha Lens system and image-taking apparatus having the same
US7548385B2 (en) * 2006-11-06 2009-06-16 Hoya Corporation Wide-angle lens system
JP2013007968A (en) * 2011-06-27 2013-01-10 Optical Logic Inc Image pickup lens
KR101356401B1 (en) * 2012-04-23 2014-01-29 주식회사 엔투에이 Wide-angle lens system
CN104678535A (en) * 2015-02-11 2015-06-03 福建福光数码科技有限公司 High-resolution day and night dual-purpose economic miniature lens
US11269159B2 (en) 2017-09-14 2022-03-08 Zhejiang Sunny Optical Co., Ltd. Optical imaging lens assembly
CN115407480A (en) * 2022-05-18 2022-11-29 福建福光天瞳光学有限公司 Lightweight security lens and imaging method thereof

Similar Documents

Publication Publication Date Title
US7193793B2 (en) Imaging lens
JP4744184B2 (en) Super wide angle lens
US6844991B2 (en) Fisheye lens
JPH11142730A (en) Image pickup lens
JP3983855B2 (en) Shooting lens
JPH11125767A (en) Photographic lens system
JPH0827430B2 (en) Two-group zoom lens
JP2992547B2 (en) Super wide angle lens
JP2717552B2 (en) Telecentric projection lens
JPH085908A (en) Wide-angle lens
JPH0792542B2 (en) Triplet lens system after diaphragm
JPH0933802A (en) Wide-angle lens
JP3642465B2 (en) Photo lens for electronic still camera
JPH07168095A (en) Triplet lens
JPH0763986A (en) Large aperture super-wide angle lens system
JPH07104183A (en) Bright triplet lens
JPH09127413A (en) Large-diameter superwide angle lens system
JPH09218350A (en) Retrofocus type lens
JP3038974B2 (en) Small wide-angle lens
JPH1184230A (en) Compact wide-angle lens
JP4725156B2 (en) Wide converter
JPH1078545A (en) Wide angle lens
JPH06109983A (en) Wide visual field ocular lens
JPH05134175A (en) Compact wide angle lens
JPH03230112A (en) Projection lens system