JPH0339493A - Water electrolyzing equipment - Google Patents

Water electrolyzing equipment

Info

Publication number
JPH0339493A
JPH0339493A JP1174208A JP17420889A JPH0339493A JP H0339493 A JPH0339493 A JP H0339493A JP 1174208 A JP1174208 A JP 1174208A JP 17420889 A JP17420889 A JP 17420889A JP H0339493 A JPH0339493 A JP H0339493A
Authority
JP
Japan
Prior art keywords
gas
water
grooves
separators
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1174208A
Other languages
Japanese (ja)
Other versions
JP2706320B2 (en
Inventor
Choichi Furuya
長一 古屋
Kuninobu Ichikawa
市川 国延
Ko Wada
和田 香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1174208A priority Critical patent/JP2706320B2/en
Publication of JPH0339493A publication Critical patent/JPH0339493A/en
Application granted granted Critical
Publication of JP2706320B2 publication Critical patent/JP2706320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To impart constant water content to an electrolytic membrane by providing both a hydrophilic reaction layer and a hydrophobic gas diffusion layer on a gas diffusion electrode and providing the grooves for supplying water or steam between the gas recovering grooves in the gas separators. CONSTITUTION:The gas diffusion electrodes (anode and cathode) 2, 3 are joined to both sides of a solid high molecular electrolytic membrane 1 in a water electrolyzing equipment. Therein the electrically-conductive gas separators 6, 9 provided with the gases oxygen and hydrogen recovering grooves 7, 10 are closely stuck to the rears of the electrodes 2, 3. The conductors are drawn out from the gaseous separators 6, 9 and connected to a power source. In the electrodes 2, 3, the hydrophilic reaction layers 4 are provided to the sides touching the electrolytic membrane 1 and the hydrophobic gas diffusing layers 5 are provided to the sides of the gas separaters 6, 9. In the gas separators 6, 9, the grooves 8, 11 for supplying water or steam are provided between the gas recovering grooves 7, 10. Thereby, electrolysis of water steadily is continued.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、固体高分子電解質膜を用いる水電解装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a water electrolysis device using a solid polymer electrolyte membrane.

(従来の技術) 従来、イオン交換樹脂や液体電解質を吸蔵する電解質膜
の両面に疎水性ガス拡散電極を接合したガス燃料電池に
おいて、該電極に通電することにより水電解を行うこと
は、特公昭40−6127号公報などに記載され公知で
ある。
(Prior art) Conventionally, in a gas fuel cell in which hydrophobic gas diffusion electrodes are bonded to both sides of an electrolyte membrane that occludes an ion exchange resin or a liquid electrolyte, water electrolysis by supplying electricity to the electrodes has been proposed in the Japanese Patent Publication No. It is described in Japanese Patent No. 40-6127 and the like and is well known.

(発明が解決しようとする課題) この種の燃料電池では、電極と電解質との接触面で主に
電解反応が進行し、生成する水素と酸素はガス拡散電極
を透過して電極背面より回収するため、ガス拡散電極は
疎水性の細孔を有している。この細孔を親水性にすると
、細孔内に水が凝縮し易く、水により細孔が塞がれると
、生成ガスの拡散を妨げて電解反応を阻害する。
(Problem to be solved by the invention) In this type of fuel cell, the electrolytic reaction mainly proceeds at the contact surface between the electrode and the electrolyte, and the generated hydrogen and oxygen pass through the gas diffusion electrode and are recovered from the back of the electrode. Therefore, the gas diffusion electrode has hydrophobic pores. When the pores are made hydrophilic, water tends to condense within the pores, and when the pores are blocked by water, the diffusion of the generated gas is hindered and the electrolytic reaction is inhibited.

ガス拡散電極を用いる燃料電池では、電極が疎水性であ
るところから、イオン交換樹脂などの電解質膜に水分を
供給すること及び水電解のために電極と電解質膜の接触
面に水を供給することが難しい。それ故、上記燃料電池
では、系外から電解質に水を供給する手段を持たず、電
解質内に保有する水で電解を行うに過ぎず、その水を消
費した後は電解反応を持続することはできない。また、
固体高分子電解質膜を用いるときには、護膜が乾燥する
と電極との接合面が剥離して電解反応を妨げるなどの問
題があった。
In fuel cells that use gas diffusion electrodes, since the electrodes are hydrophobic, it is necessary to supply water to the electrolyte membrane, such as ion exchange resin, and to the contact surface between the electrode and the electrolyte membrane for water electrolysis. is difficult. Therefore, the above fuel cell does not have a means to supply water to the electrolyte from outside the system, and only performs electrolysis using the water held in the electrolyte, and after the water is consumed, the electrolytic reaction cannot be continued. Can not. Also,
When using a solid polymer electrolyte membrane, there is a problem in that when the protective membrane dries, the bonding surface with the electrode peels off, hindering the electrolytic reaction.

本発明は、固体高分子電解質膜の両面に疎水性のガス拡
散電極を接合した電気化学セルを用いる水電解装置にお
いて、上記の問題点を解消し、電解質膜に容易に水分を
供給することができ、連続して水電解を行うことのでき
る装置を提供しようとするものである。
The present invention solves the above problems in a water electrolysis device using an electrochemical cell in which hydrophobic gas diffusion electrodes are bonded to both sides of a solid polymer electrolyte membrane, and makes it possible to easily supply water to the electrolyte membrane. The present invention aims to provide an apparatus that can perform water electrolysis continuously.

(課題を解決するための手段) 本発明は、固体高分子電解質膜の両面にガス拡散電極を
接合した水電解装置において、ガス回収溝を設けた導電
性がスセパレータを上記電極の背面に密着させ、該ガス
セパレータから導線を引き出して電源と接続するととも
に、上記電極は上記電解質膜と接する側の親水性反応層
とガスセパレータ側の疎水性ガス拡散層とを有し、上記
ガスセパレータにはガス回収溝の間に水又は水蒸気の供
給湯を設けたことを特徴とする水電解装置である。
(Means for Solving the Problems) The present invention provides a water electrolysis device in which gas diffusion electrodes are bonded to both sides of a solid polymer electrolyte membrane, in which a conductive separator provided with gas recovery grooves is tightly attached to the back surface of the electrode. The electrode has a hydrophilic reaction layer on the side in contact with the electrolyte membrane and a hydrophobic gas diffusion layer on the gas separator side. This water electrolysis device is characterized in that a supply of water or steam is provided between the gas recovery grooves.

なお、固体高分子電解質膜としては、イオン交換基を導
入したパーフルオロカーボン樹脂などの膜を用いること
ができる。また、ガス拡散電極としては、白金族金属又
はその酸化物粉末、疎水性カーボンブラック、親水性カ
ーボンブラック及びポリ四フブ化エチレンよりなる親水
性反応層と、疎水性カーボンブラック及びポリ四フッ化
エチレンよりなる疎水性ガス拡散層とを有する電極など
を用いることができる。この杆の電極の製造法は、例え
ば特開昭62−208553号公報に記載されている。
Note that as the solid polymer electrolyte membrane, a membrane made of perfluorocarbon resin or the like into which ion exchange groups have been introduced can be used. In addition, as a gas diffusion electrode, a hydrophilic reaction layer consisting of platinum group metal or its oxide powder, hydrophobic carbon black, hydrophilic carbon black, and polytetrafluoroethylene, and a hydrophilic reaction layer consisting of hydrophobic carbon black and polytetrafluoroethylene An electrode having a hydrophobic gas diffusion layer consisting of the following can be used. A method of manufacturing this rod electrode is described, for example, in Japanese Patent Application Laid-Open No. 62-208553.

ガスセパレータはカーボンや真ちゅうなどの金属で作る
ことができ、深さと幅が!■程度の溝を有する。そして
、上記のガス拡散電極は上記固体高分子電解質膜の両面
に重ね、ホットプレスで両者を融着し、さらに、ガスセ
パレータを重ねて密着させ、電気化学セルを形成するこ
とができる。
Gas separators can be made of carbon or metals such as brass, and can be made in various depths and widths! It has a groove of about ■. Then, the above gas diffusion electrodes are stacked on both sides of the solid polymer electrolyte membrane, and the two are fused together by hot pressing, and further, a gas separator is stacked and brought into close contact to form an electrochemical cell.

(作用) 第1図は、本発明の1具体例である固体高分子電解質型
水電解装置の概念図である。この装置は、湿潤させた固
体高分子電解質11Q1を伸長状態に維持し、ガス拡散
性の陽極2と陰極3で挟み、ホットプレスで融着し、さ
らに、陽極側ガスセパレータ6及び陰極側ガスセパレー
タ7を密着させたものである。陽極及び陰極はともに親
水性反応層4と疎水性ガス拡散層5とを有し、陽極側ガ
スセパレータ6には酸素ガス回収溝7の間に水供給溝8
を設け、陰極側ガスセパレータ9には水素ガス回収R1
0及び水供給jRI 1を設けたものである。そして、
ガスセパレータはいずれも導電性材料で作成したもので
あり、該ガスセパレータから導線を引き出して電源と接
続する。
(Function) FIG. 1 is a conceptual diagram of a solid polymer electrolyte type water electrolysis device that is a specific example of the present invention. This device maintains a moistened solid polymer electrolyte 11Q1 in an elongated state, sandwiches it between a gas-diffusing anode 2 and a cathode 3, fuses it with a hot press, and then connects a gas separator 6 on the anode side and a gas separator 6 on the cathode side. 7 in close contact. Both the anode and the cathode have a hydrophilic reaction layer 4 and a hydrophobic gas diffusion layer 5, and the anode side gas separator 6 has a water supply groove 8 between the oxygen gas recovery grooves 7.
A hydrogen gas recovery R1 is provided in the cathode side gas separator 9.
0 and water supply jRI 1. and,
All the gas separators are made of a conductive material, and a conductive wire is drawn out from the gas separator and connected to a power source.

まず、両ガスセパレータ6及び9の水供給fM 8及び
IIに水若しくは水蒸気を導入し、該清白のa度に対応
した水蒸気圧により、電極の疎水性ガス拡散層を介して
親水性反応層及び固体高分子電解質膜電極に所定の水分
を補給し、次いで、膜電極を電源と接続して通電するこ
とにより、水電解を開始し、それぞれのがスセパレータ
のガス回収清まり酸素ガス及び水素ガスを回収する。回
収ガスの圧力が、水供給溝の水蒸気IIより高くなると
、水供給溝に回収ガスが混入するので、水供給溝の水蒸
気圧は常に回収ガス圧より高く保持すればよい。また、
高い圧力でガスを回収するためには、それに勝る水蒸気
圧を水供給溝に確保する必要がある。かかる水蒸気圧を
確保するために、水供給冴に供給する水若しくは水蒸気
の温度や圧力を予め系外で調整するか、水電解装置自体
に温度調節装置を付設することもできる。また、本発明
の水電解装置は、同体高分子電解質膜、電極及びガスセ
パレータを積層したセル構造をしているので、該セルを
さらに積層したり適当に組み合わせることにより、容易
に所望の能力を確保することができる。
First, water or water vapor is introduced into the water supplies fM 8 and II of both gas separators 6 and 9, and the water vapor pressure corresponding to the a degree of the water passes through the hydrophobic gas diffusion layer of the electrode to the hydrophilic reaction layer and By replenishing the solid polymer electrolyte membrane electrode with a predetermined amount of water, and then connecting the membrane electrode to a power source and energizing it, water electrolysis is started, and each gas is recovered from the separator to collect purified oxygen gas and hydrogen gas. Collect. If the pressure of the recovered gas becomes higher than the water vapor II in the water supply groove, the recovered gas will be mixed into the water supply groove, so the water vapor pressure in the water supply groove should always be maintained higher than the recovered gas pressure. Also,
In order to recover gas at a high pressure, it is necessary to ensure a water vapor pressure in the water supply groove that exceeds the pressure. In order to ensure such water vapor pressure, the temperature and pressure of water or water vapor supplied to the water supply unit may be adjusted in advance outside the system, or a temperature control device may be attached to the water electrolysis device itself. Furthermore, since the water electrolysis device of the present invention has a cell structure in which a homogeneous polymer electrolyte membrane, an electrode, and a gas separator are laminated, desired performance can be easily achieved by further laminating or appropriately combining the cells. can be secured.

なお、この水電解装置のガス開成溝に、燃料電池の原料
ガスを供給することにより、発電することが可能であり
、その際にも、水供給溝から水蒸気を親水性反応層及び
固体高分子電解質膜に供給することができる。このよう
に、本発明の水電解装置は、余剰の電力が存在する場合
には水電解により酸素ガスと水素ガスを発生させ、これ
を貯蔵することができ、また、・電力を必要とするとき
には貯蔵された酸素ガスと水素ガスを用いて発電するこ
とができるので、電気貯蔵装置としての機能も備えてい
る。
In addition, it is possible to generate electricity by supplying the raw material gas of the fuel cell to the gas opening groove of this water electrolysis device, and in this case, water vapor is transferred from the water supply groove to the hydrophilic reaction layer and the solid polymer. It can be supplied to the electrolyte membrane. As described above, the water electrolysis device of the present invention can generate oxygen gas and hydrogen gas by water electrolysis and store them when there is surplus electricity; Since it can generate electricity using stored oxygen and hydrogen gas, it also functions as an electricity storage device.

(発明の効果) 本発明は、上記の構成を採用することによって、固体高
分子電解質型水電解装置の電解質膜に一定の含水率を付
与することができ、定常的に水電解を継続することがで
きるようになった。
(Effects of the Invention) By adopting the above configuration, the present invention can provide a constant water content to the electrolyte membrane of a solid polymer electrolyte type water electrolysis device, and can continue water electrolysis on a steady basis. Now you can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1具体例である固体高分子電解質型水
電解装置の概念図である。
FIG. 1 is a conceptual diagram of a solid polymer electrolyte type water electrolysis device which is a specific example of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 固体高分子電解質膜の両面にガス拡散電極を接合した水
電解装置において、ガス回収溝を設けた導電性ガスセパ
レータを上記電極の背面に密着させ、該ガスセパレータ
から導線を引き出して電源と接続するとともに、上記電
極は上記電解質膜と接する側の親水性反応層とガスセパ
レータ側の疎水性ガス拡散層とを有し、上記ガスセパレ
ータにはガス回収溝の間に水又は水蒸気の供給溝を設け
たことを特徴とする水電解装置。
In a water electrolysis device in which gas diffusion electrodes are bonded to both sides of a solid polymer electrolyte membrane, a conductive gas separator provided with a gas recovery groove is brought into close contact with the back surface of the electrode, and a conductive wire is drawn out from the gas separator and connected to a power source. In addition, the electrode has a hydrophilic reaction layer on the side in contact with the electrolyte membrane and a hydrophobic gas diffusion layer on the gas separator side, and the gas separator is provided with a water or water vapor supply groove between the gas recovery grooves. A water electrolysis device characterized by:
JP1174208A 1989-07-07 1989-07-07 Water electrolysis device Expired - Fee Related JP2706320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1174208A JP2706320B2 (en) 1989-07-07 1989-07-07 Water electrolysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1174208A JP2706320B2 (en) 1989-07-07 1989-07-07 Water electrolysis device

Publications (2)

Publication Number Publication Date
JPH0339493A true JPH0339493A (en) 1991-02-20
JP2706320B2 JP2706320B2 (en) 1998-01-28

Family

ID=15974616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1174208A Expired - Fee Related JP2706320B2 (en) 1989-07-07 1989-07-07 Water electrolysis device

Country Status (1)

Country Link
JP (1) JP2706320B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401371A (en) * 1992-07-16 1995-03-28 Aisin Seiki Kabushiki Kaisha Hydrogen generator
JP2007117403A (en) * 2005-10-28 2007-05-17 Iris Ohyama Inc Chest
RU2623437C1 (en) * 2016-08-15 2017-06-26 Общество с ограниченной ответственностью "Завод электрохимических преобразователей" (ООО "ЗЭП") Electrolytic cell for producing hydrogen and oxygen from water
RU2647841C2 (en) * 2016-08-11 2018-03-21 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва (ПАО "РКК "Энергия") Water electrolyser and operation method thereof
WO2019008799A1 (en) 2017-07-04 2019-01-10 株式会社Ihi Hydrogen–oxygen reaction device
JP2021008369A (en) * 2019-06-28 2021-01-28 旭化成株式会社 Carbon foam

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133386A (en) * 1982-09-07 1984-07-31 Asahi Glass Co Ltd Manufacture of gas diffusing electrode
JPS62208553A (en) * 1986-03-07 1987-09-12 Tanaka Kikinzoku Kogyo Kk Gas diffusion electrode and its manufacture
JPS63211573A (en) * 1987-02-25 1988-09-02 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel battery
JPS63317689A (en) * 1987-06-19 1988-12-26 Tanaka Kikinzoku Kogyo Kk Electrolysis device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133386A (en) * 1982-09-07 1984-07-31 Asahi Glass Co Ltd Manufacture of gas diffusing electrode
JPS62208553A (en) * 1986-03-07 1987-09-12 Tanaka Kikinzoku Kogyo Kk Gas diffusion electrode and its manufacture
JPS63211573A (en) * 1987-02-25 1988-09-02 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel battery
JPS63317689A (en) * 1987-06-19 1988-12-26 Tanaka Kikinzoku Kogyo Kk Electrolysis device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401371A (en) * 1992-07-16 1995-03-28 Aisin Seiki Kabushiki Kaisha Hydrogen generator
JP2007117403A (en) * 2005-10-28 2007-05-17 Iris Ohyama Inc Chest
RU2647841C2 (en) * 2016-08-11 2018-03-21 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва (ПАО "РКК "Энергия") Water electrolyser and operation method thereof
RU2623437C1 (en) * 2016-08-15 2017-06-26 Общество с ограниченной ответственностью "Завод электрохимических преобразователей" (ООО "ЗЭП") Electrolytic cell for producing hydrogen and oxygen from water
WO2019008799A1 (en) 2017-07-04 2019-01-10 株式会社Ihi Hydrogen–oxygen reaction device
US10801116B2 (en) 2017-07-04 2020-10-13 Ihi Corporation Hydrogen-oxygen reaction device
JP2021008369A (en) * 2019-06-28 2021-01-28 旭化成株式会社 Carbon foam

Also Published As

Publication number Publication date
JP2706320B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
US9574276B2 (en) Production of low temperature electrolytic hydrogen
EP0068508B1 (en) Methanol fuel cell
JP3052536B2 (en) Solid polymer electrolyte fuel cell
US6106965A (en) Polymer electrolyte fuel cell
US20030003347A1 (en) Micro silicon fuel cell, method of fabrication and self-powered semiconductor device integrating a micro fuel cell
US3650837A (en) Secondary metal/air cell
WO2017130903A1 (en) Solid-oxide-type fuel cell
KR19980703672A (en) Fuel Cell with Solid Polymer Electrolyte
AU5153693A (en) Electrochemical apparatus for power delivery utilizing an air electrode
JP2831061B2 (en) Gas diffusion electrode and solid polymer electrolyte fuel cell body using the same
JPH08130023A (en) Fuel cell
EP0463542B1 (en) Gas-recirculating electrode for electrochemical system
US4520081A (en) Hydrogen/bromine cell
US3553022A (en) Electrochemical cell
JPH0339493A (en) Water electrolyzing equipment
JP2003510767A (en) Fuel cell having internal reformer and method of operating the same
TW460625B (en) A process for the electrolysis of an alkali mental halide brine in a electrolytic cell
US5869201A (en) Hydrophilic, graphite fuel cell electrode for use with an ionomer membrane
JP2516750Y2 (en) Assembly of solid polymer electrolyte membrane and electrode
US3479226A (en) Method of chemically regenerating air depolarized cell with hydrogen
JP2003308869A (en) Fuel cell
JPH08138715A (en) Solid polymer fuel cell and manufacture thereof
EP0789789B1 (en) Electrochemical device for removal and regeneration of oxygen and method
JP2002047590A (en) Electrolytic cell
JP2616061B2 (en) Phosphoric acid fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees