JPH0339410A - Metal refining furnace - Google Patents

Metal refining furnace

Info

Publication number
JPH0339410A
JPH0339410A JP17231089A JP17231089A JPH0339410A JP H0339410 A JPH0339410 A JP H0339410A JP 17231089 A JP17231089 A JP 17231089A JP 17231089 A JP17231089 A JP 17231089A JP H0339410 A JPH0339410 A JP H0339410A
Authority
JP
Japan
Prior art keywords
molten metal
furnace
gas
blowing
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17231089A
Other languages
Japanese (ja)
Inventor
Noboru Murakami
村上 登
Masaaki Nishi
正明 西
Hiroaki Nakanishi
博昭 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP17231089A priority Critical patent/JPH0339410A/en
Publication of JPH0339410A publication Critical patent/JPH0339410A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To sufficiently stir little quantity of molten metal without developing cavity of blowing gas by gradually reducing cross sectional area of molten metal storing part in a furnace from molten metal surface toward furnace bottom and making inner wall smooth in the molten metal storing part. CONSTITUTION:In furnace body of a metal refining furnace, such as converter 10, the inner diameter is max. at a furnace belly part, and a furnace opening part and the molten metal storing part (furnace bottom part) 13 are contracted respectively and as the whole, the shape of the furnace body is formed to be egg-shape. Molten iron is charged into the converter 10 while supplying gas to plural bottom blowing tuyeres 14. Auxiliary material is added to this and blowing of oxygen gas onto molten metal surface from a lance 16 is started. Then, the bottom blowing gas supplying quantity into the tuyeres 14 is increased to stir the molten metal. As ascending distance of the bottom blowing gas is lengthened, even if the quantity of charged molten metal is little, blowing through-out of gas is not developed and stirring force to the molten metal with gas can be improved. Further, consumption of lining brick 12 can be saved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ガス底吹きにより溶湯を攪拌しつつ湯面に酸
素ガスを吹き付けて精錬する金属精錬炉に係り、特に、
複合吹錬用の転炉に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a metal refining furnace for refining molten metal by blowing oxygen gas onto the surface of the molten metal while stirring the molten metal by gas bottom blowing, and in particular,
Concerning a converter for complex blowing.

[従来の技術] 複合吹錬炉においては、吹錬効率の向上を図るために、
炉底部の羽目を介して溶湯にガスを吹き込み、攪拌する
。炉内の溶湯は、酸素ガス上吹き及びガス底吹きにより
十分に攪拌される。この結果、スラグ・メタル反応が促
進され、溶銑が短時間で良質の溶鋼になる。
[Prior art] In order to improve the blowing efficiency in a composite blowing furnace,
Gas is blown into the molten metal through the lining at the bottom of the furnace and stirred. The molten metal in the furnace is sufficiently stirred by oxygen gas top blowing and gas bottom blowing. As a result, the slag-metal reaction is promoted, and hot metal becomes high-quality molten steel in a short time.

第7図に示すように、従来の複合吹錬炉1は、炉口部を
除き、炉底部から炉上部に至るまでがほぼ同じ内径であ
り、その縦断面が全体として西洋梨に似た形状をなす。
As shown in Fig. 7, the conventional composite blowing furnace 1 has an almost same inner diameter from the bottom to the top of the furnace, except for the furnace mouth, and its vertical cross section has an overall shape resembling a pear. to do.

炉底部の鉄皮2及び耐火物3を貫通して複数の底吹き羽
口4が炉内に開口し、これらの羽口4を介して溶鋼5に
攪拌ガスが吹き込まれるようになっている。
A plurality of bottom blowing tuyeres 4 are opened into the furnace through the iron skin 2 and refractory 3 at the bottom of the furnace, and stirring gas is blown into the molten steel 5 through these tuyeres 4.

しかしながら、このような炉底形状の転炉においては、
炉底部がほぼ平坦で面積が広いので、少量の溶湯が装入
されると、ガス吹き込み口から湯面までの距離が短くな
り、攪拌ガスが溶湯を通過する長さが不足して、下記に
示すような種々の問題点を生じる。
However, in a converter with such a bottom shape,
Since the bottom of the furnace is almost flat and has a large area, when a small amount of molten metal is charged, the distance from the gas inlet to the molten metal surface becomes short, and the length for the stirring gas to pass through the molten metal is insufficient, causing the following problems. This causes various problems as shown below.

(1)吹き込みガス量を少量に制限した場合であっても
、溶湯にガスの空洞(湯面へのガスの吹き抜け)が生じ
、スラグがフォーミングしゃすくなる。
(1) Even when the amount of blown gas is limited to a small amount, gas cavities (gas blow-through to the molten metal surface) occur in the molten metal, making it difficult for slag to form.

(2)溶湯が十分に攪拌されず、精錬時間が長引く。(2) The molten metal is not stirred sufficiently and the refining time is prolonged.

(3)攪拌不十分のために、溶湯成分に偏在が生じる。(3) Uneven distribution of molten metal components occurs due to insufficient stirring.

そこで、第8図に示すように、炉底部の内張り耐火物7
を多段構造として炉底面積を狭め、少量の溶湯を吹錬す
る場合でも滞留部における溶湯深さが増すように転炉6
の構造が改善されている。
Therefore, as shown in Fig. 8, the lining refractory 7 at the bottom of the furnace
The converter 6 has a multi-stage structure to narrow the bottom area of the furnace and increase the depth of the molten metal in the retention area even when blowing a small amount of molten metal.
The structure of has been improved.

このような転炉6によれば、同量の溶湯を装入した場合
に、その溶湯深さL2が上記の転炉1の溶湯深さり、よ
り深くなり、ガスの行路が延長されるので、ガス吹き込
み量を増加しても溶湯に空洞を生じ難くなってガス攪拌
力が向上する。
According to such a converter 6, when the same amount of molten metal is charged, the molten metal depth L2 becomes deeper than the molten metal depth of the converter 1 described above, and the path of the gas is extended. Even if the amount of gas blown is increased, it becomes difficult to form cavities in the molten metal, and the gas stirring power improves.

[発明が解決しようとする課題] しかしながら、従来の炉底部を多段構造とした転炉にお
いては、炉底部の耐火物7の厚さが必要以上に厚くなり
、転炉全体の耐火物使用量が増大する。このため、耐火
物コストが大幅に上昇するという問題点がある。
[Problems to be Solved by the Invention] However, in the conventional converter where the bottom of the furnace has a multi-stage structure, the thickness of the refractory 7 at the bottom of the furnace becomes thicker than necessary, and the amount of refractory used in the entire converter decreases. increase Therefore, there is a problem in that the cost of refractories increases significantly.

この発明は、上記事情に鑑みてなされたものであって、
吹き込みガスの空洞を生じることなく、少量の溶湯を十
分に攪拌することができ、かつ、耐火物コストを低減す
ることができる金属精錬炉を提供することを目的とする
This invention was made in view of the above circumstances, and
It is an object of the present invention to provide a metal smelting furnace that can sufficiently stir a small amount of molten metal without creating a cavity for blown gas, and can reduce the cost of refractories.

[課題を解決するための手段] 転炉の吹錬効率の向上を図るには、場面の面積を可能な
限り広くとり、酸素ガスおよび溶鋼の反応界面積を増大
する一方で、溶鋼の深さを深くして、吹き込みガスの行
路を長くすること必要である。一方、転炉は大型のもの
で350トンの容量をもつものであり、その内張りに使
用される耐火物は膨大な量に及ぶ。
[Means for solving the problem] In order to improve the blowing efficiency of the converter, the area of the furnace should be made as wide as possible to increase the reaction interface area between oxygen gas and molten steel, while reducing the depth of the molten steel. It is necessary to deepen the depth and lengthen the path of the blown gas. On the other hand, a large converter has a capacity of 350 tons, and the amount of refractory used for its lining is enormous.

発明者等は、従来の多段構造炉底部の転炉につき種々検
討を重ねた結果、西洋梨型の鉄皮構造のままでは炉底部
の内張り耐火物が過剰に厚くなり、多くの無駄が生じる
ことを回避できないことを見出だした。そこで、発明者
等は、炉底部の鉄皮構造を変更し、内張り耐火物の使用
量を低減する一方で、ガス攪拌力の向上を図ることにつ
き、実用化のための研究を種々重ねた。
As a result of various studies on conventional converters with multistage structure bottoms, the inventors found that if the pear-shaped shell structure was used, the refractory lining at the bottom of the furnace would become excessively thick, resulting in a lot of waste. I found that it is impossible to avoid this. Therefore, the inventors conducted various researches to improve the gas stirring power by changing the steel shell structure at the bottom of the furnace and reducing the amount of refractory lining used, while aiming to improve the gas stirring power.

この発明に係る金属精錬炉は、ガス底吹きにより溶湯を
攪拌しつつ湯面に酸素ガスを吹き付けて精錬する金属精
錬炉であって、溶湯滞留部の横断面積が湯面より炉底に
向かって徐々に減少し、溶湯滞留部の内壁が全体として
滑らかに形成されていることを特徴とする。
The metal smelting furnace according to the present invention is a metal smelting furnace that smelts the molten metal by blowing oxygen gas onto the surface of the molten metal while stirring the molten metal by gas bottom blowing, and in which the cross-sectional area of the molten metal retention section is directed from the surface of the molten metal toward the bottom of the furnace. It is characterized by the fact that the inner wall of the molten metal retention area is smooth as a whole.

[作用] この発明に係る金属精錬炉においては、溶湯滞留部の横
断面積が場面より炉底に向かって徐々に減少し、溶湯滞
留部の内壁が全体として滑らかに形成されている。この
ため、溶湯装入量が少量であっても溶湯深さが深く、ガ
ス吹き込み口から場面までの距離が長くなり、吹き込み
ガスの行路が延長される。また、溶湯収容領域の内壁が
全体として滑らかに形成されているので、内張り耐火物
の使用量が低減される。
[Function] In the metal refining furnace according to the present invention, the cross-sectional area of the molten metal retention portion gradually decreases from the surface toward the bottom of the furnace, and the inner wall of the molten metal retention portion is formed smoothly as a whole. Therefore, even if the amount of molten metal charged is small, the depth of the molten metal is deep, the distance from the gas blowing port to the scene is long, and the path of the blown gas is extended. Moreover, since the inner wall of the molten metal storage area is formed smoothly as a whole, the amount of lining refractory used is reduced.

[実施例] 以下、添付の図面を参照して本発明の実施例について具
体的に説明する。
[Example] Hereinafter, an example of the present invention will be specifically described with reference to the accompanying drawings.

第1図は、本発明の実施例に係る金属精錬炉としての複
合吹錬用転炉を模式的に示す縦断面図、第2図はその横
断面図である。転炉1oは、外側が鉄皮11で覆われ、
その内側に耐火物12が内張すされている。転炉10の
炉体は、炉腹部にて内径が最大であり、炉口及び溶湯滞
留部(炉底部)13がそれぞれ絞られて全体として卵形
状をなしている。複数の底吹き羽口14が滞留部13の
最下部に設けられ、不活性ガスを主成分とする攪拌ガス
が溶湯5に吹き込まれるようになっている。
FIG. 1 is a longitudinal cross-sectional view schematically showing a composite blowing converter as a metal refining furnace according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view thereof. The outside of the converter 1o is covered with an iron shell 11,
A refractory material 12 is lined inside. The furnace body of the converter 10 has the largest inner diameter at the furnace belly, and the furnace mouth and the molten metal retention section (furnace bottom) 13 are each constricted to form an egg shape as a whole. A plurality of bottom blowing tuyeres 14 are provided at the lowest part of the retention section 13 so that stirring gas containing inert gas as a main component is blown into the molten metal 5.

第2図に示すように、複数個の羽口14が滞留部13の
適所に開口している。
As shown in FIG. 2, a plurality of tuyeres 14 are opened at appropriate locations in the retention section 13.

次に、第3図を参照しながら、上記の転炉を用いて複合
吹錬する場合について説明する。
Next, with reference to FIG. 3, a case where composite blowing is performed using the above-mentioned converter will be explained.

羽口14に若干量のガスを供給しっ゛っ、転炉10内に
鍋から溶銑を装入する。これに石灰等の副原料を添加投
入し、場面にランス16から酸素ガスの吹き付けを開始
する。このとき、羽口14への底吹きガス供給量をに増
量して、溶銑を攪拌する。溶銑中[C]が酸素ガスの吹
き付けにより燃焼し、この反応熱により副原料が溶融滓
化する。
After supplying a small amount of gas to the tuyere 14, hot metal is charged into the converter 10 from the ladle. Auxiliary raw materials such as lime are added to this, and oxygen gas is started to be sprayed onto the scene from the lance 16. At this time, the amount of bottom blowing gas supplied to the tuyere 14 is increased to stir the hot metal. [C] in the hot metal is combusted by the spraying of oxygen gas, and the reaction heat turns the auxiliary raw material into molten slag.

第4図は、横軸に転炉内張りレンガの内径りをとり、縦
軸に鋼浴の深さをとって、溶湯装入時の両者の関係を示
すグラフ図である。
FIG. 4 is a graph showing the relationship between the inner diameter of the converter lining bricks on the horizontal axis and the depth of the steel bath on the vertical axis when charging the molten metal.

第5図は、横軸に転炉内張りレンガの内径りをとり、縦
軸に炉内平均空塔速度(場面に吹き抜けが生じるガス吹
き込み速度)をとって、両者の関係についいて種々調べ
た結果を示すグラフ図である。図中、曲線Fは、例えば
溶湯装入量を100トンとしてガス吹き込み量を毎時8
ONm3としたときの結果を示す。
Figure 5 shows the results of various investigations into the relationship between the inner diameter of the converter lining bricks on the horizontal axis and the average superficial velocity in the furnace (the gas injection speed at which blow-through occurs) on the vertical axis. FIG. In the figure, curve F shows, for example, the amount of molten metal charged is 100 tons and the amount of gas blown is 8 tons per hour.
The results are shown when ONm3 is used.

第6図は、横軸に羽目入口におけるガス圧力Pをとり、
縦軸に吹き込みガスff1Qをとって、羽口の内径φを
10.0〜30.0iIIの範囲で種々変更して、ガス
の吹き抜けが生じる鋼浴の最小深さ(吹き抜は限界値H
;単位m)をそれぞれ示すグラフ図である。
In Figure 6, the horizontal axis represents the gas pressure P at the siding inlet,
The blown gas ff1Q is plotted on the vertical axis, and the inner diameter φ of the tuyere is varied in the range of 10.0 to 30.0iII, and the minimum depth of the steel bath at which gas blow-through occurs (the blow-through is the limit value H
; Unit: m).

上記第4図乃至第6図から明らかなように、上記実施例
の転炉においては鋼浴の深さを深くすることができるの
で、吹き込みガス量Qを増量することができる。このた
め、底吹ガスによる攪拌力が大幅に向上し、従来型の転
炉では少量の溶銑を複合吹錬すると、ガスが湯面に吹き
抜けてスラグがフォーミング化してスロッピングが発生
していたが、これを有効に回避することができた。
As is clear from FIGS. 4 to 6 above, in the converter of the above embodiment, the depth of the steel bath can be increased, so the amount of blown gas Q can be increased. As a result, the stirring power of the bottom blowing gas has been greatly improved, and in conventional converters, when a small amount of hot metal is subjected to compound blowing, the gas blows through to the surface of the hot metal, forming slag and causing slopping. , I was able to effectively avoid this.

また、上記実施例の転炉によれば、内張リレンガニ2の
使用量を従来の多段炉底構造の転炉に比較して約30%
低減することができ、耐火物コストを大幅に低減するこ
とができた。
In addition, according to the converter of the above embodiment, the amount of lining refill gun 2 used is approximately 30% compared to a converter with a conventional multi-stage hearth bottom structure.
It was possible to reduce the refractory cost significantly.

[発明の効果] 本発明によれば、底吹ガスの行路が長くなるので、装入
溶湯が少量であってもガスの吹き抜けが生じなくなり、
ガスによる溶湯の攪拌力を大幅に向上させることができ
る。このため、溶湯およびスラグの間の反応が促進され
、複合吹錬時間を大幅に短縮することができる。
[Effects of the Invention] According to the present invention, the path of the bottom blowing gas becomes longer, so gas blow-through does not occur even if the charged molten metal is small.
The power of stirring molten metal by gas can be greatly improved. Therefore, the reaction between the molten metal and the slag is promoted, and the combined blowing time can be significantly shortened.

また、ガスの吹き抜けが生じなくなるので、スラグの過
剰のフォーミング化が回避され、スロッピング等の問題
が生じなくなる。
Further, since gas blow-through does not occur, excessive forming of the slag is avoided, and problems such as slopping do not occur.

更に、炉底部のデザインを変更することにより、従来よ
りも内張り耐火物の使用量を約30%低減することがで
きるので、耐火物コストが大幅に低減される。
Furthermore, by changing the design of the furnace bottom, the amount of refractory lining used can be reduced by about 30% compared to the conventional method, resulting in a significant reduction in refractory cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る金属精錬炉を模式的に示
す縦断面図、第2図は金属精錬炉の横断面図、第3図は
複合吹錬中の金属精錬炉を模式的に示す縦断面図、第4
図乃至第6図はそれぞれ発明の詳細な説明するためのグ
ラフ図、第7図及び第8図はそれぞれ従来の複合吹錬炉
を示す縦断面図である。 10;転炉、11;鉄皮、12;耐火物、13;溶湯滞
留部、14;羽口、16;ランス。
Fig. 1 is a vertical cross-sectional view schematically showing a metal refining furnace according to an embodiment of the present invention, Fig. 2 is a cross-sectional view of the metal refining furnace, and Fig. 3 is a schematic cross-sectional view of the metal refining furnace during complex blowing. 4th longitudinal cross-sectional view shown in
6 to 6 are graphs for explaining the invention in detail, and FIGS. 7 and 8 are longitudinal sectional views showing a conventional composite blowing furnace, respectively. 10: converter, 11: iron shell, 12: refractory, 13: molten metal retention section, 14: tuyere, 16: lance.

Claims (1)

【特許請求の範囲】[Claims] ガス底吹きにより溶湯を攪拌しつつ湯面に酸素ガスを吹
き付けて精錬する金属精錬炉であって、溶湯滞留部の横
断面積が湯面より炉底に向かって徐々に減少し、溶湯滞
留部の内壁が全体として滑らかに形成されていることを
特徴とする金属精錬炉。
This is a metal refining furnace that refines the molten metal by blowing oxygen gas onto the surface of the molten metal while stirring the molten metal using gas bottom blowing. A metal smelting furnace characterized by an inner wall that is generally smooth.
JP17231089A 1989-07-04 1989-07-04 Metal refining furnace Pending JPH0339410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17231089A JPH0339410A (en) 1989-07-04 1989-07-04 Metal refining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17231089A JPH0339410A (en) 1989-07-04 1989-07-04 Metal refining furnace

Publications (1)

Publication Number Publication Date
JPH0339410A true JPH0339410A (en) 1991-02-20

Family

ID=15939548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17231089A Pending JPH0339410A (en) 1989-07-04 1989-07-04 Metal refining furnace

Country Status (1)

Country Link
JP (1) JPH0339410A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9162428B2 (en) 2008-11-12 2015-10-20 Graphic Packaging International, Inc. Susceptor structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9162428B2 (en) 2008-11-12 2015-10-20 Graphic Packaging International, Inc. Susceptor structure

Similar Documents

Publication Publication Date Title
EP0819182B1 (en) A method of producing metals and metal alloys
JPH0339410A (en) Metal refining furnace
JPS60165313A (en) Top blow lance for refining molten metal
JP3345678B2 (en) Top and bottom blown converter steelmaking method with long refractory life
JPS61127835A (en) Blowing method of copper converter
JP3752051B2 (en) Scrap melting method and scrap melting lance
JP3486886B2 (en) Steelmaking method using two or more converters
JP3531467B2 (en) Dephosphorization refining method of hot metal in converter
JP6492820B2 (en) Converter operation method
JP3486887B2 (en) Steelmaking method using multiple converters
JPS5819421A (en) Manufacture of steel with converter
JPH0543924A (en) Secondary combustion blow-refining method
US1103925A (en) Bessemerizing copper matte.
JP3982389B2 (en) Operation method of horizontal blowing refining furnace
JP3889511B2 (en) Operation method of copper converter
JPS62247017A (en) Side-blown smelting vessel
JP2817303B2 (en) Apparatus and method for producing hot metal
JPH1150164A (en) Horizontal converter
JPS58117815A (en) Steel making method by converter
SU988877A1 (en) Method for smelting steel
SU1283253A1 (en) Method of steel melting
JPS62188712A (en) Melt reduction steel making method
JPS5839884B2 (en) Alkali Calendar Plants
JPH0586447B2 (en)
JPS58181813A (en) Split-type refining furnace