JPH0338881A - Vertical insulated gate field effect transistor - Google Patents

Vertical insulated gate field effect transistor

Info

Publication number
JPH0338881A
JPH0338881A JP17460189A JP17460189A JPH0338881A JP H0338881 A JPH0338881 A JP H0338881A JP 17460189 A JP17460189 A JP 17460189A JP 17460189 A JP17460189 A JP 17460189A JP H0338881 A JPH0338881 A JP H0338881A
Authority
JP
Japan
Prior art keywords
gate
drain
type
diode
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17460189A
Other languages
Japanese (ja)
Other versions
JP2762581B2 (en
Inventor
Noriyuki Takao
高尾 典行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1174601A priority Critical patent/JP2762581B2/en
Publication of JPH0338881A publication Critical patent/JPH0338881A/en
Application granted granted Critical
Publication of JP2762581B2 publication Critical patent/JP2762581B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7808Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a breakdown diode, e.g. Zener diode

Abstract

PURPOSE:To reduce the chip area of a transistor by inserting bidirectional Zener diodes between a drain and a gate, and between a gate and a source. CONSTITUTION:A bidirectional Zener diode ZGS (formed of N-type polysilicon film 10-1, P<+> type polysilicon film 11, and a N-type polysilicon film 10-2) is connected between a gate and a source. A bidirectional Zener diode ZDG formed of a N<+> type drain region 2 formed in a N<-> type drain region 1, a P-type diffused layer 3, and a N<+> type diffused layer 4 is connected between a drain and the gate. The diode ZGS is formed by connecting to a gate polysilicon of a body, and the diode ZDG is formed by ion implanting and forcing into the region 1. Thus, a large surge current can be absorbed by the diode having a small area, and the chip area of a transistor can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は絶縁ゲート電界効果l・ランジスタに関し、特
に、電力用のスイッチング用トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to insulated gate field effect transistors, and more particularly to power switching transistors.

〔従来の技術〕[Conventional technology]

現在、電力用絶縁ゲート電界効果トランジスタ(以下パ
ワーMOSFETと記す)は、高速性と1、 熱暴走しにくいことなどからモーター・アクチュエータ
ー リレーなど、コイルを負荷として使われている。特
にバイポーラ−トランジスタに比べて多数キャリアで動
作するパワーMOSFETは、発熱するとオン抵抗が上
がり、ドレイン電流を減らすためチップの一部に発熱が
集中しにくく、熱暴走しにくい。ところがパワーMOS
FETはオン時の動作は多数キャリア動作のため熱暴走
しにくいが、コイル負荷でオフする際に発生するコイル
の逆起電力サージが特に問題となっている。
Currently, insulated gate field effect transistors (hereinafter referred to as power MOSFETs) for power use are used as coil loads in motors, actuators, relays, etc. due to their high speed,1, and resistance to thermal runaway. In particular, compared to bipolar transistors, power MOSFETs that operate with majority carriers have an increased on-resistance when they generate heat, and because they reduce drain current, it is difficult for heat to concentrate on a part of the chip, making it difficult for thermal runaway to occur. However, power MOS
FETs are less prone to thermal runaway because they operate as majority carriers when they are on, but the back electromotive force surge in the coil that occurs when the FET is turned off due to a coil load is particularly problematic.

第7図は従来のパワーMOSFETを示す半導体チップ
の断面図、第8図はコイル負荷駆動時の等価回路図であ
る。
FIG. 7 is a sectional view of a semiconductor chip showing a conventional power MOSFET, and FIG. 8 is an equivalent circuit diagram when driving a coil load.

DiはPベース領域5とN−ドレイン領域1間の接合ダ
イオード、TrはPベース領域、N+ソース領域6.N
−ドレイン領域をそれぞれベース、エミッタ、コレクタ
とする寄生トランジスタ、RBは寄生ベース抵抗である
Di is a junction diode between the P base region 5 and the N- drain region 1, and Tr is the P base region and the N+ source region 6. N
- A parasitic transistor whose drain region is its base, emitter, and collector, respectively, RB is a parasitic base resistance.

第9図はコイル負荷駆動時の動作を説明するためのタイ
ミングチャートである。
FIG. 9 is a timing chart for explaining the operation when driving a coil load.

)ワー 最初オンしていたパワーMOSFETがtoffでオフ
するとコイルLに逆起電力が発生し、ドレイン・ソース
間電圧■D3が急上昇し、ドレイン・ソース間降伏電圧
BVDSに至ってコイルに蓄積されたエネルギーを放電
し始める。この放電はドレイン・ソース間の降伏電流で
行なわれるが、ノくワーMO3FETにおいては構造上
寄生トランジスタTrができてしまうため、ドレイン・
ソース間降伏電流は、寄生トランジスタTrにも流れて
しまう。この電流は寄生トランジスタTrのベス電位を
上昇させいわゆるラッチバックを引きおこし熱暴走に至
る。
) When the power MOSFET, which was initially on, turns off due to toff, a back electromotive force is generated in the coil L, and the drain-source voltage D3 rises rapidly, reaching the drain-source breakdown voltage BVDS, and the energy stored in the coil. begins to discharge. This discharge occurs due to the breakdown current between the drain and the source, but since a parasitic transistor Tr is created in the structure of the NOWER MO3FET, the drain and source
The source-to-source breakdown current also flows to the parasitic transistor Tr. This current increases the base potential of the parasitic transistor Tr, causing so-called latchback, leading to thermal runaway.

これを防止するため、ドレイン・ソース間にツェナーダ
イオードを入れて放電電流をこのツェナーダイオードに
流すことが行なわれている。
To prevent this, a Zener diode is inserted between the drain and source, and a discharge current is passed through the Zener diode.

またバイポーラ−トランジスタではベース・ドレイン間
にツェナーダイオードを入れてツェナーを降伏させてベ
ース電流を流すことでトランジスタをオンさせ放電電流
を流すことが行なわれている。
Furthermore, in a bipolar transistor, a Zener diode is inserted between the base and drain to cause the Zener to break down and allow a base current to flow, thereby turning on the transistor and causing a discharge current to flow.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のパワーMOSFETでは、寄生トランジ
スタのラッチバックを防止するためドレイン・ソース間
にツェナー・ダイオードを挿入してコイルの放電電流を
流していた。このツェナー・ダイオードは大きい放電電
流を流しても、本体の寄生トランジスタの降伏電圧を越
えないようにするため降伏時の動作抵抗を下げる必要が
あり、必然的に大面積になるという欠点がある。
In the above-mentioned conventional power MOSFET, a Zener diode is inserted between the drain and source to prevent the parasitic transistor from latchback, and the discharge current of the coil is caused to flow. This Zener diode has the disadvantage that even if a large discharge current flows through it, the operating resistance at breakdown must be lowered so as not to exceed the breakdown voltage of the parasitic transistor in the main body, which inevitably results in a large area.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の縦型絶縁ゲート電界効果トランジスタは、 保
護用の双方向ツェナーダイオードをゲート・ソース間及
びドレイン・ゲート間にそれぞれ挿入して縦型絶縁ゲー
ト電界効果トランジスタ本体と同一チップ上に集積して
なるというものである。
The vertical insulated gate field effect transistor of the present invention has protective bidirectional Zener diodes inserted between the gate and the source and between the drain and the gate and integrated on the same chip as the vertical insulated gate field effect transistor body. It becomes.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例を示す半導体チップの断面図
、第2図は一実施例の等価回路図である。
FIG. 1 is a sectional view of a semiconductor chip showing an embodiment of the present invention, and FIG. 2 is an equivalent circuit diagram of the embodiment.

ケート・ソース間には、双方向ツェナータイオード2゜
s (N型ポリシリコン膜10−1.P”型ポリシリコ
ン膜11.N型ポリシリコン膜1〇−2からなる)を接
続する。ドレイン・ゲート間にはN−ドレイン領域1中
に形成したN+ドレイン領域2.P型拡散層3.N+型
型数散層4らなる双方向ツェナーダイオードZDOを接
続する。
A bidirectional Zener diode 2°s (consisting of an N-type polysilicon film 10-1, a P''-type polysilicon film 11, and an N-type polysilicon film 10-2) is connected between the gate and source.Drain - A bidirectional Zener diode ZDO consisting of an N+ drain region 2 formed in the N- drain region 1, a P type diffusion layer 3, and an N+ type scattering layer 4 is connected between the gates.

ツェナーダイオード2゜Sは本体のゲートポリシリコン
に連続して形成する。ZOSの降伏電圧は25〜45V
として、サージ吸収時にゲート酸化膜8が破壊しないよ
うにする。
The Zener diode 2°S is formed continuously on the gate polysilicon of the main body. Breakdown voltage of ZOS is 25-45V
As a result, gate oxide film 8 is prevented from being destroyed during surge absorption.

ツェナーダイオードZDGはN−ドレイン領域1中にイ
オン注入と、押込で形成する。降伏電圧を本体FETの
降伏電圧より下げるためドレインと同一導電型でドレイ
ン層よりやや高濃度の層2を形成しておき、この中にツ
ェナーダイオードを形成する。ダイオードの表面端子は
ゲートポリシリコンと接続する。
The Zener diode ZDG is formed in the N-drain region 1 by ion implantation and pushing. In order to lower the breakdown voltage below that of the main FET, a layer 2 of the same conductivity type as the drain and slightly higher concentration than the drain layer is formed, and a Zener diode is formed in this layer. The surface terminal of the diode is connected to the gate polysilicon.

第3図は一実施例によるコイル負荷駆動時の回路図、第
4図は動作を説明するためのタイミング5、τ、 チャートである。
FIG. 3 is a circuit diagram when driving a coil load according to one embodiment, and FIG. 4 is a timing 5, τ, chart for explaining the operation.

ツェナーダイオードZDOの降伏電圧B V ZDOは
以下の条件を満たすように設計する。
The breakdown voltage B V ZDO of the Zener diode ZDO is designed to satisfy the following conditions.

B V ZDO< L V CERB V zos 。B V ZDO < L V CERB V zos.

L V cg*・・・・・・寄生トランジスタのラッチ
バック電圧、 BVwas・・・・・・ツェナーダイオード2゜Sの降
伏電圧、 B V zosは以下の条件を満たすように設計する。
L V cg*... Latchback voltage of parasitic transistor, BVwas... Breakdown voltage of Zener diode 2°S, B V zos are designed to satisfy the following conditions.

Vo8(。n) < B V ZQS < V (B!
 (ma X) 7VG11(。n)・・・・・・パワ
ーMOSFETがオンする時のゲート電圧、 ■o8(□、り・・・・・・ゲート破壊電圧ゲート電圧
が上昇してパワーMOSFETがオすると、次式 %式%) に従ってドレイン電流が上昇し、ドレイン電圧はVDS
(。、、)となる。toffで入力電圧は下がりパワー
MOSFETのドレイン電圧は急上昇しはじめるがB 
V as 十B V ZDGを越えた瞬間にパワーMO
8−6ニ FETのドレイン電圧の上昇を抑えるようにゲト電圧が
印加される。
Vo8 (.n) < B V ZQS < V (B!
(ma Then, the drain current increases according to the following formula (% formula %), and the drain voltage becomes VDS
(.,,) becomes. At toff, the input voltage decreases and the drain voltage of the power MOSFET begins to rise rapidly, but B
V as 10B V Power MO at the moment you cross ZDG
A gate voltage is applied to suppress an increase in the drain voltage of the 8-6 FET.

つまり、小電力のツェナーダイオードZDGでも本体の
パワーMOSFETの増幅作用を使って充分大きな放電
電流を流すことができる。
In other words, even a small-power Zener diode ZDG can cause a sufficiently large discharge current to flow by using the amplification effect of the power MOSFET in the main body.

第5図は本発明の他の実施例を示す半導体チップの断面
図、第6図はその等価回路図である。
FIG. 5 is a sectional view of a semiconductor chip showing another embodiment of the present invention, and FIG. 6 is an equivalent circuit diagram thereof.

この実施例では、ツェナーダイオードZDGI。In this example, a Zener diode ZDGI.

ZDG2をN−ドレイン領域内にではなく、ゲートポリ
シリコンに連続してポリシリコンツェナーダイオードと
して形成する。つまりZDOI、ZDG2はN型ポリシ
リコン膜10−1.10−2,103、P+型ポリシリ
コン膜11−1.11−2からなっている。この実施例
ではB V ZDGがN−ドレイン領域と無関係に決め
られるため、より自由度が太きいという利点がある。
ZDG2 is formed as a polysilicon Zener diode, not in the N-drain region, but continuous to the gate polysilicon. That is, ZDOI and ZDG2 are composed of N type polysilicon films 10-1, 10-2, 103 and P+ type polysilicon films 11-1, 11-2. In this embodiment, since B V ZDG is determined independently of the N-drain region, there is an advantage that the degree of freedom is greater.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明はドレイン・ゲート間とゲ
ート・ソース間に双方向ツェナー・ダイオードを挿入す
ることによって、小さい面積の7= ) ツェナーダイオードで大きいザージ電流を吸収すること
ができ、保護用ダイオードを備えた縦型絶縁ゲート電界
効果トランジスタのチップ面積を小さくすることができ
る効果がある。
As explained above, by inserting bidirectional Zener diodes between the drain and the gate and between the gate and the source, the Zener diode with a small area can absorb a large surge current and provide protection. This has the effect that the chip area of a vertical insulated gate field effect transistor equipped with a diode can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明の一実施例を示す半
導体チップの断面図及び等価回路図、第3図及び第4図
はそれぞれ一実施例によるコイル負荷駆動時の等価回路
図及びタイミングチャート、第5図及び第6図は他の実
施例を示す半導体チップの断面図及び等価回路図、第7
図は従来例を示す半導体チップの断面図、第8図及び第
9図は従来例によるコイル負荷駆動時の等価回路図及び
タイミングチャートである。 1・・・・・・N−ドレイン領域、2・・・・・・N+
ドレイン領域、3・・・・・・P型拡散層、4・・・・
・・N+型型数散層5・・・・・・Pベース領域、6・
・・・・・N+ンース領域、7・・・・・・Pウェル、
8・・・・・・ゲート絶縁膜、9・・・・・・ゲート電
極、10−1〜10−4・・・・・・N型ポリシB 、”1 リコン膜、 11゜ 1 1−1゜ 2・・・・・・P+型ポ リシリコン膜。
1 and 2 are a cross-sectional view and an equivalent circuit diagram of a semiconductor chip showing one embodiment of the present invention, respectively, and FIGS. 3 and 4 are an equivalent circuit diagram and timing diagram when driving a coil load according to one embodiment, respectively. Charts, FIGS. 5 and 6 are cross-sectional views and equivalent circuit diagrams of semiconductor chips showing other embodiments, and FIGS.
The figure is a sectional view of a semiconductor chip showing a conventional example, and FIGS. 8 and 9 are equivalent circuit diagrams and timing charts when driving a coil load according to the conventional example. 1...N- drain region, 2...N+
Drain region, 3... P-type diffusion layer, 4...
...N+ type scattered layer 5...P base region, 6.
...N+ region, 7...P well,
8... Gate insulating film, 9... Gate electrode, 10-1 to 10-4... N-type policy B, "1 Recon film, 11°1 1-1゜2...P+ type polysilicon film.

Claims (1)

【特許請求の範囲】[Claims] 保護用の双方向ツェナーダイオードをゲート・ソース間
及びドレイン・ゲート間にそれぞれ挿入して縦型絶縁ゲ
ート電界効果トランジスタ本体と同一チップ上に集積し
てなることを特徴とする縦型絶縁ゲート電界効果トラン
ジスタ。
A vertical insulated gate field effect transistor characterized in that bidirectional Zener diodes for protection are inserted between the gate and the source and between the drain and the gate and integrated on the same chip as the main body of the vertical insulated gate field effect transistor. transistor.
JP1174601A 1989-07-05 1989-07-05 Vertical insulated gate field effect transistor Expired - Lifetime JP2762581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1174601A JP2762581B2 (en) 1989-07-05 1989-07-05 Vertical insulated gate field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1174601A JP2762581B2 (en) 1989-07-05 1989-07-05 Vertical insulated gate field effect transistor

Publications (2)

Publication Number Publication Date
JPH0338881A true JPH0338881A (en) 1991-02-19
JP2762581B2 JP2762581B2 (en) 1998-06-04

Family

ID=15981430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1174601A Expired - Lifetime JP2762581B2 (en) 1989-07-05 1989-07-05 Vertical insulated gate field effect transistor

Country Status (1)

Country Link
JP (1) JP2762581B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0520168A2 (en) * 1991-06-12 1992-12-30 Fuji Electric Co., Ltd. MOS-type semiconductor device drive circuit
US5502338A (en) * 1992-04-30 1996-03-26 Hitachi, Ltd. Power transistor device having collector voltage clamped to stable level over wide temperature range
WO2008153142A1 (en) * 2007-06-15 2008-12-18 Rohm Co., Ltd. Semiconductor device
JP2015185618A (en) * 2014-03-20 2015-10-22 株式会社東芝 semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0520168A2 (en) * 1991-06-12 1992-12-30 Fuji Electric Co., Ltd. MOS-type semiconductor device drive circuit
EP0520168A3 (en) * 1991-06-12 1995-05-17 Fuji Electric Co Ltd
US5502338A (en) * 1992-04-30 1996-03-26 Hitachi, Ltd. Power transistor device having collector voltage clamped to stable level over wide temperature range
WO2008153142A1 (en) * 2007-06-15 2008-12-18 Rohm Co., Ltd. Semiconductor device
US8217419B2 (en) 2007-06-15 2012-07-10 Rohm Co., Ltd. Semiconductor device
US8729605B2 (en) 2007-06-15 2014-05-20 Rohm Co., Ltd. Semiconductor switch device
US9419127B2 (en) 2007-06-15 2016-08-16 Rohm Co., Ltd. Semiconductor device including switching devices in an epitaxial layer
JP2015185618A (en) * 2014-03-20 2015-10-22 株式会社東芝 semiconductor device

Also Published As

Publication number Publication date
JP2762581B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
JP3262579B2 (en) Metal oxide semiconductor field effect transistor circuit
EP0503131A1 (en) MOS Gated bipolar transistor
EP0590895A2 (en) Bi-directional MOSFET switch
JP2574267B2 (en) Insulated gate transistor array
JP3473460B2 (en) Horizontal semiconductor device
JP2004022693A (en) Semiconductor device
JPH0823098A (en) Bidirectional current blocking mosfet and reduction of on-resistance of bidirectional current blocking mosfet
JP2663682B2 (en) Complementary field effect transistor
US9705488B2 (en) Semiconductor device
JPH04261065A (en) Semiconductor device
JP3186405B2 (en) Horizontal MOSFET
JP3185292B2 (en) Semiconductor device
JP3201213B2 (en) Semiconductor device and control method thereof
CN111261698B (en) RC-LIGBT device for eliminating voltage folding phenomenon
JPH0338881A (en) Vertical insulated gate field effect transistor
JPH04170815A (en) High side switch circuit and semiconductor device
JP3211529B2 (en) Vertical MIS transistor
JPH088422A (en) Vertical mos semiconductor device
US20020070394A1 (en) Using segmented N-type channel stop to enhance the SOA (safe-operating area) of LDMOS transistors
Toyoda et al. 60V-class power IC technology for an intelligent power switch with an integrated trench MOSFET
JPS62217664A (en) Semiconductor device
JP2004214353A (en) Vertical type insulated gate field effect transistor
JPH05114737A (en) Conductivity modulated mosfet
JP2728453B2 (en) Output circuit
JPS63104481A (en) Conductivity modulated vertical type mosfet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12