JPH0338815Y2 - - Google Patents

Info

Publication number
JPH0338815Y2
JPH0338815Y2 JP1984131753U JP13175384U JPH0338815Y2 JP H0338815 Y2 JPH0338815 Y2 JP H0338815Y2 JP 1984131753 U JP1984131753 U JP 1984131753U JP 13175384 U JP13175384 U JP 13175384U JP H0338815 Y2 JPH0338815 Y2 JP H0338815Y2
Authority
JP
Japan
Prior art keywords
insulating
low
wire
voltage
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984131753U
Other languages
Japanese (ja)
Other versions
JPS6146716U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13175384U priority Critical patent/JPS6146716U/en
Publication of JPS6146716U publication Critical patent/JPS6146716U/en
Application granted granted Critical
Publication of JPH0338815Y2 publication Critical patent/JPH0338815Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は、例えば試験用等に使用される変圧器
に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a transformer used, for example, for testing purposes.

〈従来の技術〉 従来、この種の高電圧用の変圧器としては、例
えば鉄心を備え、この鉄心上に低圧側線輪を巻回
するとともに、この低圧側線輪上に高圧側線輪を
巻回し、これらの全体を六弗化硫黄(SF6)等の
不燃性絶縁ガスを封入した圧力容器内に収容して
なるものが知られている。
<Prior Art> Conventionally, this type of high-voltage transformer has, for example, an iron core, a low-voltage side coil is wound around the iron core, and a high-voltage side coil is wound around the low-voltage side coil. It is known that the entire structure is housed in a pressure vessel filled with a nonflammable insulating gas such as sulfur hexafluoride (SF 6 ).

ところで、このような従来例の変圧器におい
て、前記高圧側線輪は例えば第6図に示すよう
に、絶縁円筒を兼ねる巻き芯6上に、耐熱性樹脂
が被覆された銅線材からなる電線(図示省略)
と、合成樹脂フイルムシートからなる絶縁シート
(図示省略)とを交互に多重巻きして構成してい
た。
Incidentally, in such a conventional transformer, the high-voltage side wire ring is, for example, as shown in FIG. omission)
and an insulating sheet (not shown) made of a synthetic resin film sheet are alternately wound in multiple layers.

ところが、このような従来例の高圧側線輪7′
では、線輪7′の厚み寸法が相当大きくなるうえ、
絶縁シートも多数枚重ね合わせて厚み寸法の大き
いものを使用する必要があるため、該高圧側線輪
7′は高電圧誘起時において、同時に発生する熱
エネルギによつて全体的に温度が上昇し、該線輪
7′の内部の温度が最高点では許容温度を越えて
過熱し、変圧器自体の寿命の低下を招く。また、
高圧側線輪は通常多層に巻回されており、その軸
方向の機械的強度は絶縁シートの摩擦力のみで保
持されているため、変圧器の輸送時等において、
該軸方向に衝撃力が加わると該高圧側線輪が軸方
向に変位したり、変形するといつた問題点があつ
た。
However, such a conventional high-voltage side track 7'
In this case, the thickness of the wire ring 7' becomes considerably large, and
Since it is necessary to use a large number of insulating sheets stacked together and with a large thickness, the temperature of the high-voltage side track 7' increases as a whole due to the thermal energy generated at the same time when high voltage is induced. At the highest point, the temperature inside the wire ring 7' exceeds the allowable temperature and overheats, resulting in a reduction in the life of the transformer itself. Also,
High-voltage side wheels are usually wound in multiple layers, and their mechanical strength in the axial direction is maintained only by the frictional force of the insulating sheets, so when transporting the transformer, etc.
There is a problem in that when an impact force is applied in the axial direction, the high-voltage side raceway is displaced or deformed in the axial direction.

そこで、このような問題点の解決策として、高
圧側線輪を径方向に分割して複数の線輪部分から
なるものとし、隣り合う線輪部分間に軸方向に貫
通する冷却用ダクトを形成して放熱面積を増大さ
せるとともに、各線輪部分の軸方向の両側に該線
輪の軸方向への変位や変形を規制する1対の支持
体を配備することにより、前記高圧側線輪で発生
する熱エネルギを各冷却用ダクトから放熱させる
ようにするとともに、該高圧側線輪の軸方向に対
する変形等を防止することが考えられる。
Therefore, as a solution to this problem, the high-voltage side track is divided into multiple track sections in the radial direction, and a cooling duct is formed that passes through the adjacent track sections in the axial direction. In addition to increasing the heat dissipation area, by providing a pair of supports on both sides of each coil portion in the axial direction to restrict displacement and deformation of the coil in the axial direction, the heat generated in the high-voltage side coil can be reduced. It is conceivable to radiate energy from each cooling duct and to prevent deformation of the high-voltage side raceway in the axial direction.

〈考案が解決しようとする問題点〉 ところで、この場合、前記支持体は冷却用ダク
トの開口部を閉塞するものであつてはならないた
め、前記高圧側線輪の各線輪部分を固定する部材
を例えば、複数の固定リングから形成し、各固定
リングをそれぞれ複数の支持ピンで支持部材の固
定保持するような構造として、前記冷却用ダクト
の通気を妨げないように工夫する必要がある。
<Problems to be solved by the invention> By the way, in this case, since the support body must not block the opening of the cooling duct, the member for fixing each line ring portion of the high-voltage side line ring may be fixed, for example. It is necessary to devise a structure in which the cooling duct is formed of a plurality of fixing rings, and each fixing ring is fixedly held on the support member by a plurality of support pins so as not to impede the ventilation of the cooling duct.

しかしながら、この場合、各線輪部分ごとに固
定リングを用意する必要があるうえ、各固定リン
グごとに多数の支持ピンを要するため、必然的に
高圧側線輪外周側の電界の高い部分に当接する固
定リングまで支持ピンを設けなければならないこ
とになる。このように電界が限界値に近い部位に
多数の支持ピンが存在すると、絶縁ガスが充填さ
れた容器内空間の電界に乱れが生じて。絶縁性能
の低下を招くほか、部分放電や絶縁破壊が発生す
るおそれがある。
However, in this case, it is necessary to prepare a fixing ring for each part of the coil, and a large number of support pins are required for each fixing ring, so the fixation that comes into contact with the high electric field part on the outer periphery of the high-voltage coil is inevitably required. This means that a support pin must be provided up to the ring. If a large number of support pins are present in a region where the electric field is close to the limit value, the electric field in the space inside the container filled with insulating gas will be disturbed. In addition to causing a decline in insulation performance, there is a risk of partial discharge and dielectric breakdown occurring.

本考案はかかる従来の問題点に鑑み、比較的簡
単な構成で、例えば高圧側線輪の放熱面積を増大
させるとともに、軸方向の機械的強度を強化し、
かつ絶縁性能の優れた変圧器を提供することを目
的とする。
In view of these conventional problems, the present invention has a relatively simple structure, for example, increases the heat dissipation area of the high-voltage side track, strengthens the mechanical strength in the axial direction,
The purpose of the present invention is to provide a transformer with excellent insulation performance.

〈問題点を解決するための手段〉 本考案ではこのような目的を達成するために、
電線と絶縁シートとを交互に巻回して複数の線輪
部分を積層形成するとともに、隣り合う線輪部分
間に各線輪部分の軸方向に貫通する環状の冷却用
ダクトを形成してなる線輪と、この線輪の軸方向
の両側方に配置された1対の低圧シールド部材と
を備え、各低圧シールド部材と前記線輪との間に
それぞれ絶縁支持体を配置し、これらの絶縁支持
体を介して前記線輪の軸方向への変位または変形
を両低圧シールド部材間で規制してなる変圧器で
あつて、前記各絶縁支持体は各線輪部分の側面に
当接する単一の固定リングと、前記低圧シールド
部材に固定される低圧用絶縁板とを有し、該固定
リングには前記冷却用ダクトの位置に沿つて複数
の通気孔が穿設されるとともに、この固定リング
と前記低圧用絶縁板とを複数の支持ピンを介して
連結固定してなることに特徴を有する。
<Means for solving the problem> In order to achieve this purpose, this invention
A coil formed by laminating a plurality of coil sections by alternately winding electric wires and insulating sheets, and forming an annular cooling duct that penetrates in the axial direction of each coil section between adjacent coil sections. and a pair of low-voltage shield members arranged on both sides of the wire in the axial direction, and an insulating support is arranged between each low-voltage shield member and the wire, and these insulating supports A transformer in which displacement or deformation of the wire in the axial direction is regulated between both low-voltage shield members via a single fixed ring that abuts a side surface of each wire portion. and a low voltage insulating plate fixed to the low pressure shield member, the fixing ring has a plurality of ventilation holes bored along the position of the cooling duct, and the fixing ring and the low pressure It is characterized by being connected and fixed to the insulating plate through a plurality of support pins.

〈実施例〉 以下、本考案を図面に示す実施例に基づき詳細
に説明する。
<Example> Hereinafter, the present invention will be described in detail based on an example shown in the drawings.

第1図はこの実施例の要部を示す一部破断分解
斜視図であり、第2図は要部縦断側面図であり、
第3図は全体を示す一部切欠側面図である。これ
らの図において、この変圧器は鉄製の圧力容器1
を備える。この圧力容器1は内部に六弗化硫黄
(SF6)等の不燃性絶縁ガスが所要の圧力で充填
されるとともに、その開口端がスペーサコーン2
により封止されている。この圧力容器1内には硅
素鋼板等からなる鉄心3が収納固定されている。
この鉄心3の一部には絶縁筒を兼ねる低圧側巻き
芯4が嵌装され、この巻き芯4上に合成樹脂被覆
銅線からなる電線(図示省略)と、合成樹脂製の
フイルムシートからなる絶縁シート(図示省略)
とを交互に巻回してなる低圧側線輪5が設けられ
ている。この低圧側線輪5上には絶縁筒を兼ねる
高圧側巻き芯6が嵌装され、この巻き芯6の軸方
向の中央部には高圧側線輪7が設けられている。
この高圧側線輪7の外周上および鉄心3の両側部
には電界緩和用の高圧シールド部材8および低圧
シールド部材9,9が配備されている。このう
ち、高圧側線輪7の外周上に設けられた高圧シー
ルド部材8は、外部から導入された高圧用接続導
体10と同電位に保持されており、各低圧シール
ド部材9は円板状に形成されている。
FIG. 1 is a partially cutaway exploded perspective view showing the main parts of this embodiment, and FIG. 2 is a longitudinal sectional side view of the main parts.
FIG. 3 is a partially cutaway side view showing the whole. In these figures, this transformer is connected to a steel pressure vessel 1.
Equipped with This pressure vessel 1 is filled with a nonflammable insulating gas such as sulfur hexafluoride (SF 6 ) at a required pressure, and its open end is connected to a spacer cone 2.
It is sealed by. Inside the pressure vessel 1, an iron core 3 made of a silicon steel plate or the like is housed and fixed.
A low-voltage side winding core 4 that also serves as an insulating tube is fitted into a part of this iron core 3, and on this winding core 4, an electric wire (not shown) made of a synthetic resin-coated copper wire and a synthetic resin film sheet are fitted. Insulating sheet (not shown)
A low-voltage side wire ring 5 is provided, which is made up of alternating windings. A high-voltage side winding core 6 that also serves as an insulating tube is fitted onto the low-voltage side wire ring 5, and a high-voltage side wire ring 7 is provided at the center of the winding core 6 in the axial direction.
A high voltage shield member 8 and low voltage shield members 9, 9 for mitigating the electric field are provided on the outer periphery of the high voltage side wire ring 7 and on both sides of the iron core 3. Among these, the high voltage shield member 8 provided on the outer periphery of the high voltage side track 7 is held at the same potential as the high voltage connecting conductor 10 introduced from the outside, and each low voltage shield member 9 is formed in a disk shape. has been done.

このような基本構造を有する変圧器において、
前記高圧側線輪7はこれの径方向の中間部に所定
間隔置きに介在される複数の冷却用ダクト11…
…により、複数の線輪部分7a……に分割形成さ
れている。各冷却用ダクト11……は第4図に示
すように、それぞれ高圧側線輪7の軸方向に貫通
する環状空隙であつて、該冷却用ダクト11……
に臨む絶縁シート12間に複数のピン状の絶縁ス
ペーサ部材13……を所定間隔ごとに貼着するこ
とにより形成される。
In a transformer with such a basic structure,
The high-pressure side raceway 7 has a plurality of cooling ducts 11 interposed at predetermined intervals in its radial intermediate portion.
... is divided into a plurality of wire ring portions 7a.... As shown in FIG. 4, each cooling duct 11... is an annular gap passing through the high-pressure side raceway 7 in the axial direction, and the cooling duct 11...
It is formed by attaching a plurality of pin-shaped insulating spacer members 13 at predetermined intervals between the insulating sheets 12 facing the front side.

すなわち、前記高圧側巻き芯6上に低圧側線輪
5と同等の材料から構成された電線14と絶縁シ
ート12を交互に所要の絶縁厚みを保持させた状
態で巻回して最内周の線輪部分を積層形成したの
ち、該線輪部分7aの外周に絶縁シート12を数
回にわたつて巻き付ける。そして、第5図に示す
ように予め、各スペーサ部材13……にこれの周
面長手方向に沿つて2枚の両面粘着テープ15,
15を貼付しておき、前記絶縁シート12上に複
数にスペーサ部材13……を前記両面粘着テープ
15,15を介して所定間隔ごとに貼着する。更
に、各スペーサ部材13……上に絶縁シート12
を前述と同様に数回にわたつて巻き付けたのち、
該絶縁シート12上に次段の線輪部分7aを形成
する。これにより、第4図に示すように、両線輪
部分7a間に所定寸法の冷却用ダクト11が形成
される。こののち、第3段目の線輪部分7aおよ
び最外周の線輪部分7aを前述と同様にして形成
することになる。
That is, the wire 14 and the insulating sheet 12 made of the same material as the low voltage side wire ring 5 are alternately wound around the high voltage side winding core 6 while maintaining the required insulation thickness to form the innermost wire ring. After the parts are laminated, the insulating sheet 12 is wrapped several times around the outer periphery of the wire ring part 7a. As shown in FIG. 5, two pieces of double-sided adhesive tape 15,
15, and a plurality of spacer members 13 . Furthermore, an insulating sheet 12 is placed on each spacer member 13...
After wrapping it several times in the same way as above,
The next wire ring portion 7a is formed on the insulating sheet 12. As a result, as shown in FIG. 4, a cooling duct 11 of a predetermined size is formed between the two raceway portions 7a. Thereafter, the third stage wire ring portion 7a and the outermost wire portion 7a are formed in the same manner as described above.

上記高圧側線輪7と、これの軸方向の両側方に
配置された前記1対の低圧シールド部材9,9と
の間には、それぞれ1対の絶縁支持体16,16
が該高圧側線輪7を挟んで対向配置されている。
これらの絶縁支持体16,16は高圧側線輪7の
軸方向への変位または変形を規制するもので、高
圧側線輪7の各線輪部分7aの側面に当接する単
一の固定リング17と、前記低圧シールド部材
9,9に固定される低圧用絶縁板18とを有す
る。前記固定リング17は中央に高圧側巻き芯6
に嵌入する嵌合孔17aを打ち抜き形成したドー
ナツ状のリングで、そのリング状板部17bには
前記冷却用ダクト11の位置に沿つて複数の通気
孔19……が所定間隔置きに穿設されている。各
通気孔19……はそれぞれ冷却用ダクト11の幅
寸法とほぼ等しい径を有する円孔に形成され、前
記スペーサ部材13……の冷却用ダクト11内で
の配置部位と重ならないように配置されている。
また、低圧用絶縁板18は正方形、矩形あるいは
円形状に形成されており、この低圧用絶縁板18
と各固定リング17とは複数の支持ピン20……
を介して連結固定されている。これらの支持ピン
20……は固定リング17の内周側と外周側とに
同心状に取り付けられ、このうち外周側に取り付
けられる各支持ピン20……は高圧側線輪で発生
する電圧に応じた許容沿面電界位置に配置され
る。
A pair of insulating supports 16, 16 are provided between the high-voltage side raceway 7 and the pair of low-voltage shield members 9, 9 disposed on both sides of the high-voltage side raceway 7 in the axial direction.
are arranged opposite to each other with the high-voltage side rail wheel 7 interposed therebetween.
These insulating supports 16, 16 are for regulating displacement or deformation of the high-voltage side raceway 7 in the axial direction, and include a single fixing ring 17 that abuts the side surface of each raceway portion 7a of the high-voltage side raceway 7; It has a low voltage insulating plate 18 fixed to the low voltage shield members 9, 9. The fixing ring 17 has a high voltage side winding core 6 in the center.
It is a donut-shaped ring with a fitting hole 17a punched into it, and a plurality of ventilation holes 19 are bored at predetermined intervals in the ring-shaped plate part 17b along the position of the cooling duct 11. ing. Each ventilation hole 19 is formed into a circular hole having a diameter approximately equal to the width of the cooling duct 11, and is arranged so as not to overlap with the position of the spacer member 13 in the cooling duct 11. ing.
Further, the low voltage insulating plate 18 is formed in a square, rectangular or circular shape.
And each fixing ring 17 is a plurality of support pins 20...
Connected and fixed through. These support pins 20... are attached concentrically to the inner and outer circumferential sides of the fixing ring 17, and each of the support pins 20... attached to the outer circumferential side corresponds to the voltage generated in the high-voltage side track. Placed at a permissible creeping field position.

前記絶縁支持体16,16はそれぞれ絶縁ガス
中で電界強度の強い場所に配置されるため、電界
を乱さないように比誘電率が絶縁ガスや絶縁シー
ト12に近い値、すなわち2〜3.5の比誘電率を
有する素材から構成することが望ましい。例え
ば、絶縁ガスとして誘電率が1.0の六弗化硫黄を
使用し、絶縁シート12の誘電率が3.3のポリエ
チレンテレフタレートを使用する場合、この絶縁
ガスと絶縁シート12の中間の比誘電率を有する
素材、例えばテフロン(登録商標名)、ポリプロ
ピレン、ポリエチレン等、比誘電率が2.2程度の
絶縁材を使用するのが好ましい。
Since the insulating supports 16 and 16 are each placed in a place where the electric field strength is strong in the insulating gas, the dielectric constant should be set to a value close to that of the insulating gas or the insulating sheet 12, that is, a ratio of 2 to 3.5, so as not to disturb the electric field. It is preferable to use a material having a dielectric constant. For example, if sulfur hexafluoride with a dielectric constant of 1.0 is used as the insulating gas and polyethylene terephthalate with a dielectric constant of 3.3 is used for the insulating sheet 12, a material having a dielectric constant between this insulating gas and that of the insulating sheet 12 is used. It is preferable to use an insulating material with a dielectric constant of about 2.2, such as Teflon (registered trademark), polypropylene, polyethylene, etc., for example.

上記構成の変圧器において、高圧側線輪7が高
電圧下で温度上昇する場合、該高圧側線輪7から
発生する熱エネルギは高圧側線輪7の外周面並び
に冷却用ダクト11から放熱される。この冷却用
ダクト11はそれぞれ通気孔19……と連通して
いるため、該冷却用ダクト11から放熱された熱
エネルギは、各通気孔19……から外部に放散さ
れることになる。
In the transformer having the above configuration, when the temperature of the high-voltage side coil 7 increases under high voltage, the thermal energy generated from the high-voltage side coil 7 is radiated from the outer circumferential surface of the high-voltage side coil 7 and the cooling duct 11. Since each of the cooling ducts 11 communicates with the ventilation holes 19, the thermal energy radiated from the cooling ducts 11 is radiated to the outside from each of the ventilation holes 19.

なお、前記通気孔19……の形状は円孔のほ
か、長円形孔や角孔等であつてもよい。
Note that the shape of the ventilation holes 19 may be not only circular holes but also oval holes, square holes, etc.

また、前記絶縁支持体16は圧力容器1内にお
いて電界が非常に高い部分には前述のテフロン
(登録商標名)のような絶縁特性の優れた材質を
使用し、比較的電界の低い部分には通常の絶縁特
性を有する材質を使用するようにしてもよい。
Further, the insulating support 16 is made of a material with excellent insulating properties such as the aforementioned Teflon (registered trademark) for parts of the pressure vessel 1 where the electric field is extremely high, and for parts of the pressure vessel 1 where the electric field is relatively low. A material having normal insulating properties may also be used.

〈考案の効果〉 以上のように本考案によれば、例えば高圧側線
輪を複数の線輪部分に分割形成するとともに、隣
り合う線輪部分間に各線輪部分の軸方向に貫通す
る環状の冷却用ダクトを形成したので、線輪に発
生する熱エネルギは線輪の外面および冷却用ダク
トから放熱されるため、従来と比較して冷却効率
が格段に向上し、該線輪の温度上昇を可及的に低
減することができる。したがつて、線輪内の最高
温度部分と該線輪の平均温度との差が縮減され、
線輪の全域の温度分布の均一化を図ることができ
る。
<Effects of the Invention> As described above, according to the present invention, for example, the high-voltage side coil is divided into a plurality of coil sections, and an annular cooling section is formed between adjacent coil sections, penetrating in the axial direction of each coil section. Since the heat energy generated in the coil is radiated from the outer surface of the coil and the cooling duct, the cooling efficiency is significantly improved compared to the conventional method, and it is possible to reduce the temperature rise of the coil. can be effectively reduced. Therefore, the difference between the highest temperature part within the coil and the average temperature of the coil is reduced,
It is possible to equalize the temperature distribution over the entire area of the coil.

また、各低圧シールド部材と前記線輪との間に
それぞれ絶縁支持体を配置し、これらの絶縁支持
体を介して前記線輪の軸方向への変位または変形
を両低圧シールド部材間で規制するものとしたの
で、線輪に軸方向の衝撃力に対する機械的強度が
格段に増大し、変圧器の輸送時や、取り付け作業
時等において、該線輪が同方向に移動したり、変
形したりするといつた問題をなくすことができ
る。
Further, insulating supports are arranged between each low voltage shield member and the wire ring, and displacement or deformation of the wire ring in the axial direction is restricted between both low voltage shield members via these insulating supports. As a result, the mechanical strength of the wire ring against axial impact force is significantly increased, and the wire ring will not move in the same direction or be deformed during transformer transportation or installation work. Then you can eliminate the problem.

更に、この場合において、絶縁支持体は各線輪
部分の側面に当接する単一の固定リングと、前記
低圧シールド部材に固定される低圧用絶縁板とを
有し、該固定リングには前記冷却用ダクトの位置
に沿つて複数の通気孔が穿設されるとともに、こ
の固定リングと前記低圧用絶縁板とを複数の支持
ピンを介して連結固定してなるものとしたので、
冷却用ダクト内の気流は通気孔を介して流通する
ため、放熱効果を損なわない。また、固定リング
が単一体からなるので、各支持ピンを電界の高い
線輪外周部を回避して、任意の内周側に連結する
ことができ、優れた絶縁性能を保持することがで
きる。
Furthermore, in this case, the insulating support has a single fixing ring that comes into contact with the side surface of each wire ring portion, and a low voltage insulating plate that is fixed to the low voltage shield member, and the fixing ring includes the cooling plate. A plurality of ventilation holes are drilled along the position of the duct, and the fixing ring and the low voltage insulating plate are connected and fixed via a plurality of support pins.
Since the airflow within the cooling duct flows through the ventilation holes, the heat dissipation effect is not impaired. Moreover, since the fixing ring is made of a single body, each support pin can be connected to any inner circumference side of the wire, avoiding the outer circumference part where the electric field is high, and excellent insulation performance can be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの実施例の要部を示す一部破断分解
斜視図、第2図は要部縦断側面図、第3図は全体
を示す一部切欠側面図、第4図は冷却用ダクトと
その周辺を拡大して示す要部断面図、第5図はス
ペーサ部材の斜視図、第6図は従来例を示す要部
の半截斜視図である。 7……線輪、7a……線輪部分、9……低圧シ
ールド部材、11……冷却用ダクト、12……絶
縁シート、14……電線、16……絶縁支持体、
17……固定リング、18……低圧用絶縁板、1
9……通気孔、20……支持ピン。
Fig. 1 is a partially cutaway exploded perspective view showing the main parts of this embodiment, Fig. 2 is a longitudinal sectional side view of the main parts, Fig. 3 is a partially cutaway side view showing the whole, and Fig. 4 is a cooling duct. FIG. 5 is a perspective view of the spacer member, and FIG. 6 is a half-cut perspective view of the main portion showing a conventional example. 7... Wire ring, 7a... Wire ring portion, 9... Low voltage shield member, 11... Cooling duct, 12... Insulating sheet, 14... Electric wire, 16... Insulating support,
17...Fixing ring, 18...Low voltage insulation plate, 1
9...Vent hole, 20...Support pin.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電線と絶縁シートとを交互に巻回して複数の線
輪部分を積層形成するとともに、隣り合う線輪部
分間に各線輪部分の軸方向に貫通する環状の冷却
用ダクトを形成してなる線輪と、この線輪の軸方
向の両側方に配置された1対の低圧シールド部材
とを備え、各低圧シールド部材と前記線輪との間
にそれぞれ絶縁支持体を配置し、これらの絶縁支
持体を介して前記線輪の軸方向への変位または変
形を両低圧シールド部材間で規制してなる変圧器
であつて、前記各絶縁支持体は各線輪部分の側面
に当接する単一の固定リングと、前記低圧シール
ド部材に固定される低圧用絶縁板とを有し、該固
定リングには前記冷却用ダクトの位置に沿つて複
数の通気孔が穿設されるとともに、この固定リン
グと前記低圧用絶縁板とを複数の支持ピンを介し
て連結固定してなることを特徴とする変圧器。
A coil formed by laminating a plurality of coil sections by alternately winding electric wires and insulating sheets, and forming an annular cooling duct that penetrates in the axial direction of each coil section between adjacent coil sections. and a pair of low-voltage shield members arranged on both sides of the wire in the axial direction, and an insulating support is arranged between each low-voltage shield member and the wire, and these insulating supports A transformer in which displacement or deformation of the wire in the axial direction is regulated between both low-voltage shield members via a single fixed ring that abuts a side surface of each wire portion. and a low voltage insulating plate fixed to the low pressure shield member, the fixing ring has a plurality of ventilation holes drilled along the position of the cooling duct, and the fixing ring and the low pressure A transformer characterized in that the transformer is formed by connecting and fixing an insulating plate through a plurality of support pins.
JP13175384U 1984-08-29 1984-08-29 transformer Granted JPS6146716U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13175384U JPS6146716U (en) 1984-08-29 1984-08-29 transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13175384U JPS6146716U (en) 1984-08-29 1984-08-29 transformer

Publications (2)

Publication Number Publication Date
JPS6146716U JPS6146716U (en) 1986-03-28
JPH0338815Y2 true JPH0338815Y2 (en) 1991-08-15

Family

ID=30690327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13175384U Granted JPS6146716U (en) 1984-08-29 1984-08-29 transformer

Country Status (1)

Country Link
JP (1) JPS6146716U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136673A (en) * 1980-03-28 1981-10-26 Sumitomo Metal Ind Ltd Oil spot preventing device of micron oiler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136673A (en) * 1980-03-28 1981-10-26 Sumitomo Metal Ind Ltd Oil spot preventing device of micron oiler

Also Published As

Publication number Publication date
JPS6146716U (en) 1986-03-28

Similar Documents

Publication Publication Date Title
KR100368900B1 (en) Low noise and low loss reactor
JP5861805B2 (en) Transformer, power supply device, and method of manufacturing transformer
JP4794999B2 (en) Lightning proof type low voltage insulation transformer
JPH0338815Y2 (en)
JP2007142341A (en) Heat radiating structure of thunder resistance reinforcing type insulation transformer for low voltage
US10468178B2 (en) Stationary induction apparatus
JP3160889B2 (en) Transformer
JPH0416408Y2 (en)
JP2001143937A (en) Transformer coil
JP7034022B2 (en) Static guidance device
JP2005019455A (en) High-voltage transformer
JPH0625934Y2 (en) High voltage winding
JPH0419769Y2 (en)
JPH065426A (en) Magnetism shielding structure of toroidal transformer
JPS5939011A (en) Transformer
JP3161201B2 (en) Transformer winding
JPS5844583Y2 (en) transformer
JP2001006948A (en) Winding of stationary inductor
JPH1131628A (en) Stationary induction apparatus
JPS61154021A (en) Transformer
JPS641924B2 (en)
JP2019179849A (en) Stationary induction apparatus
JPH04123411A (en) Transformer windings
JP3419565B2 (en) Stationary induction electrical equipment
GB2125227A (en) Transformer insulation