JP2007142341A - Heat radiating structure of thunder resistance reinforcing type insulation transformer for low voltage - Google Patents

Heat radiating structure of thunder resistance reinforcing type insulation transformer for low voltage Download PDF

Info

Publication number
JP2007142341A
JP2007142341A JP2005337559A JP2005337559A JP2007142341A JP 2007142341 A JP2007142341 A JP 2007142341A JP 2005337559 A JP2005337559 A JP 2005337559A JP 2005337559 A JP2005337559 A JP 2005337559A JP 2007142341 A JP2007142341 A JP 2007142341A
Authority
JP
Japan
Prior art keywords
lead
case
ring
cylinder
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005337559A
Other languages
Japanese (ja)
Inventor
Osamu Yoshida
修 吉田
Kenshichiro Mishima
健七郎 三島
Takeshi Ikeda
剛 池田
Hideshi Okubo
英志 大久保
Iami Hara
偉吾実 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otowa Electric Co Ltd
Sanyo Electronic Industries Co Ltd
Original Assignee
Otowa Electric Co Ltd
Sanyo Electronic Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otowa Electric Co Ltd, Sanyo Electronic Industries Co Ltd filed Critical Otowa Electric Co Ltd
Priority to JP2005337559A priority Critical patent/JP2007142341A/en
Publication of JP2007142341A publication Critical patent/JP2007142341A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transformer Cooling (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat radiating structure capable of easily reducing the size, weight and thickness of a thunder resistance reinforcing type insulation transformer for a low voltage. <P>SOLUTION: A lead leading-out section 13 for leading out primary lead wires 3a, 3b of a primary winding 3 to the outside of the case is formed on an insulation case 10 for covering the entire surface of a ring body 4 in which the primary winding 3 is wound around a ring-like winding iron core 1 via a second insulator 2, and a heat radiating cylinder 16 and an ambient air intake cylinder 18 are formed in an axial direction on the external interference of the insulation case 10. A heat radiating port 15 of the heat radiating cylinder 16 and an ambient air intake port 17 of the ambient air intake cylinder 18 are allowed to communicate with a gap G between the ring body 4 and the insulation case 10, heat generated from the ring body 4 is radiated to the outside of the case to suppress the temperature rise of the primary winding 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、各種の電気設備や電気機器の電源系に使用される耐雷強化型低圧用絶縁変圧器における放熱構造に関する。   The present invention relates to a heat dissipation structure in a lightning proof strengthening type low voltage insulation transformer used for power supply systems of various electric facilities and electric devices.

耐雷強化型低圧用絶縁変圧器(耐雷トランス)は、低損失化と高耐電圧化およびサージ減衰量の向上による高性能化が要求されており、一方では省資源に伴う小形軽量、低コスト化の要求も年々高まっている。この絶縁変圧器における高耐電圧およびサージ減衰量の向上による高性能化と、変圧器自体の小形軽量化は、相反する関係にあり、両者を同時に実現することは技術的に難しいとされている。   Lightning-proof enhanced low-voltage insulation transformers (lightning-resistant transformers) are required to have high performance through low loss, high withstand voltage, and improved surge attenuation. The demand for this is increasing year by year. There is a contradictory relationship between the high-voltage withstand voltage and surge attenuation in this insulated transformer and the small size and light weight of the transformer itself, and it is technically difficult to realize both at the same time. .

例えば、リング状の鉄心に一次巻線を巻装し、一次巻線を絶縁ケースで被覆して静電遮蔽処理してから、絶縁ケースに二次巻線を巻装したリングコア方式の絶縁変圧器が、小形電源トランスとして知られている(例えば、特許文献1参照)。
特開平06−5437号公報
For example, a ring core type insulation transformer in which a primary winding is wound around a ring-shaped iron core, the primary winding is covered with an insulating case and electrostatic shielding is performed, and then the secondary winding is wound around the insulating case Is known as a small power transformer (see, for example, Patent Document 1).
Japanese Patent Application Laid-Open No. 06-5437

上記リングコア方式の絶縁変圧器は、鉄心に巻装した一次巻線が絶縁ケースで覆われているので、ケース内部に熱が籠もり、一次巻線の温度上昇が問題となるが、小形電源トランスとして使用する分においては、電流量が極少なくて一次巻線の温度上昇が少なく、ほとんど問題ない。しかし、耐雷強化型低圧用絶縁変圧器として使用する場合、一次巻線の温度上昇が高くなるので、線径の大きな巻線を使用して電流密度を低く抑え、一次巻線の温度上昇が低くなるように設計している。しかし、これでは変圧器自体が大形となり、重量も大きくなるといった課題が生じ、耐雷強化型低圧用絶縁変圧器の小形軽量化、低コスト化が難しい。また、耐雷強化型低圧用絶縁変圧器においては、壁掛け形や装柱形に適した薄型のもの要請が高いが、上記大形化のために薄型の要請に応じきれないでいるのが現状である。   In the above ring core type insulation transformer, the primary winding wound around the iron core is covered with an insulation case, so heat is trapped inside the case and the temperature rise of the primary winding becomes a problem. The amount of current used is extremely small, and the temperature rise of the primary winding is small, so that there is almost no problem. However, when used as an insulation transformer for lightning protection type low voltage, the temperature rise of the primary winding increases, so use a winding with a large wire diameter to keep the current density low and the temperature rise of the primary winding low. It is designed to be. However, this causes a problem that the transformer itself becomes large and increases in weight, and it is difficult to reduce the size and weight of the lightning proof type low voltage insulation transformer. In addition, lightning strengthened low-voltage insulation transformers are highly demanded to be thin enough to be wall-mounted and pillar-mounted, but at present they cannot meet the demand for thinness due to the increase in size. is there.

本発明の目的は、耐雷強化型低圧用絶縁変圧器の小形軽量化、薄型化を容易にする放熱構造を提供することにある。   An object of the present invention is to provide a heat dissipation structure that facilitates reduction in size and weight of a lightning proof strengthening low-voltage insulation transformer.

本発明は、リング状の巻鉄心に当該巻鉄心の全面に被着した第一絶縁体を介して一次巻線を巻装して成るリング体と、このリング体の全面を被覆して高圧絶縁する、部分的に前記一次巻線の巻始めと巻終わりの一次リード線を外部に導出するリード導出部を有するリング状の絶縁ケースと、この絶縁ケースに巻装した二次巻線を備えた耐雷強化型低圧用絶縁変圧器における放熱構造であって、絶縁ケースに、当該絶縁ケースとリング体の間の間隙に連通して、リング体の発熱をケース外に放出する放熱口を設けたことを特徴とする。   The present invention relates to a ring body in which a primary winding is wound on a ring-shaped wound core through a first insulator attached to the entire surface of the wound core, and a high-voltage insulation covering the entire surface of the ring body. A ring-shaped insulating case having a lead lead-out portion for partially leading the primary lead wire of the primary winding to the outside, and a secondary winding wound around the insulating case. A heat dissipation structure for a lightning proof type low-voltage insulation transformer, and the insulation case is provided with a heat release port that communicates with the gap between the insulation case and the ring body to release the heat generated by the ring body outside the case. It is characterized by.

ここで、巻鉄心は、磁気抵抗が小さく磁束密度の高い方向性珪素鋼板を多層に巻回したものが使用できる。巻鉄心の全面に被着する第一絶縁体は、第一巻線を損傷しない程度の薄い塗装膜や絶縁テープである。巻鉄心に一次巻線を一層巻きして小形のリング体を構成する。リング体の全面を被覆する絶縁ケースは、高圧絶縁が容易な樹脂成形品やゴム製ケースであり、具体的には、リング体の軸方向両端面から着脱自在に嵌着される一対のリング状第一ケースとリング状第二ケースで構成したもので、リング体に被せるとケース内面とリング体との間に一次巻線の線間間隙を主とする間隙が形成される。絶縁ケースの外面に静電遮蔽処理をし、絶縁ケースのリード導出部を除く外面に二次巻線を巻装する。絶縁ケースのリード導出部を含む外面で、二次巻線が巻装されない外面の部分的な単一箇所または複数箇所に放熱口を形成する。放熱口は、絶縁ケース内面とリング体の間の間隙に連通して、リング体で発生した発熱をケース外に放熱する。絶縁ケースにおける放熱口の形成位置は限定されないが、変圧器取付部材などで塞がれて放熱性が損なわれない位置に選定される。絶縁ケース内の放熱で一次巻線の温度上昇が抑制されて、一次巻線の線径を小さくしてリング体や変圧器自体を小形にするといったことが容易になる。   Here, as the wound iron core, a directional silicon steel sheet having a small magnetic resistance and a high magnetic flux density wound in multiple layers can be used. The first insulator deposited on the entire surface of the wound core is a thin coating film or insulating tape that does not damage the first winding. A small ring body is formed by further winding a primary winding around a wound iron core. The insulating case that covers the entire surface of the ring body is a resin molded product or rubber case that facilitates high-voltage insulation, and specifically, a pair of ring shapes that are detachably fitted from both axial end surfaces of the ring body. It is composed of a first case and a ring-shaped second case, and when it is put on the ring body, a gap mainly composed of a line gap of the primary winding is formed between the case inner surface and the ring body. The outer surface of the insulating case is subjected to electrostatic shielding treatment, and the secondary winding is wound on the outer surface of the insulating case excluding the lead lead-out portion. On the outer surface including the lead lead-out portion of the insulating case, a heat radiation port is formed at a single portion or a plurality of locations on the outer surface where the secondary winding is not wound. The heat radiation port communicates with a gap between the inner surface of the insulating case and the ring body, and radiates heat generated in the ring body to the outside of the case. Although the formation position of the heat radiation port in the insulating case is not limited, it is selected at a position where the heat radiation performance is not impaired by being blocked by a transformer mounting member or the like. The temperature rise of the primary winding is suppressed by heat dissipation in the insulating case, and it becomes easy to reduce the wire diameter of the primary winding to make the ring body and the transformer itself small.

上記絶縁ケースの放熱口は、リング状絶縁ケースの外周から半径方向に突出する放熱筒とすることができる。このような放熱筒は、リング状絶縁ケースの軸方向高さを小さくして変圧器自体の薄型化を容易にする。また、絶縁ケースの放熱口は、リング状絶縁ケースの軸方向両端面の片端面から軸方向に突出する放熱筒とすることも可能である。この場合、絶縁ケースの放熱筒が突出する片端面が上面となるよう絶縁ケースを配置して、上面からの放熱性を高めるようにする。   The heat radiating port of the insulating case can be a heat radiating tube protruding in the radial direction from the outer periphery of the ring-shaped insulating case. Such a radiating cylinder makes it easy to reduce the thickness of the transformer itself by reducing the axial height of the ring-shaped insulating case. Further, the heat radiating port of the insulating case may be a heat radiating tube protruding in the axial direction from one end surface of both end surfaces in the axial direction of the ring-shaped insulating case. In this case, the insulating case is arranged so that the one end surface from which the heat radiating tube of the insulating case protrudes becomes the upper surface, so that the heat dissipation from the upper surface is enhanced.

また、本発明においては、絶縁ケースのリード導出部の先端から導出される一次リード線を可撓性絶縁筒体で被覆し、この絶縁筒体と一次リード線の間に前記放熱口に連通する放熱隙間を形成した構造とすることができる。ここでの可撓性絶縁筒体は、リード導出部の先端から一次リード線の先端に形成した端子導体部までの長さのゴム製チューブが適用できる。この絶縁筒体とリード導出部の先端部を、必要に応じて絶縁テープなどで絶縁被覆する。このような絶縁筒体は、一次リード線と共に屈曲して一次リード線の配線接続などを容易にすると共に、絶縁筒体と一次リード線の間の放熱隙間が絶縁ケース内の放熱性を高める。また、リード導出部をリング状絶縁ケースの外周から半径方向に突出させて形成するような場合、その突出長が絶縁筒体の分だけ短くできる。   In the present invention, the primary lead wire led out from the tip of the lead lead-out portion of the insulating case is covered with a flexible insulating cylinder, and communicates with the heat radiation port between the insulating cylinder and the primary lead wire. It can be set as the structure which formed the thermal radiation gap. The flexible insulating cylinder here may be a rubber tube having a length from the tip of the lead lead-out portion to the terminal conductor portion formed at the tip of the primary lead wire. The insulating cylinder and the leading end of the lead lead-out portion are insulatively coated with an insulating tape or the like as necessary. Such an insulating cylinder is bent together with the primary lead wire to facilitate wiring connection of the primary lead wire and the heat radiation gap between the insulating cylinder and the primary lead wire enhances the heat dissipation in the insulating case. Further, when the lead lead-out portion is formed to protrude in the radial direction from the outer periphery of the ring-shaped insulating case, the protruding length can be shortened by the amount of the insulating cylinder.

また、本発明においては、絶縁ケースのリード導出部が、一次リード線の挿通口と放熱口の両方を兼ね備えるリード導出兼放熱筒部を有する構造とすることができる。この場合、リード導出部が放熱口、放熱筒を兼用し、逆の言い方をすれば絶縁ケースに設けた放熱口、放熱筒がリード導出部を兼用する。このようにすることで、絶縁ケースのリード導出部と放熱口、放熱筒が同一箇所に形成でき、絶縁ケースの設計と製作が容易になる。また、リード導出部のリード導出兼放熱筒部を絶縁ケースの外周から半径方向に突出させることで、この放熱筒部が一次リード線、一次巻線と絶縁ケース外周の二次巻線をと高圧絶縁して、両巻線間の絶縁距離確保を容易にする。   Moreover, in this invention, it can be set as the structure which has the lead | lead derivation | leading-out heat radiation cylinder part which has both the insertion hole of a primary lead wire, and a heat radiating port in the lead | lead lead-out part of an insulation case. In this case, the lead lead-out portion also serves as the heat radiating port and the heat radiating cylinder. In other words, the heat radiating port and the heat radiating cylinder provided in the insulating case also serve as the lead derivation portion. By doing so, the lead lead-out portion of the insulating case, the heat radiating port, and the heat radiating tube can be formed at the same place, and the design and manufacture of the insulating case becomes easy. Also, by projecting the lead lead-out and heat radiating cylinder part of the lead lead-out part radially from the outer periphery of the insulating case, this heat radiating cylinder part is connected to the primary lead wire, the primary winding, and the secondary winding around the insulating case. Insulate to make it easy to secure the insulation distance between the two windings.

また、本発明においては、絶縁ケースの放熱口から離れた部所に放熱口に連通する外気取入れ口を形成することができる。この外気取入れ口は、リング状絶縁ケースの外周から半径方向に突出する外気取入れ筒とすることができる。 Moreover, in this invention, the external air intake port connected to a heat radiating port can be formed in the part away from the heat radiating port of the insulation case. The outside air intake port may be an outside air intake cylinder that protrudes in the radial direction from the outer periphery of the ring-shaped insulating case.

ここでの外気取入れ口は、絶縁ケースの任意の単一箇所、複数箇所に形成することができる。絶縁ケースに放熱口と共に、この放熱口に連通させて外気取入れ口、外気取入れ筒を形成することで、絶縁ケース内の気流がスムーズになり、放熱性が高まる。   Here, the outside air intake can be formed at any single location or multiple locations of the insulating case. By forming the outside air intake port and the outside air intake tube together with the heat radiating port together with the heat radiating port in the insulating case, the air flow in the insulating case is smoothed and the heat radiation is improved.

本発明によれば、巻鉄心に巻装された一次巻線を被覆する絶縁ケースに設けた放熱口、放熱筒がケース内の温度上昇を低く抑えるよう作用するので、一次巻線の温度上昇による巻線抵抗、銅損が小さく抑制できるようになり、巻線の線径を小さくしてリング体の外寸を縮小し、変圧器自体を小形にすることや、温度上昇を抑制して高性能にすることができるという優れた効果を奏し得る。   According to the present invention, the heat radiating port and the heat radiating tube provided in the insulating case covering the primary winding wound around the wound iron core act so as to suppress the temperature rise in the case to a low level. Winding resistance and copper loss can be reduced, and the outer diameter of the ring body is reduced by reducing the wire diameter of the winding, miniaturizing the transformer itself, and suppressing the temperature rise and high performance The excellent effect that it can be made can be produced.

また、リング状絶縁ケースの外周から半径方向に放熱筒やリード導出部を突出させることで、絶縁ケース、この絶縁ケースに二次巻線を巻装した変圧器自体を薄型化することができ、壁掛け形や装柱形として実用価値の高い耐雷強化型低圧用絶縁変圧器を提供することができる。   In addition, by projecting the heat radiating cylinder and lead lead-out portion in the radial direction from the outer periphery of the ring-shaped insulating case, the insulating case and the transformer itself in which the secondary winding is wound around the insulating case can be thinned. It is possible to provide a lightning proof strengthening type low-voltage insulation transformer that has a high practical value as a wall-mounted type or a column type.

以下、本発明の実施の形態を図1〜図11を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1および図2に示される耐雷強化型低圧用絶縁変圧器は、リング状の巻鉄心1の全面を第一絶縁体2で被覆し、第一絶縁体2を介して巻鉄心1に一次巻線3を巻装したリング体4と、このリング体4の全面を被覆して高圧絶縁を構築するリング状の絶縁ケース10と、絶縁ケース10の外面に形成した静電遮蔽構体20と、静電遮蔽構体20を介して絶縁ケース10の外面に巻装した二次巻線30を備える。絶縁ケース10の一部に一次巻線3の巻始めと巻終わりの一次リード線3a、3bをケース外に導出する中空のリード導出部13が一体に形成される。また、絶縁ケース10の内面とリング体4の間に微小な間隙Gが形成され、この間隙Gに連通させて絶縁ケース10に部分的に放熱口15と外気取入れ口17が形成される。   1 and 2, the lightning strengthened low-voltage insulation transformer covers the entire surface of a ring-shaped wound core 1 with a first insulator 2, and the primary winding is wound around the wound core 1 through the first insulator 2. A ring body 4 around which the wire 3 is wound, a ring-shaped insulating case 10 that covers the entire surface of the ring body 4 to construct high-voltage insulation, an electrostatic shielding structure 20 formed on the outer surface of the insulating case 10, A secondary winding 30 wound around the outer surface of the insulating case 10 via the electric shielding structure 20 is provided. A hollow lead lead-out portion 13 for leading out the primary lead wires 3a and 3b of the primary winding 3 to the outside of the case is integrally formed in a part of the insulating case 10. Further, a minute gap G is formed between the inner surface of the insulating case 10 and the ring body 4, and the heat radiating port 15 and the outside air intake port 17 are partially formed in the insulating case 10 in communication with the gap G.

巻鉄心1は、図5に示すように、長尺な帯状方向性珪素鋼板1aを多層に巻回したもので、磁束密度を高くして鉄心断面積を小さくしている。巻鉄心1の軸方向両端面と内外周面の全面に絶縁塗装膜による第一絶縁体2を塗着する。第一絶縁体2は、溶融樹脂に巻鉄心1を浸漬して形成した樹脂層や、巻鉄心1に巻装した絶縁テープ(図示せず)であってもよい。第一絶縁体2で全面が被覆された巻鉄心1は、非接地で使用される。巻鉄心1に第一絶縁体2を介して一次巻線3が一層で巻装されて、図4に示すようなリング体4が形成される。第一絶縁体2は、巻鉄心1が非接地で使用されるために、1500V程度の低圧絶縁のものでよい。巻鉄心1の巻始めと巻終わりのリード線3a、3bが、巻鉄心1の軸方向両端面の一方の端面側に引き出される。このようなリング体4は、次の理由で小形軽量化される。   As shown in FIG. 5, the wound core 1 is obtained by winding a long band-shaped directional silicon steel sheet 1 a in multiple layers, and increasing the magnetic flux density to reduce the core cross-sectional area. A first insulator 2 made of an insulating coating film is applied to the entire surface of both ends in the axial direction and the inner and outer peripheral surfaces of the wound core 1. The first insulator 2 may be a resin layer formed by immersing the wound iron core 1 in a molten resin, or an insulating tape (not shown) wound around the wound iron core 1. The wound core 1 whose entire surface is covered with the first insulator 2 is used without being grounded. A primary winding 3 is wound around the wound iron core 1 via a first insulator 2 to form a ring body 4 as shown in FIG. The first insulator 2 may be of a low voltage insulation of about 1500 V because the wound core 1 is used without being grounded. Lead wires 3 a and 3 b at the beginning and end of winding of the wound core 1 are drawn out to one end face side of both axial end faces of the wound core 1. Such a ring body 4 is reduced in size and weight for the following reason.

変圧器自体の小形軽量化を図る1つの手段は、鉄心と巻線の使用量を如何に少なくするかにある。鉄心を少なくする手段として、方向性珪素鋼板の巻鉄心1として断面積を小さくすると共に、鉄損を少なくする。また、巻線を少なくする手段として、温度上昇を低く抑えるようして、巻線の電流密度を大きくし、結果的に一次巻線3を細くして、同じ巻数であっても使用量を少なくする。巻鉄心1の断面積を小さくすることで、巻鉄心1に一周巻きされる巻線長さが短くなり、全体の巻線長が短くでき、その分、巻線抵抗が小さくなり、銅損が小さく抑制でき、温度上昇を抑制することができる。さらに、鉄損の少ない巻鉄心1は、鉄心自体の温度上昇が小さく、一次巻線3への温度上昇の影響が少ない。また、巻鉄心1が非接地であるので、第一絶縁体2は巻鉄心1の角部で一次巻線3が傷付かない程度の低圧絶縁でよい。そのため、巻鉄心1に一次巻線3を直巻き、密着巻きして、リング体4の実質的な外寸を抑制する。さらに、リング状の巻鉄心1は、その全磁路長に亘って均一的に巻線ができることから、巻層を最小の一層にして、リング体4の外寸を最小にする。また、一次巻線3の一巻き当たりの平均巻線長が短く、巻線抵抗が小さくなることから、リング体4は温度上昇の少ないものとして製作でき、十分に小形にすることができる。リング体4は、絶縁ケース10で被覆されることから温度上昇し易い状態にあるが、絶縁ケース10に後述するような放熱機能を持たせることで、温度上昇が十分に抑制されて、十分な小形軽量化が図れる。このリング体4の小形軽量化で、絶縁ケース10が小形化され、その外面に形成される静電遮蔽構体20による静電容量の低減が容易になり、変圧器自体の性能が上がる。   One means for reducing the size and weight of the transformer itself is how to reduce the amount of iron cores and windings used. As means for reducing the iron core, the cross-sectional area is reduced as the wound core 1 of the grain-oriented silicon steel sheet, and the iron loss is reduced. As a means for reducing the number of windings, the temperature rise is kept low, the current density of the windings is increased, and as a result, the primary winding 3 is thinned to reduce the amount of use even with the same number of turns. To do. By reducing the cross-sectional area of the wound core 1, the length of the winding wound around the wound core 1 can be shortened, and the entire winding length can be shortened. The temperature can be suppressed to a small level, and the temperature rise can be suppressed. Further, the wound core 1 with less iron loss has a small temperature rise in the iron core itself, and is less affected by the temperature rise on the primary winding 3. Further, since the wound core 1 is not grounded, the first insulator 2 may be low-voltage insulated so that the primary winding 3 is not damaged at the corners of the wound core 1. Therefore, the primary winding 3 is wound directly and tightly around the wound iron core 1 to suppress the substantial outer dimension of the ring body 4. Further, since the ring-shaped wound core 1 can be uniformly wound over the entire magnetic path length, the winding layer is minimized and the outer dimension of the ring body 4 is minimized. Further, since the average winding length per turn of the primary winding 3 is short and the winding resistance is small, the ring body 4 can be manufactured with a small temperature rise and can be made sufficiently small. Since the ring body 4 is covered with the insulating case 10, the temperature is likely to rise. However, by providing the insulating case 10 with a heat dissipation function as described later, the temperature rise is sufficiently suppressed and sufficient. Small and lightweight. As the ring body 4 is reduced in size and weight, the insulating case 10 is reduced in size, and the electrostatic capacity can be easily reduced by the electrostatic shielding structure 20 formed on the outer surface thereof, and the performance of the transformer itself is improved.

図4に絶縁ケース10の具体例を示す。絶縁ケース10は、樹脂成形品の第一ケース11と第二ケース12を備える。リング体4が軸方向上下の下部リング領域4aと上部リング領域4bに二分されるとした場合、下部リング領域4aに第一ケース11が下方から挿脱可能に嵌着され、上部リング領域4bに第二ケース12が上方から挿脱可能に嵌着される。第一ケース11は、リング状の底板部11aと、底板部11aの内周から立ち上がる内筒部11bと、底板部11aの外周から立ち上がる外筒部11cを一体に有する。底板部11aと内筒部11bと外筒部11cで囲まれた上端開口リング状の溝部に、リング体4の下部リング領域4aが嵌着される。第二ケース12は、リング状の天板部12aと、天板部12aの内周から立ち下がる内筒部12bと、天板部12aの外周から立ち下がる外筒部12cを一体に有する。天板部12aと内筒部12bと外筒部12cで囲まれた下端開口リング状の溝部に、リング体4の上部リング領域4aが嵌着される。リング体4の内周に嵌着される両ケース11、12の内筒部11b、12bの開放端部は互いに内外で重合するように薄肉化される。同様に両ケース11、12の外筒部11c、12cの開放端部も、互いに内外で重合するように薄肉化される。   FIG. 4 shows a specific example of the insulating case 10. The insulating case 10 includes a first case 11 and a second case 12 that are resin molded products. When the ring body 4 is divided into an upper and lower lower ring region 4a and an upper ring region 4b, the first case 11 is fitted in the lower ring region 4a so as to be detachable from below, and is attached to the upper ring region 4b. The second case 12 is fitted so as to be detachable from above. The first case 11 integrally includes a ring-shaped bottom plate portion 11a, an inner cylinder portion 11b rising from the inner periphery of the bottom plate portion 11a, and an outer cylinder portion 11c rising from the outer periphery of the bottom plate portion 11a. The lower ring region 4a of the ring body 4 is fitted into the upper opening ring-shaped groove portion surrounded by the bottom plate portion 11a, the inner tube portion 11b, and the outer tube portion 11c. The second case 12 integrally includes a ring-shaped top plate portion 12a, an inner tube portion 12b that falls from the inner periphery of the top plate portion 12a, and an outer tube portion 12c that falls from the outer periphery of the top plate portion 12a. The upper ring region 4a of the ring body 4 is fitted into a ring-shaped groove portion at the lower end opening surrounded by the top plate portion 12a, the inner cylinder portion 12b, and the outer cylinder portion 12c. The open ends of the inner cylindrical portions 11b and 12b of both cases 11 and 12 fitted to the inner periphery of the ring body 4 are thinned so as to overlap each other. Similarly, the open end portions of the outer cylindrical portions 11c and 12c of both the cases 11 and 12 are also thinned so as to overlap each other.

絶縁ケース10の外面に形成される静電遮蔽体20は、図6に示すように、第一ケース11の外面にほぼ全面的に形成された第一静電遮蔽体21と、第二ケース12の外面にほぼ全面的に形成された第二静電遮蔽体22に二分される。第一ケース11の開放端部である内筒部11bの内周上縁部11’bと外筒部11cの外周上縁部11’cは静電遮蔽体の無い沿面絶縁部分である。第二ケース12の開放端部である内筒部12bの内周下縁部12’bと外筒部12cの外周下縁部12’cは静電遮蔽体の無い沿面絶縁部分である。第一ケース11と第二ケース12の薄肉化された開口端部同士を互いに内外で重合させると、この重合部分で両ケースの静電遮蔽体21、22の開放端部同士が対峙して、重合部分での静電遮蔽が行われる。かつ、重合部分の内周上縁部11’bなどの沿面絶縁部分が第一静電遮蔽体21と第二静電遮蔽体22を離隔して、第一静電遮蔽体21と第二静電遮蔽体22の間での誘起電圧による短絡電流の流れ(1ターン短絡)を阻止する。   As shown in FIG. 6, the electrostatic shield 20 formed on the outer surface of the insulating case 10 includes a first electrostatic shield 21 formed almost entirely on the outer surface of the first case 11 and the second case 12. The second electrostatic shield 22 formed almost entirely on the outer surface is divided into two. The inner peripheral upper edge portion 11'b of the inner cylindrical portion 11b and the outer peripheral upper edge portion 11'c of the outer cylindrical portion 11c, which are open ends of the first case 11, are creeping insulation portions without an electrostatic shield. The inner peripheral lower edge portion 12'b of the inner cylindrical portion 12b and the outer peripheral lower edge portion 12'c of the outer cylindrical portion 12c, which are open ends of the second case 12, are creeping insulation portions without an electrostatic shield. When the thinned opening ends of the first case 11 and the second case 12 are overlapped with each other inside and outside, the open ends of the electrostatic shields 21 and 22 of both cases face each other at this overlapped portion, Electrostatic shielding is performed at the polymerized portion. In addition, creeping insulation portions such as the inner peripheral upper edge portion 11′b of the overlapped portion separate the first electrostatic shield 21 and the second electrostatic shield 22, and the first electrostatic shield 21 and the second static shield 21 are separated. A short-circuit current flow (one turn short-circuit) due to the induced voltage between the electric shields 22 is blocked.

以上の絶縁ケース10の第二ケース12にリード導出部13と放熱口15を形成し、第一ケース11に外気取入れ口17を形成する。リード導出部13は、第二ケース12の天板部12aに一体に形成した断面門形の内側導出部13aと、外筒部12cの外周上部から半径方向外方向へと延在する円筒状の外側導出部13bを備える。第二ケース12の外筒部12bの外周一部から半径方向の外方向に一体に延在させた放熱筒16の中に放熱口15を形成する。放熱筒16は、縦長の断面矩形の角筒で、リード導出部13の外側導出部12bの真下の定箇所に形成される。第一ケース11の外筒部11bの外周一部から半径方向の外方向に一体に延在させた外気取入れ筒18の中に外気取入れ口17を形成する。外気取入れ筒18は、縦長の断面矩形の角筒である。なお、外気取入れ筒18は、丸筒状であってもよい。放熱口15と外気取入れ口17の双方は、リング体4と絶縁ケース10の間に形成された間隙Gに連通する。   The lead lead-out portion 13 and the heat radiation port 15 are formed in the second case 12 of the insulating case 10 described above, and the outside air intake port 17 is formed in the first case 11. The lead lead-out part 13 is a cylindrical inner lead-out part 13a formed integrally with the top plate part 12a of the second case 12, and a cylindrical shape extending radially outward from the outer peripheral upper part of the outer cylinder part 12c. The outer derivation | leading-out part 13b is provided. A heat radiation port 15 is formed in a heat radiation tube 16 that is integrally extended radially outward from a part of the outer periphery of the outer tube portion 12 b of the second case 12. The heat radiating cylinder 16 is a rectangular tube having a vertically long rectangular cross section, and is formed at a fixed position directly below the outer lead-out portion 12 b of the lead lead-out portion 13. An outside air intake port 17 is formed in an outside air intake cylinder 18 that is integrally extended radially outward from a part of the outer periphery of the outer cylinder portion 11 b of the first case 11. The outside air intake cylinder 18 is a rectangular tube with a vertically long cross-sectional rectangle. The outside air intake cylinder 18 may be a round cylinder. Both the heat radiation port 15 and the outside air intake port 17 communicate with a gap G formed between the ring body 4 and the insulating case 10.

図4に示すように、リング体4に第一ケース11と第二ケース12を被せるとき、リング体4上の一対のリード線3a、3bが第二ケース12のリード導出部13に挿通されて、ケース外に導出される。第一ケース11の外気取入れ筒18は、第二ケース12の放熱筒16の真下に位置決めされる。第一ケース11と第二ケース12からなるリング状絶縁ケース10の全面の、リード導出部13と放熱筒16と外気取入れ筒18が縦に並ぶ領域を除いて二次巻線30が一層巻きで巻装されて、図2に示すような耐雷強化型低圧用絶縁変圧器が製作される。リード導出部13と放熱筒16と外気取入れ筒18を絶縁ケース10の外周に軸方向一列に配列することで、この一列の突起物を避けての二次巻線30の巻装が容易になる。また、二次巻線30の巻始めと巻終わりの間の空スペースにリード導出部13と放熱筒16と外気取入れ筒18を形成することで、空スペースの有効利用が図れ、さらに、この空スペースで二次巻線30との絶縁距離確保が図れる。   As shown in FIG. 4, when the ring case 4 is covered with the first case 11 and the second case 12, the pair of lead wires 3 a and 3 b on the ring body 4 are inserted into the lead lead-out portion 13 of the second case 12. Derived outside the case. The outside air intake cylinder 18 of the first case 11 is positioned directly below the heat radiating cylinder 16 of the second case 12. The secondary winding 30 is wound in one layer except for the region where the lead lead-out portion 13, the heat radiating cylinder 16, and the outside air intake cylinder 18 are arranged vertically on the entire surface of the ring-shaped insulating case 10 including the first case 11 and the second case 12. By winding, a lightning strengthening type low voltage insulation transformer as shown in FIG. 2 is manufactured. By arranging the lead lead-out portion 13, the heat radiating cylinder 16, and the outside air intake cylinder 18 in a line in the axial direction on the outer periphery of the insulating case 10, it is easy to wind the secondary winding 30 while avoiding this line of protrusions. . Further, by forming the lead lead-out portion 13, the heat radiating cylinder 16, and the outside air intake cylinder 18 in the empty space between the winding start and the winding end of the secondary winding 30, it is possible to effectively use the empty space. It is possible to secure an insulation distance from the secondary winding 30 in space.

図1に示すように、リード導出部13を上にして耐雷強化型低圧用絶縁変圧器を使用する場合、一次巻線3が通電により発熱すると、熱気が間隙Gを上昇して放熱筒16に入り、放熱口15から放出される。この際、外気取入れ筒18の外気取入れ口17から外気(冷気)が間隙Gへと積極的に取り入れられて、放熱が助長され、一次巻線3の温度上昇が抑制される。放熱筒16と外気取入れ筒18の長さを大きくすることで、トンネル効果が得られて放熱性が増す。また、リード導出部13の外側導出部13bを長くすることで、一次リード線3a、3bと二次巻線30の絶縁距離が確保され、巻線間の高圧絶縁が安定して行われる。   As shown in FIG. 1, when using a lightning proof type low-voltage insulation transformer with the lead lead-out portion 13 facing upward, when the primary winding 3 generates heat by energization, the hot air rises through the gap G and enters the heat radiating tube 16. Enters and is discharged from the heat radiation port 15. At this time, outside air (cold air) is actively taken into the gap G from the outside air intake port 17 of the outside air intake cylinder 18, heat dissipation is promoted, and temperature rise of the primary winding 3 is suppressed. By increasing the length of the heat radiating cylinder 16 and the outside air intake cylinder 18, a tunnel effect is obtained and heat dissipation is increased. In addition, by making the outer lead-out portion 13b of the lead lead-out portion 13 long, an insulation distance between the primary lead wires 3a and 3b and the secondary winding 30 is ensured, and high-voltage insulation between the windings is stably performed.

また、リング状の絶縁ケース10の外周から半径方向外方向に外側導出部13bと放熱筒16,外気取入れ筒18を延在させることで、絶縁ケース10の軸方向高さが最小限に設定できて、耐雷強化型低圧用絶縁変圧器の薄型化が実現される。このような薄型変圧器は、壁掛け形や装柱形の耐雷変圧器に好適である。このことは図7と図9の他の実施の形態においても同様である。   Moreover, the axial height of the insulating case 10 can be set to a minimum by extending the outer lead-out portion 13b, the heat radiating cylinder 16, and the outside air intake cylinder 18 from the outer periphery of the ring-shaped insulating case 10 in the radially outward direction. Thus, the lightning-proof low-voltage insulation transformer can be made thinner. Such a thin transformer is suitable for a wall-mounted or pillar-type lightning resistant transformer. This also applies to the other embodiments shown in FIGS.

図7および図8に示す実施の形態の耐雷強化型低圧用絶縁変圧器は、リード導出部13の外側導出部13bの先端から導出される一次リード線3a、3bを可撓性絶縁筒体19で被覆している。絶縁筒体19は、2本の一次リード線3a、3bが余裕をもって挿通される大きめの開口断面積を有する円筒で、図7では絶縁筒体19の後端部を拡径して外側導出部13bの外周に圧着している。絶縁筒体19は、一次リード線3a、3bの先端に形成した端子導体部3c、3dの近くまで延在する長さで、一次リード線3a、3bとの間に放熱隙間G’を形成する。放熱隙間G’は絶縁筒体19の先端で開口して、放熱口15と同様に絶縁ケース10内の熱を放出する。この放熱で、一次巻線3の温度上昇がより一段と抑制される。   7 and FIG. 8, the lightning strengthening type low voltage insulation transformer of the embodiment is configured such that the primary lead wires 3a and 3b led out from the tip of the outer lead-out portion 13b of the lead lead-out portion 13 are connected to the flexible insulating cylinder 19. It is covered with. The insulating cylinder 19 is a cylinder having a large opening cross-sectional area into which the two primary lead wires 3a and 3b are inserted with a margin. In FIG. It is crimping | bonding to the outer periphery of 13b. The insulating cylinder 19 has a length that extends to the vicinity of the terminal conductor portions 3c and 3d formed at the tips of the primary lead wires 3a and 3b, and forms a heat radiation gap G 'with the primary lead wires 3a and 3b. . The heat radiating gap G ′ is opened at the tip of the insulating cylinder 19, and the heat in the insulating case 10 is released like the heat radiating port 15. With this heat dissipation, the temperature rise of the primary winding 3 is further suppressed.

また、ゴム製の絶縁筒体19は一次リード線3a、3bと共に屈曲できる可撓性を有するため、一次リード線3a、3bの他の機器への配線接続に便宜を図ることができる。さらに、絶縁筒体19は一次リード線3a、3bの先端の端子導体部3c、3dまでを被覆して二次巻線30との絶縁距離を確保するので、リード導出部13の外側導出部13bの実質的な突出長さLを図1の場合に比べ十分に短くすることができる。   In addition, since the rubber insulating cylinder 19 has flexibility to bend together with the primary lead wires 3a and 3b, it is possible to facilitate the connection of the primary lead wires 3a and 3b to other devices. Further, since the insulating cylinder 19 covers the terminal conductor portions 3c and 3d at the tips of the primary lead wires 3a and 3b to secure an insulation distance from the secondary winding 30, the outer lead-out portion 13b of the lead lead-out portion 13 is secured. The substantial protrusion length L can be made sufficiently shorter than in the case of FIG.

次に、図9および図10に示す実施の形態を説明する。この実施の形態におけるリード導出部13は、図1におけるリード導出部13と放熱筒16を合体させたものに相当する。図9のリード導出部13は内側導出部13aと外側導出部13bを有し、この外側導出部13bを図10に示すように縦長矩形の角筒状にして、その内部空間の上部を一次リード線3a、3bが挿通される挿通口15’とし、内部空間の下部を放熱口15にしている。外側導出部13bはリード導出兼放熱筒部で、このリード導出兼放熱筒部にすることで放熱口15の実質的な開口断面積が挿通口15’の分だけ増えて、放熱性が増す。   Next, the embodiment shown in FIGS. 9 and 10 will be described. The lead lead-out portion 13 in this embodiment corresponds to a combination of the lead lead-out portion 13 and the heat radiating cylinder 16 in FIG. The lead lead-out portion 13 shown in FIG. 9 has an inner lead-out portion 13a and an outer lead-out portion 13b. The outer lead-out portion 13b is formed in a vertically long rectangular tube as shown in FIG. An insertion port 15 ′ through which the wires 3 a and 3 b are inserted is used, and a lower part of the internal space is a heat radiation port 15. The outer lead-out portion 13b is a lead lead-out and heat radiating tube portion. By using this lead lead-out and heat radiating tube portion, the substantial opening cross-sectional area of the heat radiating port 15 is increased by the amount of the insertion port 15 ', and the heat radiation performance is increased.

また、図1におけるリード導出部13と放熱筒16を合体させた構造の図9のリード導出部13を有する絶縁ケース10は、図1や図7の絶縁ケース10より構造がシンプルとなり、設計や製作が容易になる。さらに、図9のリード導出部13の外側導出部13bを放熱筒16として長くすることで、図1の場合と同様に一次リード線3a、3bと二次巻線30の絶縁距離が確保され、巻線間の高圧絶縁が安定して行われる。   Further, the insulating case 10 having the lead lead-out portion 13 in FIG. 9 having a structure in which the lead lead-out portion 13 and the heat radiation cylinder 16 in FIG. 1 are combined is simpler than the insulating case 10 in FIG. 1 and FIG. Easy to manufacture. Furthermore, by making the outer lead-out portion 13b of the lead lead-out portion 13 of FIG. 9 long as the heat radiating tube 16, the insulation distance between the primary lead wires 3a and 3b and the secondary winding 30 is ensured similarly to the case of FIG. High voltage insulation between windings is performed stably.

図11に示す実施の形態は、絶縁ケース10に2本の一次リード線3a、3bが1本ずつ挿通される一対のリード導出部13’、13’を設け、第二ケース12の天板部12aに円筒状の放熱筒16’を突設している。放熱筒16’の中空が放熱口15である。天板部12aにある一対のリード導出部13’、13’の間に単一の放熱筒16’を形成することで、絶縁ケース10内の放熱性を高める。   In the embodiment shown in FIG. 11, a pair of lead lead-out portions 13 ′ and 13 ′ into which two primary lead wires 3 a and 3 b are inserted one by one in the insulating case 10 are provided, and the top plate portion of the second case 12 is provided. A cylindrical heat radiating cylinder 16 ′ is projected from 12 a. The hollow of the heat radiating cylinder 16 ′ is a heat radiating port 15. By forming a single heat radiating tube 16 ′ between the pair of lead lead-out portions 13 ′ and 13 ′ on the top plate portion 12 a, the heat dissipation in the insulating case 10 is improved.

なお、本発明の耐雷強化型低圧用絶縁変圧器は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the lightning strengthening type low voltage insulation transformer of the present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the present invention.

本発明の実施の形態を示す耐雷強化型低圧用絶縁変圧器の断面図である。It is sectional drawing of the lightning-proof reinforced type low voltage | pressure insulation transformer which shows embodiment of this invention. 図1の絶縁変圧器の斜視図である。It is a perspective view of the insulation transformer of FIG. 図1の絶縁変圧器の部分側面図である。It is a partial side view of the insulation transformer of FIG. 図1の絶縁変圧器の製造途中におけるリング体と絶縁ケースの分解斜視図である。It is a disassembled perspective view of the ring body and insulation case in the middle of manufacture of the insulation transformer of FIG. 図4のリング体の一次巻線を巻装する前の斜視図である。It is a perspective view before winding the primary winding of the ring body of FIG. 図4の絶縁ケースを構成する第一ケースと第二ケースの部分拡大断面図である。It is the elements on larger scale of the 1st case and the 2nd case which comprise the insulation case of FIG. 他の実施の形態を示す耐雷強化型低圧用絶縁変圧器の部分断面図である。It is a fragmentary sectional view of the lightning proof strengthening type low voltage insulation transformer which shows other embodiments. 図7の絶縁変圧器の部分側面図である。It is a partial side view of the insulation transformer of FIG. さらに他の実施の形態を示す耐雷強化型低圧用絶縁変圧器の部分断面図である。It is a fragmentary sectional view of the lightning strengthening type low voltage insulation transformer which shows other embodiments. 図9の絶縁変圧器の部分側面図である。FIG. 10 is a partial side view of the insulation transformer of FIG. 9. さらに他の実施の形態を示す耐雷強化型低圧用絶縁変圧器の斜視図である。It is a perspective view of the lightning proof strengthening type low voltage insulation transformer which shows other embodiments.

符号の説明Explanation of symbols

1 巻鉄心
2 第一絶縁体
3 一次巻線
3a、3b 一次リード線
4 リング体
10 リング状絶縁ケース
11 第一ケース
12 第二ケース
13 リード導出部
13’ リード導出部
13a 内側導出部
13b 外側導出部
15 放熱口
16 放熱筒
16’ 放熱筒
17 外気取入れ口
18 外気取入れ筒
19 可撓性絶縁筒体
20 静電遮蔽体
21 第一静電遮蔽体
22 第二静電遮蔽体
30 二次巻線
G 間隙
G’ 放熱隙間
DESCRIPTION OF SYMBOLS 1 Iron core 2 1st insulator 3 Primary winding 3a, 3b Primary lead wire 4 Ring body 10 Ring-shaped insulation case 11 First case 12 Second case 13 Lead lead-out part 13 'Lead lead-out part 13a Inner lead-out part 13b Outer lead-out Part 15 Radiation port 16 Radiation tube 16 'Radiation tube 17 Outside air intake 18 Outside air intake tube 19 Flexible insulating cylinder 20 Electrostatic shield 21 First electrostatic shield 22 Second electrostatic shield 30 Secondary winding G gap G 'Heat radiation gap

Claims (9)

リング状の巻鉄心に当該巻鉄心の全面に被着した第一絶縁体を介して一次巻線を巻装して成るリング体と、このリング体の全面を被覆して高圧絶縁する、部分的に前記一次巻線の巻始めと巻終わりの一次リード線を外部に導出するリード導出部を有するリング状の絶縁ケースと、この絶縁ケースに巻装した二次巻線を備えた耐雷強化型低圧用絶縁変圧器における放熱構造であって、
前記絶縁ケースに、当該絶縁ケースと前記リング体の間の間隙に連通して、リング体の発熱をケース外に放出する放熱口を設けたことを特徴とする耐雷強化型低圧用絶縁変圧器の放熱構造。
A ring body in which a primary winding is wound on a ring-shaped wound iron core via a first insulator attached to the entire surface of the wound core, and a high-voltage insulation covering the entire surface of the ring body. A ring-shaped insulation case having a lead lead-out portion for leading the primary lead wire of the primary winding to the outside and a secondary winding wound around the insulation case; A heat dissipation structure for an insulation transformer,
A lightning strengthening type low-voltage insulation transformer characterized in that the insulation case is provided with a heat radiation port that communicates with a gap between the insulation case and the ring body and discharges heat generated by the ring body to the outside of the case. Heat dissipation structure.
前記放熱口が、前記リング状絶縁ケースの外周から半径方向に突出する放熱筒であることを特徴とする請求項1に記載の耐雷強化型低圧用絶縁変圧器の放熱構造。   The heat radiation structure of a lightning proof strengthening type low voltage insulation transformer according to claim 1, wherein the heat radiation port is a heat radiation cylinder protruding in a radial direction from an outer periphery of the ring-shaped insulation case. 前記放熱口が、前記リング状絶縁ケースの軸方向両端面の片端面から軸方向に突出する放熱筒であることを特徴とする請求項1に記載の耐雷強化型低圧用絶縁変圧器の放熱構造。   2. The heat dissipation structure of a lightning proof strengthening type low-voltage insulation transformer according to claim 1, wherein the heat radiation port is a heat radiation cylinder protruding in an axial direction from one end surface of both end surfaces in the axial direction of the ring-shaped insulating case. . 前記絶縁ケースのリード導出部の先端から導出される一次リード線を可撓性絶縁筒体で被覆し、この絶縁筒体と一次リード線の間に前記放熱口に連通する放熱隙間を形成したことを特徴とする請求項1〜3のいずれか一項に記載の耐雷強化型低圧用絶縁変圧器の放熱構造。   The primary lead wire led out from the tip of the lead lead-out portion of the insulating case is covered with a flexible insulating cylinder, and a heat radiation gap communicating with the heat radiation port is formed between the insulating cylinder and the primary lead wire. The heat dissipation structure for a lightning proof strengthening type low voltage insulation transformer according to any one of claims 1 to 3. 前記絶縁ケースのリード導出部が、前記一次リード線の挿通口と前記放熱口の両方を兼ね備えるリード導出兼放熱筒部を有することを特徴とする請求項1〜3のいずれか一項に記載の耐雷強化型低圧用絶縁変圧器の放熱構造。   The lead lead-out portion of the insulating case has a lead lead-out / radiation tube portion that has both the insertion port for the primary lead wire and the heat radiation port. Heat dissipation structure for lightning strengthened low-voltage insulation transformer. 前記リード導出兼放熱筒部が、前記リング状絶縁ケースの外周から半径方向に延在することを特徴とする請求項5に記載の耐雷強化型低圧用絶縁変圧器の放熱構造。   6. The heat dissipation structure for a lightning proof strengthening type low voltage insulation transformer according to claim 5, wherein the lead lead-out and heat radiating cylinder portion extends in a radial direction from an outer periphery of the ring-shaped insulating case. 前記絶縁ケースの前記放熱口から離れた部所に放熱口に連通する外気取入れ口を形成したことを特徴とする請求項1〜6のいずれか一項に記載の耐雷強化型低圧用絶縁変圧器の放熱構造。   The lightning strengthening type low voltage insulation transformer according to any one of claims 1 to 6, wherein an outside air intake port communicating with the heat radiation port is formed in a portion of the insulation case away from the heat radiation port. Heat dissipation structure. 前記外気取入れ口が、前記リング状絶縁ケースの外周から半径方向に突出する外気取入れ筒であることを特徴とする請求項7に記載の耐雷強化型低圧用絶縁変圧器の放熱構造。   8. The heat dissipation structure for a lightning proof strengthening type low voltage insulation transformer according to claim 7, wherein the outside air intake port is an outside air intake tube protruding radially from the outer periphery of the ring-shaped insulating case. 前記外気取入れ筒と前記リード導出部および放熱筒が前記リング状絶縁ケースの外周に軸方向一列に配設したことを特徴とする請求項8に記載の耐雷強化型低圧用絶縁変圧器の放熱構造。   9. The heat dissipation structure for a lightning proof strengthening type low-voltage insulation transformer according to claim 8, wherein the outside air intake cylinder, the lead lead-out portion, and the radiation cylinder are arranged in a line in the axial direction on the outer periphery of the ring-shaped insulation case. .
JP2005337559A 2005-11-22 2005-11-22 Heat radiating structure of thunder resistance reinforcing type insulation transformer for low voltage Pending JP2007142341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005337559A JP2007142341A (en) 2005-11-22 2005-11-22 Heat radiating structure of thunder resistance reinforcing type insulation transformer for low voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005337559A JP2007142341A (en) 2005-11-22 2005-11-22 Heat radiating structure of thunder resistance reinforcing type insulation transformer for low voltage

Publications (1)

Publication Number Publication Date
JP2007142341A true JP2007142341A (en) 2007-06-07

Family

ID=38204807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005337559A Pending JP2007142341A (en) 2005-11-22 2005-11-22 Heat radiating structure of thunder resistance reinforcing type insulation transformer for low voltage

Country Status (1)

Country Link
JP (1) JP2007142341A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100842A (en) * 2009-11-05 2011-05-19 Nec Tokin Corp Magnetic element
EP2908320A1 (en) * 2014-02-13 2015-08-19 CT-Concept Technologie GmbH Insulation structure for transformer, method for insulating a transformer and transformer with insulation structure
JP2016126957A (en) * 2015-01-07 2016-07-11 キヤノン株式会社 Isolation transformer, radiation generator including the same, and radiographic system
JP2019106467A (en) * 2017-12-13 2019-06-27 株式会社タムラ製作所 Coil component
JP2020205315A (en) * 2019-06-14 2020-12-24 株式会社豊田自動織機 Core case

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258313U (en) * 1988-10-22 1990-04-26
JPH03159218A (en) * 1989-11-17 1991-07-09 Hitachi Metals Ltd High tension pulse generating magnetic part
JPH1174138A (en) * 1997-08-27 1999-03-16 Hitachi Ferrite Electronics Ltd High-voltage transformer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258313U (en) * 1988-10-22 1990-04-26
JPH03159218A (en) * 1989-11-17 1991-07-09 Hitachi Metals Ltd High tension pulse generating magnetic part
JPH1174138A (en) * 1997-08-27 1999-03-16 Hitachi Ferrite Electronics Ltd High-voltage transformer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100842A (en) * 2009-11-05 2011-05-19 Nec Tokin Corp Magnetic element
EP2908320A1 (en) * 2014-02-13 2015-08-19 CT-Concept Technologie GmbH Insulation structure for transformer, method for insulating a transformer and transformer with insulation structure
US9773608B2 (en) 2014-02-13 2017-09-26 CT-Concept Technologie GmbH Insulation structure for transformer, method for insulating a transformer, and transformer comprising insulation structure
JP2016126957A (en) * 2015-01-07 2016-07-11 キヤノン株式会社 Isolation transformer, radiation generator including the same, and radiographic system
JP2019106467A (en) * 2017-12-13 2019-06-27 株式会社タムラ製作所 Coil component
JP2020205315A (en) * 2019-06-14 2020-12-24 株式会社豊田自動織機 Core case

Similar Documents

Publication Publication Date Title
EP2586044B1 (en) Coil and electric shielding arrangement, transformer comprising the arrangement and a method of manufacturing the arrangement.
JP4794999B2 (en) Lightning proof type low voltage insulation transformer
EP3109873B1 (en) Inductor coil and electromagnetic component
US20090128273A1 (en) Inductor winder
JP2015065413A (en) Transformer
JP2007142341A (en) Heat radiating structure of thunder resistance reinforcing type insulation transformer for low voltage
JP2009088479A (en) Ignition coil
JP6527586B2 (en) Low-winding capacitance coil form
JP5824001B2 (en) Trance
JP2009033112A (en) Ignition coil
JP6656187B2 (en) Stationary inductor
JP5201043B2 (en) Reactor
JP4584123B2 (en) Electrostatic shielding structure of lightning strengthened low voltage insulation transformer
KR102083445B1 (en) Inductive element and lc filter
JP6808177B2 (en) Reactor
US10468178B2 (en) Stationary induction apparatus
JP2001237125A (en) Coil bobbin and transformer
JP7262254B2 (en) Coil parts unit and coil parts
JP4503756B2 (en) Coil bobbin type wound core transformer
JP6210403B2 (en) Winding parts
JP6322978B2 (en) Ignition coil for internal combustion engine
KR100554700B1 (en) a Troidal coil for use in Electric power saving appliance manufacture method and the composition
JP2005136199A (en) Thunder resistant transformer
EP2992536B1 (en) Bobbin and transformer employing the same
JP2005019455A (en) High-voltage transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081118

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301