JPH033876B2 - - Google Patents

Info

Publication number
JPH033876B2
JPH033876B2 JP13897287A JP13897287A JPH033876B2 JP H033876 B2 JPH033876 B2 JP H033876B2 JP 13897287 A JP13897287 A JP 13897287A JP 13897287 A JP13897287 A JP 13897287A JP H033876 B2 JPH033876 B2 JP H033876B2
Authority
JP
Japan
Prior art keywords
nitrogen fluoride
nitrogen
component
crude
distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13897287A
Other languages
Japanese (ja)
Other versions
JPS63306383A (en
Inventor
Isao Harada
Hiroyuki Momotake
Toshihiko Nishitsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP13897287A priority Critical patent/JPS63306383A/en
Publication of JPS63306383A publication Critical patent/JPS63306383A/en
Publication of JPH033876B2 publication Critical patent/JPH033876B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/083Compounds containing nitrogen and non-metals and optionally metals containing one or more halogen atoms
    • C01B21/0832Binary compounds of nitrogen with halogens
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/083Compounds containing nitrogen and non-metals and optionally metals containing one or more halogen atoms
    • C01B21/0832Binary compounds of nitrogen with halogens
    • C01B21/0835Nitrogen trifluoride
    • C01B21/0837Purification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はフツ化窒素の精製方法に関する。更に
詳しくは、フツ化窒素中に含まれる酸素、窒素な
どの低沸点成分の分離、除去方法い関する。 フツ化窒素、特に三フツ化窒素(NF3)は、電
子材料分野でCVD装置のクリーニング剤やドラ
イエツチング剤として近年注目されている。しか
してこれらの用途に使用されるフツ化窒素は、近
年更に高純度のものが要求されてきている。 〔従来の技術及び発明が解決しようとする問題
点〕 フツ化窒素は種々の方法で製造されているが、
その殆どの場合亜酸化窒素(N2O)、二酸化炭素
(CO2)、酸素(O2)、窒素(N2)などの不純物を
比較的多量に含んでいるので、従つて、上記用途
に使用するためにはフツ化窒素は上記した種々の
不純物を除去・精製し高純度とする必要がある。 上記の如き不純物を除去する方法として、ゼオ
ライトなどの吸着剤と接触させ除去する方法が、
最も効率が良く簡単な方法であるので常用されて
おり、フツ化窒素(粗フツ化窒素)の精製にも適
用されている〔Chem.Eng.、84、116、(1977)
等〕。 しかし、上記方法を粗フツ化窒素の精製に適用
した場合、N2OやCO2などのように比較的高沸点
の不純物は効率よく除去できるが、O2、N2など
のような低沸点成分は殆んど除去されず、その除
去方法は未だ知られていない。 また、一般に沸点の異なる成分の分離手段とし
て、蒸留法が有効で常用されているが、本発明者
らがフツ化窒素中の低沸点成分の除去にこの方法
を試みたところ、フツ化窒素と低沸点成分とでは
沸点差が充分大きいにもかかわらず効率的な分離
が出来ず。例えば、N2についてはフツ化窒素中
に少なくとも数千ppmも残存することがわかつ
た。 このようなことから、現在市販されているフツ
化窒素の純度は99.9重量%程度が限度であり、超
高純度の要求を満足していないのが実状である。 本発明の目的は、O2、N2などの低沸点成分を
効率よく除去し、超高純度のフツ化窒素を得る方
法を提供することにある。 〔問題を解決する為の手段及び作用〕 本発明者らは、粗フツ化窒素中に含まれるO2
N2などの低沸点成分の除去方法について鋭意検
討を重ねた結果、特定の条件下で粗フツ化窒素を
深冷蒸留すれば、極めて効率よく、しかも経済的
に除去できることを見出し、本発明を完成するに
至つたものである。 すなわち本発明は、フツ化窒素より低沸点でか
つフツ化窒素と相互溶解性のない第三成分の共存
下で粗フツ化窒素を深冷蒸留することを特徴とす
るフツ化窒素の精製方法である。 以下本発明を詳細に説明する。フツ化窒素ガス
としては三フツ化窒素(NF3)、二フツ化二窒素
(N2F2)、四フツ化二窒素(N2F4)などが挙げら
れるが、本発明の方法はこれらのいずれのフツ化
窒素の精製にも有効である。 本発明は沸点の低いもの同志を低温下で蒸留分
離させる、深冷蒸留を基本としている。この際の
蒸留操作は連続式または回分式のいずれでも差支
えないが、深理量が多い場合は連続式の方がエネ
ルギーコスト面で好ましく、逆に、処理分が少な
い場合は設備コスト及び操作面で回分式が好まし
い。回分操作のうち、還流を伴わない単蒸留は簡
別な方法として有効である。 本発明は上記のとおり、粗フツ化窒素を深冷蒸
留により精製する方法であるので、従つて該粗フ
ツ化窒素を先ず液化させる必要がある。しかして
本発明では冷媒を用いて粗フツ化窒素を液化させ
る。この液化に用いられる冷媒としては液体窒
素、液体空気、液体アルゴン、LNGなど、フツ
化窒素より沸点の低い物質が用いられるが、これ
らの液化ガスの中でも液体窒素が廉価でもあり、
かつ、不活性である点で最も好ましい。 上記以外の方法としては、例えばLNGの気化
プロセスと組合せる方法などは省エネルギーを図
ることが出来るので好都合である。また、冷凍機
の冷媒と粗フツ化窒素を直接熱交換させる方法も
有効に採用することが出来る。 本発明はこのようにして液化された粗フツ化窒
素を深冷蒸留する方法であり、これによつて含有
するN2やO2などの低沸点成分の除去・精製を目
的としているが、本発明では、上記深冷蒸留に際
しフツ化窒素より低沸点でかつフツ化窒素と相互
溶解性のない第三成分を共存させることが必須要
件である。このよううな第三成分としては、ヘリ
ウム、アルゴン、ネオンなどを挙げることができ
る。この第三成分は、単独でもまた二種以上の混
合ガスでもいずれでもよい。 本発明において粗フツ化窒素に第三成分を共存
させる具体的な方法としては、第1図に示すよう
に第三成分を粗フツ化窒素とともに蒸留塔へフイ
ードする方法、第2図に示すように粗フツ化窒素
と第三成分を別々のフイード口から蒸留塔へフイ
ードする方法、第3図に示すようにあらかじめ第
三成分で蒸留塔内を置換させた後粗フツ化窒素を
蒸留塔にフイードする方法、第4図に示すように
蒸留塔の塔底に液化して滞留している粗フツ化窒
素中に気体状の第三成分をバブリングさせる方法
など、種々の方法が採用出来る。これらの方法の
内、蒸留塔の塔底に液化滞留している粗フツ化窒
素中に気体状の第三成分をバブリングさせる方法
が、N2やO2などの低沸点成分の除去効率が特に
高く好ましい。以上第1図〜第4図に示す方法は
何れも連続式で蒸留する方法であるが、回分式で
行なう場合は、第5図に示すように液化された粗
フツ化窒素中に気体状の第三成分をバブリングさ
せる方法、あるいは第6図に示すようにこれに攪
拌機を付加し粗フツ化ガスを攪拌する気泡攪拌方
式は低沸点成分の除去効率が高く好ましい。液体
状のフツ化窒素に気体状の第三成分をバブリング
させる方法を採用する場合は、その気泡が細かく
分散しているほど低沸点成分の除去効率が高いの
で、分散ノズルなどを使用し第三成分をバブリン
グさせる方法が好ましい。 上記各方法において深冷蒸留を常圧で行なう場
合は、蒸留装置系内への空気の混入を防止する必
要がある。第7図は上記各図で示す方法の更に詳
細な実施態様を示す図であるが、常圧で深冷蒸留
を行なう場合は、低沸点成分及び第三成分の排気
は途中に水シール槽を設け、この水シール槽をバ
ブリングさせた後大気中に放出するようにしてあ
り、これにより蒸留装置系内への空気の混入を防
止している。 本発明では、深冷蒸留はフツ化窒素が液体状で
あるような温度、すなわちフツ化窒素の液化温度
以下、凝固温度以上の温度範囲で、かつ、共存さ
せる第三成分が液化しないような任意の温度で実
施される。従つて、粗フツ化窒素は蒸留塔内にお
いては液化した状態でなければならないが、これ
は蒸留塔を液体窒素、液体空気、液体アルゴンな
どの冷媒で冷却・保冷することで実施される。
尚、蒸留塔にフイードする時の粗フツ化窒素の状
態は、必ずしも液化された状態でなくガス状でも
良いが、フツ化窒素の損失を極力防止する上から
は液化された状態で蒸留塔にフイードするのが好
ましい。 本発明においては、蒸留時の蒸留塔内の圧力は
常圧で行なうのが操作としては簡便であるが、低
沸点成分の除去効率をより向上させるためには減
圧下での蒸留が好ましく、高真空になるほど除去
効率が高くなる。蒸留塔内を減圧にする手段とし
ては、例えば真空ポンプあるいはアスピレーター
など通常公知の減圧装置を用いて、蒸留塔塔頂よ
り吸引する方法、あるいは、蒸留塔塔頂より排出
される低沸点成分と第三成分との混合ガスを液体
ヘリウムなどで液化させる方法などが採用され
る。 本発明では深冷蒸留に際し粗フツ化窒素に共存
させる第三成分の量は特に限定されないが、N2
O2などの低沸点成分の除去効果の点からは、多
ければ多いほど好ましい。しかしながら、この第
三成分はガス化した低沸点成分と共に蒸留塔塔頂
より系外に排出される際、フツ化窒素も一部ガス
状として同伴する。従つて、第三成分の共存量を
増加させるに従いフツ化窒素の損失量が増加する
ので、実際上は液状の粗フツ化窒素に対して、ガ
ス状の第三成分がモル比として1〜100%の範囲
が好ましい。第三成分の蒸留塔への供給方法は特
に限定はなく連続供給、バツチ供給、断続供給の
いずれでもかまわない。 以上詳細に説明した如く、本発明のフツ化窒素
の精製方法は、粗フツ化窒素ガス中に不純物とし
て含まれるN2、O2などの低沸点成分を除去する
方法である。粗フツ化窒素中には、前述の通り上
記低沸点成分の外N2O、CO2などの比較的高沸点
成分も含まれており、この比較的高沸点成分も除
去精製する必要がある。しかし、本発明の方法で
は上記比較的高沸点成分は充分除去されない。従
つて、高純度のフツ化窒素を得るためには、
N2O、CO2などの比較的高沸点成分は、従来公知
の方法であるゼオライトなどの吸着剤と接触させ
て除去・精製し、N2やO2などの低沸点成分は、
本発明の方法によつて除去・精製することにより
達成することができる。しかして上記二つの精製
はいずれを先に実施しても良いが、通常、比較的
高沸点成分を除去した後、本発明の方法により低
沸点成分を除去する方法で実施される。 〔実施例〕 以下、実施例及び比較例により本発明を更に具
体的に説明する。尚、実施例及び比較例において
%、ppmは容量基準を表わす。 実施例 1 市販のゼオライト(細孔径5Å、24〜48メツシ
ユの粒状品)を用いて、含有するN2O、CO2など
を吸着・除去した表−1に示す品質の粗三フツ化
窒素(NF3)を、第7図に示す装置を用いて深冷
蒸留により精製した。 すなわち、保冷容器6に液体窒素を満たして捕
集容器1(内容量1)を冷却したのち、該捕集
容器に表−1に示す品質のガス状のNF3と第三成
分としてヘリウムガスをそれぞれ50ml/min.及
び3ml/min.の流量で、ライン2及び3を通じ
てフイードした。捕集容器内でNF3は液化し、共
存させたヘリウムガス及び分留したガス状の低沸
点成分(酸素、窒素など)は水シール槽7を通し
て排気された(したがつて系内はほぼ大気圧に保
たれている。)。 NF3ガスのフイード量が100gに達した時点で、
バルブ12及び13を閉じてNF3ガス及びヘリウ
ムガスのフイードをストツプし、水シール槽7に
至るバルブ16を閉じたのち、バルブ17を開い
て真空ポンプ8にて系内のガス状低沸点成分及び
ヘリウムガスを排気した。排気完了後、捕集容器
1を常温に戻して捕集容器1内の液化NF3をガス
化して分析した。その結果は表2に示す如く酸素
及び窒素は大幅に除去されていた。 実施例 2 実施例1で使用した装置(第7図)を使用し
て、ヘリウムガス及び深冷蒸留により発生したガ
ス状の低沸点成分の排気を水シール槽7を通して
行なう代わりに、真空ポンプ8を使用してライン
10により排気し捕集容器1内を減圧とした以外
は、実施例1と同一条件及び方法で表−1に示す
品質の粗NF3の深冷蒸留を行なつた。尚、深冷蒸
留時の系内圧力は10mmHg absであつた。捕集容
器1内のNF3をガス化し分析した結果は、表−2
に示す通り酸素及び窒素の含有量は実施例1より
さらに大きく減少していた。 実施例 3 第7図に示す装置において、挿入管11を捕集
容器1の底部まで延長し、液化したNF3中にヘリ
ウムガスをバブリングできるように改造した。 保冷容器6に液体窒素を満たして捕集容器1を
冷却したのち、この捕集容器1へ表−1に示す品
質のガス状の粗NF3100gをフイードして捕集容
器1で液化させた。この液化させた粗NF3中に、
ヘリウムガスを100ml/min.の流量で30分間フイ
ードしバブリングさせた。尚、ヘリウムガス及び
気化した低沸点成分は、実施例1と同様水シール
槽7を通して排気させた(系内圧力は大気圧)。 以下実施例1と同様にして、系内を真空ポンプ
8で排気して共存ガスを除去した。得られた液化
NF3を実施例1と同様気化し分析したところ、そ
の結果は表−2に示す通りで、酸素及び窒素が大
幅に除去された高純度のNF3が得られた。 実施例 4 実施例3の方法において、ヘリウムガスのバブ
リング時も真空ポンプ8を使用し、バブリング時
の系内圧力を10mmHg absにした以外は実施例3
と同一な条件及び方法で深冷蒸留を行なつた。得
られたNF3ガスの分析値は表−2に示す通り、酸
素及び窒素の含有量は極めて微量で極めて高純度
のNF3ガスが得られた。 実施例 5 第三成分としてヘリウムガスが代りにアルゴン
ガスを用いた以外は、実施例4と同一な条件及び
方法で粗NF3の深冷蒸留を行なつた。得られた
NF3ガスの分析値は表−2に示す通り、酸素窒素
共微量で極めて高純度のNF3ガスが得られた。
[Industrial Field of Application] The present invention relates to a method for purifying nitrogen fluoride. More specifically, the present invention relates to a method for separating and removing low-boiling components such as oxygen and nitrogen contained in nitrogen fluoride. Nitrogen fluoride, particularly nitrogen trifluoride (NF 3 ), has recently attracted attention as a cleaning agent and dry etching agent for CVD equipment in the field of electronic materials. However, in recent years, nitrogen fluoride used for these purposes has been required to have even higher purity. [Prior art and problems to be solved by the invention] Nitrogen fluoride is produced by various methods, but
Most of them contain relatively large amounts of impurities such as nitrous oxide (N 2 O), carbon dioxide (CO 2 ), oxygen (O 2 ), and nitrogen (N 2 ), so they cannot be used for the above purposes. In order to use nitrogen fluoride, it is necessary to remove and purify the various impurities mentioned above to make it highly pure. As a method for removing the above impurities, there is a method of removing them by contacting them with an adsorbent such as zeolite.
It is commonly used as it is the most efficient and simple method, and is also applied to the purification of nitrogen fluoride (crude nitrogen fluoride) [Chem.Eng., 84, 116, (1977)]
etc〕. However, when the above method is applied to the purification of crude nitrogen fluoride, impurities with relatively high boiling points such as N 2 O and CO 2 can be efficiently removed, but impurities with low boiling points such as O 2 and N 2 can be removed efficiently. Most of the components are not removed, and the method for removing them is not yet known. In addition, distillation is generally effective and commonly used as a means of separating components with different boiling points, but when the present inventors tried this method to remove low-boiling components from nitrogen fluoride, it was found that nitrogen fluoride and Despite the large enough difference in boiling point from low boiling point components, efficient separation is not possible. For example, it was found that at least several thousand ppm of N2 remains in nitrogen fluoride. For this reason, the purity of currently commercially available nitrogen fluoride is limited to about 99.9% by weight, and the reality is that it does not meet the requirement for ultra-high purity. An object of the present invention is to provide a method for efficiently removing low boiling point components such as O 2 and N 2 to obtain ultrapure nitrogen fluoride. [Means and effects for solving the problem] The present inventors have discovered that O 2 contained in crude nitrogen fluoride,
As a result of extensive research into methods for removing low-boiling components such as N2 , we discovered that crude nitrogen fluoride can be removed extremely efficiently and economically by cryogenic distillation under specific conditions, and we have developed the present invention. It has come to completion. That is, the present invention provides a method for purifying nitrogen fluoride, which is characterized in that crude nitrogen fluoride is cryogenically distilled in the coexistence of a third component that has a lower boiling point than nitrogen fluoride and is not mutually soluble with nitrogen fluoride. be. The present invention will be explained in detail below. Examples of nitrogen fluoride gas include nitrogen trifluoride (NF 3 ), dinitrogen difluoride (N 2 F 2 ), and dinitrogen tetrafluoride (N 2 F 4 ), and the method of the present invention uses these gases. It is effective for purifying any nitrogen fluoride. The present invention is based on deep cold distillation, in which substances with low boiling points are separated by distillation at low temperatures. The distillation operation at this time can be either continuous or batch, but if the amount of myelin is large, the continuous method is preferable in terms of energy cost, and conversely, if the amount to be processed is small, it is preferable in terms of equipment cost and operation. A batch method is preferred. Among batch operations, simple distillation without reflux is effective as a simple method. As described above, the present invention is a method for purifying crude nitrogen fluoride by cryogenic distillation, so it is necessary to first liquefy the crude nitrogen fluoride. However, in the present invention, crude nitrogen fluoride is liquefied using a refrigerant. The refrigerants used for this liquefaction include liquid nitrogen, liquid air, liquid argon, and LNG, which have a boiling point lower than that of nitrogen fluoride. Among these liquefied gases, liquid nitrogen is also the cheapest.
Moreover, it is most preferable because it is inert. As a method other than the above, for example, a method in combination with an LNG vaporization process is advantageous because it can save energy. Furthermore, a method of directly exchanging heat between the refrigerant of the refrigerator and the crude nitrogen fluoride can also be effectively adopted. The present invention is a method of cryogenic distillation of the crude nitrogen fluoride liquefied in this way, and the purpose of this is to remove and purify low-boiling components such as N 2 and O 2 contained therein. In the present invention, it is essential that a third component having a boiling point lower than that of nitrogen fluoride and having no mutual solubility with nitrogen fluoride be present in the cryogenic distillation. Such third components include helium, argon, neon, and the like. This third component may be used alone or in a mixed gas of two or more types. In the present invention, as a specific method for making the third component coexist with the crude nitrogen fluoride, as shown in FIG. 1, the third component is fed together with the crude nitrogen fluoride into the distillation column, and as shown in FIG. In this method, the crude nitrogen fluoride and the third component are fed into the distillation column from separate feed ports.As shown in Figure 3, the inside of the distillation column is replaced with the third component in advance, and then the crude nitrogen fluoride is fed into the distillation column. Various methods can be adopted, such as a method of feeding the nitrogen, and a method of bubbling a gaseous third component into the crude nitrogen fluoride liquefied and staying at the bottom of the distillation column as shown in FIG. Among these methods, the method of bubbling a gaseous third component into the crude nitrogen fluoride liquefied and retained at the bottom of the distillation column is particularly effective in removing low-boiling components such as N 2 and O 2 . Highly desirable. The methods shown in Figures 1 to 4 above are all methods of continuous distillation, but in the case of batch distillation, as shown in Figure 5, gaseous nitrogen is distilled into the liquefied crude nitrogen fluoride. A method of bubbling the third component, or a bubble agitation method of adding a stirrer to the method and stirring the crude fluorinated gas as shown in FIG. 6 is preferable because it has a high removal efficiency of low-boiling components. When using a method of bubbling a gaseous third component into liquid nitrogen fluoride, the finer the bubbles are dispersed, the higher the removal efficiency of the low-boiling point component. A method of bubbling the ingredients is preferred. When carrying out cryogenic distillation at normal pressure in each of the above methods, it is necessary to prevent air from entering the distillation system. Fig. 7 is a diagram showing a more detailed embodiment of the method shown in each of the above figures, but when carrying out cryogenic distillation at normal pressure, a water seal tank is used to exhaust the low boiling point components and the third component. The water is bubbled through the water seal tank and then released into the atmosphere, thereby preventing air from entering the distillation system. In the present invention, cryogenic distillation is performed at a temperature at which nitrogen fluoride is in a liquid state, that is, at a temperature range below the liquefaction temperature of nitrogen fluoride and above the solidification temperature, and at any temperature at which the third component coexisting does not liquefy. carried out at a temperature of Therefore, the crude nitrogen fluoride must be in a liquefied state in the distillation column, and this is achieved by cooling and keeping the distillation column cold with a refrigerant such as liquid nitrogen, liquid air, or liquid argon.
The state of the crude nitrogen fluoride when feeding it into the distillation column is not necessarily in a liquefied state and may be in a gaseous state, but in order to prevent loss of nitrogen fluoride as much as possible, it is preferable to feed it in a liquefied state to the distillation column. It is preferable to feed. In the present invention, it is convenient to perform distillation at normal pressure in the distillation column, but in order to further improve the removal efficiency of low-boiling components, distillation under reduced pressure is preferable. The removal efficiency increases as the vacuum increases. To reduce the pressure inside the distillation column, for example, a commonly known pressure reducing device such as a vacuum pump or an aspirator may be used to draw suction from the top of the distillation column. A method such as liquefying a gas mixture with three components using liquid helium or the like is adopted. In the present invention, the amount of the third component coexisting in the crude nitrogen fluoride during cryogenic distillation is not particularly limited, but N 2 ,
From the viewpoint of the removal effect of low boiling point components such as O 2 , the larger the amount, the more preferable. However, when this third component is discharged from the top of the distillation column together with the gasified low-boiling components, a portion of the nitrogen fluoride is also entrained in the gaseous state. Therefore, as the coexisting amount of the third component increases, the loss of nitrogen fluoride increases, so in practice, the molar ratio of the gaseous third component to the liquid crude nitrogen fluoride is 1 to 100. A range of % is preferred. The method of supplying the third component to the distillation column is not particularly limited, and may be continuous supply, batch supply, or intermittent supply. As explained in detail above, the method for purifying nitrogen fluoride of the present invention is a method for removing low boiling point components such as N 2 and O 2 contained as impurities in crude nitrogen fluoride gas. As mentioned above, the crude nitrogen fluoride contains relatively high boiling point components such as N 2 O and CO 2 in addition to the above-mentioned low boiling point components, and it is necessary to remove and purify these relatively high boiling point components as well. However, in the method of the present invention, the above-mentioned relatively high boiling point components are not sufficiently removed. Therefore, in order to obtain high purity nitrogen fluoride,
Relatively high boiling point components such as N 2 O and CO 2 are removed and purified by contacting with an adsorbent such as zeolite using a conventionally known method, while low boiling point components such as N 2 and O 2 are removed and purified.
This can be achieved by removal and purification using the method of the present invention. Although either of the above two purifications may be carried out first, it is usually carried out by removing relatively high-boiling components and then removing low-boiling components by the method of the present invention. [Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples. In the Examples and Comparative Examples, % and ppm represent capacity standards. Example 1 Using commercially available zeolite (granular product with a pore size of 5 Å and a mesh size of 24 to 48), crude nitrogen trifluoride (crude nitrogen trifluoride) of the quality shown in Table 1 was prepared by adsorbing and removing N 2 O, CO 2 , etc. contained in it. NF 3 ) was purified by cryogenic distillation using the apparatus shown in FIG. That is, after cooling the collection container 1 (inner capacity 1) by filling the cold container 6 with liquid nitrogen, gaseous NF 3 of the quality shown in Table 1 and helium gas as the third component are added to the collection container. Feed was carried out through lines 2 and 3 at flow rates of 50 ml/min. and 3 ml/min., respectively. NF 3 was liquefied in the collection container, and the coexisting helium gas and fractionated gaseous low-boiling components (oxygen, nitrogen, etc.) were exhausted through the water seal tank 7 (therefore, the inside of the system was almost completely empty). (maintained at atmospheric pressure). When the feed amount of NF3 gas reaches 100g,
After closing the valves 12 and 13 to stop the NF 3 gas and helium gas feeds and closing the valve 16 leading to the water seal tank 7, the valve 17 is opened and the vacuum pump 8 removes gaseous low-boiling components in the system. and helium gas was exhausted. After completion of evacuation, the collection container 1 was returned to room temperature, and the liquefied NF 3 in the collection container 1 was gasified and analyzed. As shown in Table 2, oxygen and nitrogen were largely removed. Example 2 Using the apparatus used in Example 1 (FIG. 7), instead of exhausting helium gas and gaseous low-boiling components generated by cryogenic distillation through the water seal tank 7, a vacuum pump 8 was used. Cryogenic distillation of crude NF 3 having the quality shown in Table 1 was carried out under the same conditions and method as in Example 1, except that the pressure inside the collection container 1 was reduced by exhausting air through line 10 using a vacuum cleaner. The pressure inside the system during cryogenic distillation was 10 mmHg abs. The results of gasifying and analyzing NF 3 in collection container 1 are shown in Table 2.
As shown in Figure 2, the contents of oxygen and nitrogen were significantly reduced compared to Example 1. Example 3 The apparatus shown in FIG. 7 was modified so that the insertion tube 11 was extended to the bottom of the collection container 1 and helium gas could be bubbled into the liquefied NF 3 . After cooling the collection container 1 by filling the cold container 6 with liquid nitrogen, 100 g of gaseous crude NF 3 of the quality shown in Table 1 was fed into the collection container 1 and liquefied in the collection container 1. . In this liquefied crude NF 3 ,
Helium gas was fed and bubbled for 30 minutes at a flow rate of 100 ml/min. Note that the helium gas and the vaporized low-boiling components were exhausted through the water seal tank 7 as in Example 1 (the pressure inside the system was atmospheric pressure). Thereafter, in the same manner as in Example 1, the inside of the system was evacuated using the vacuum pump 8 to remove the coexisting gas. The resulting liquefaction
When NF 3 was vaporized and analyzed in the same manner as in Example 1, the results are shown in Table 2, and highly pure NF 3 from which oxygen and nitrogen were largely removed was obtained. Example 4 Example 3 was carried out in the same manner as in Example 3, except that the vacuum pump 8 was used during bubbling of helium gas, and the system pressure during bubbling was set at 10 mmHg abs.
Cryogenic distillation was carried out under the same conditions and method. As shown in Table 2, the analytical values of the obtained NF 3 gas showed that the content of oxygen and nitrogen was extremely small, and the NF 3 gas was of extremely high purity. Example 5 Crude NF 3 was cryogenically distilled under the same conditions and method as in Example 4, except that argon gas was used instead of helium gas as the third component. obtained
As shown in Table 2, the analytical values of the NF 3 gas showed that extremely high purity NF 3 gas was obtained with trace amounts of oxygen and nitrogen.

【表】【table】

【表】 比較例 1 第三成分であるヘリウムガスのフイードをスト
ツプする以外は実施例1と同一の操作を行なつた
ところ、得られたNF3ガス中の酸素及び窒素の含
有量は表−3に示す通りであり、ほとんど除去さ
れなかつた。 比較例 2 ヘリウムガスのフイードをストツプする以外は
実施例2と同一の操作を行なつたところ、得られ
たNF3ガス中の酸素及び窒素の含有量は表−3に
示す通りであり、その除去率は比較例1程ではな
いもののかなり不十分であつた。
[Table] Comparative Example 1 The same operation as in Example 1 was performed except that the feed of helium gas, which was the third component, was stopped. The contents of oxygen and nitrogen in the obtained NF 3 gas were as shown in Table - As shown in Figure 3, it was hardly removed. Comparative Example 2 The same operation as in Example 2 was performed except that the helium gas feed was stopped, and the contents of oxygen and nitrogen in the obtained NF 3 gas were as shown in Table 3. Although the removal rate was not as high as in Comparative Example 1, it was quite insufficient.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明はヘリウ
ム、アルゴンなどのようなフツ化窒素と相互溶解
性のない第三成分を共存させて、粗フツ化窒素を
深冷蒸留する方法であり、これによつて従来の精
製方法では不可能であつた、粗フツ化窒素中の
O2やN2などの低沸点成分の除去を可能にしたも
のである。 そして、実施例が示す如く上記深冷蒸留におい
て、これを減圧下で実施するとか、第三成分を液
化した粗フツ化窒素中にバブリングする方法を採
用すれば、低沸点成分は極めて効率よく分離・除
去することができる。 尚、粗フツ化窒素中に含まれるN2O、CO2など
のような低沸点成分以外の不純物は、ゼオライト
などの吸着剤と接触させる他の公知の精製方法と
本発明の方法を組合せることによつて、例えば
99.99%以上という極めて高純度で電子材料用途
として好適なフツ化窒素を得ることができるので
ある。 この様な高純度なフツ化窒素は現在迄得られて
おらず、電子材料分野の最近の要望に十分対応で
きるものであり、本発明の意義は極めて大なるも
のがある。
As explained in detail above, the present invention is a method of cryogenically distilling crude nitrogen fluoride in the coexistence of nitrogen fluoride and a third component that is not mutually soluble, such as helium or argon. Therefore, it is possible to improve the purity of crude nitrogen fluoride, which was not possible with conventional purification methods.
This makes it possible to remove low boiling point components such as O 2 and N 2 . As shown in the examples, if the deep cold distillation is carried out under reduced pressure or by bubbling the third component into the liquefied crude nitrogen fluoride, the low boiling point components can be separated very efficiently.・Can be removed. Note that impurities other than low boiling point components such as N 2 O and CO 2 contained in the crude nitrogen fluoride can be removed by combining the method of the present invention with other known purification methods in which they are brought into contact with an adsorbent such as zeolite. Possibly, e.g.
It is possible to obtain nitrogen fluoride with extremely high purity of 99.99% or more, which is suitable for use in electronic materials. Nitrogen fluoride of such high purity has not been obtained to date, and can sufficiently meet recent demands in the field of electronic materials, and the present invention is of great significance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は本発明の各実施態様を示す蒸
留装置を示す概要図であり、第7図は各実施例及
び比較例で使用した蒸留装置を示すフローシート
である。 図において、1……蒸留塔または捕集容器、2
……粗フツ化窒素フイードライン、3……第三成
分フイードライン、4……低沸点成分及び第三成
分排気ライン、5……精製フツ化窒素抜出しライ
ン、6……保冷容器、7……水シール槽、8……
真空ポンプ、9……常圧排気ライン、10……真
空排気ライン、11……挿入管、12,13,1
4,15,16,17……バルブを示す。
FIGS. 1 to 6 are schematic diagrams showing distillation apparatuses showing each embodiment of the present invention, and FIG. 7 is a flow sheet showing the distillation apparatus used in each example and comparative example. In the figure, 1...distillation column or collection vessel, 2
...crude nitrogen fluoride feed line, 3...third component feed line, 4...low boiling point component and third component exhaust line, 5...purified nitrogen fluoride extraction line, 6...cold container, 7...water seal Tank, 8...
Vacuum pump, 9... Normal pressure exhaust line, 10... Vacuum exhaust line, 11... Insertion tube, 12, 13, 1
4, 15, 16, 17...indicates a valve.

Claims (1)

【特許請求の範囲】 1 フツ化窒素より低沸点でかつフツ化窒素と相
互溶解性のない第三成分の共存下で粗フツ化窒素
を深冷蒸留することを特徴とするフツ化窒素の精
製方法。 2 フツ化窒素より低沸点でかつフツ化窒素と相
互溶解性のない第三成分の共存が液体状のフツ化
窒素への気体状の第三成分のバブリングである特
許請求の範囲第1項記載の方法。 3 深冷蒸留が減圧下に行なわれる特許請求の範
囲第1項ないし第2項記載の方法。 4 深冷蒸留が単蒸留である特許請求の範囲第1
項ないし第3項記載の方法。 5 フツ化窒素より低沸点でかつフツ化窒素と相
互溶解性のない第三成分が、ヘリウム、アルゴ
ン、ネオンの少なくとも一種である特許請求の範
囲第1項ないし第4項記載の方法。
[Claims] 1. Purification of nitrogen fluoride, characterized by cryogenic distillation of crude nitrogen fluoride in the coexistence of a third component that has a boiling point lower than that of nitrogen fluoride and is not mutually soluble with nitrogen fluoride. Method. 2. Claim 1, wherein the coexistence of a third component that has a lower boiling point than nitrogen fluoride and is not mutually soluble with nitrogen fluoride is bubbling of a gaseous third component into liquid nitrogen fluoride. the method of. 3. The method according to claims 1 and 2, wherein the cryogenic distillation is carried out under reduced pressure. 4 Claim 1 in which the cryogenic distillation is simple distillation
The method described in Items 1 to 3. 5. The method according to claims 1 to 4, wherein the third component having a lower boiling point than nitrogen fluoride and having no mutual solubility with nitrogen fluoride is at least one of helium, argon, and neon.
JP13897287A 1987-06-04 1987-06-04 Method of purifying nitrogen fluoride Granted JPS63306383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13897287A JPS63306383A (en) 1987-06-04 1987-06-04 Method of purifying nitrogen fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13897287A JPS63306383A (en) 1987-06-04 1987-06-04 Method of purifying nitrogen fluoride

Publications (2)

Publication Number Publication Date
JPS63306383A JPS63306383A (en) 1988-12-14
JPH033876B2 true JPH033876B2 (en) 1991-01-21

Family

ID=15234478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13897287A Granted JPS63306383A (en) 1987-06-04 1987-06-04 Method of purifying nitrogen fluoride

Country Status (1)

Country Link
JP (1) JPS63306383A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755807B2 (en) * 1987-11-04 1995-06-14 三井東圧化学株式会社 Method for producing nitrogen trifluoride
US6458249B2 (en) 1997-11-10 2002-10-01 E. I. Du Pont De Nemours And Company Process for purifying perfluorinated products
EP1251101A3 (en) * 1997-11-10 2003-01-22 E.I. Du Pont De Nemours And Company Nitrogen trifluoride (NF3)
CN1219739C (en) * 1997-11-10 2005-09-21 纳幕尔杜邦公司 All fluoride purifying method

Also Published As

Publication number Publication date
JPS63306383A (en) 1988-12-14

Similar Documents

Publication Publication Date Title
EP0345354B1 (en) Process for purifying nitrogen-fluoride
US5069887A (en) Method of refining nitrogen trifluoride gas
CN101547857B (en) Xenon retrieval system and retrieval device
JP3284096B2 (en) Method and system for separating and purifying perfluoro compounds
CN103664501A (en) Hexafluoroethane purification method
JPH033876B2 (en)
JP2001232134A (en) Method and device for neon recovering
CA2345873C (en) Purification of nitrogen trifluoride by continuous cryogenic distillation
JP2005503987A (en) Method and apparatus for purifying hydrogen bromide
CN101258104B (en) Purification method of nitrogen trifluoride
JP4136378B2 (en) Method for purifying COF2
JP2000072442A (en) Purifying method of tungsten hexafluoride
CA2345489C (en) A process for concentrating fluorine compounds
CN112624068A (en) High-purity argon purification method
JP3891764B2 (en) Purification method of F2 gas
JPH01261209A (en) Method for purifying nitrogen trifluoride gas
KR101609011B1 (en) Process for producing high-purity chlorine
JP2927914B2 (en) Method for producing nitrogen trifluoride gas
KR101245497B1 (en) Apparatus and method for recovering nitrogen trifluoride gas from high boiling point material
JPH0531489B2 (en)
JPH0412393B2 (en)
JPH04925B2 (en)
JP2002363115A (en) Method for recycling perfluoro compound by low- temperature purification
CN114413572A (en) Device and method for removing fluoromethane impurities by low-temperature freezing method
CN112694387A (en) Difluoromethane purification method