JPH0338726B2 - - Google Patents

Info

Publication number
JPH0338726B2
JPH0338726B2 JP9715283A JP9715283A JPH0338726B2 JP H0338726 B2 JPH0338726 B2 JP H0338726B2 JP 9715283 A JP9715283 A JP 9715283A JP 9715283 A JP9715283 A JP 9715283A JP H0338726 B2 JPH0338726 B2 JP H0338726B2
Authority
JP
Japan
Prior art keywords
thin film
magnetic
hereinafter referred
temperature
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9715283A
Other languages
Japanese (ja)
Other versions
JPS59220907A (en
Inventor
Masatoshi Takao
Kyokazu Toma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9715283A priority Critical patent/JPS59220907A/en
Publication of JPS59220907A publication Critical patent/JPS59220907A/en
Publication of JPH0338726B2 publication Critical patent/JPH0338726B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/193Magnetic semiconductor compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は磁性薄膜およびその製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic thin film and a method for manufacturing the same.

〔従来例の構成とその問題点〕[Conventional configuration and its problems]

まず、第1に軟質磁性金属材料に関しては、
Ni−Fe合金、Ni−Fe−Mo合金のような結晶性
材料とCo−Fe−Si−B系のような金属メタロイ
ド系非晶質材料、Co−Zr系のような金属−金属
系非晶質材料が知られている。バルクの軟質磁性
材料は変圧器の芯材、磁気シールド材、磁気ヘツ
ドの芯材等に需要がある。一方、軟質磁性材料の
薄膜も薄膜メモリ、薄膜磁気ヘツド、磁気バルブ
素子の転送パターンなどに用いられている。
First, regarding soft magnetic metal materials,
Crystalline materials such as Ni-Fe alloy, Ni-Fe-Mo alloy, metal metalloid amorphous materials such as Co-Fe-Si-B system, and metal-metal amorphous materials such as Co-Zr system. Known for its quality materials. Bulk soft magnetic materials are in demand for transformer core materials, magnetic shield materials, magnetic head core materials, etc. On the other hand, thin films of soft magnetic materials are also used for thin film memories, thin film magnetic heads, transfer patterns of magnetic valve elements, and the like.

軟質磁性材料に要求されている特性は、用途に
よつて多少の微妙な差があるものの、基本的には
低抗磁力(低保持力)、高残留磁束密度、高透磁
率である。薄膜の軟質磁性材料としては、Fe−
Ni合金(パーマロイ材料)と金属−金属系の非
晶質材料が主に用いられている。Fe−ni合金は
Ni濃度が大きいので飽和磁束密度が約8000ガウ
ス程度となり、鉄単体の22000ガウスと比べた場
合約3分の1となる。一方、金属−金属系非晶質
薄膜の場合は飽和磁束密度を大きくすることがで
きるが、薄膜作製としてスパツタリングを用いる
必要がある。スパツタリングは薄膜の堆積速度が
遅く、またガスを導入するので膜中にガスが取込
まれ、特性に時効が生じたりするなどの問題点が
ある。
The properties required of soft magnetic materials vary slightly depending on the application, but basically they are low coercive force (low coercive force), high residual magnetic flux density, and high magnetic permeability. As a thin film soft magnetic material, Fe−
Ni alloys (permalloy materials) and metal-metal amorphous materials are mainly used. Fe-ni alloy is
Due to the high Ni concentration, the saturation magnetic flux density is approximately 8,000 Gauss, which is approximately one-third of the 22,000 Gauss of iron alone. On the other hand, in the case of a metal-metal amorphous thin film, the saturation magnetic flux density can be increased, but it is necessary to use sputtering to prepare the thin film. Sputtering has problems such as a slow deposition rate of a thin film and the introduction of gas, which may be incorporated into the film and cause aging of the properties.

第2番目に磁気記録媒体用などの抗磁力が大き
い材料については、金属薄膜を用いた磁気記録媒
体として最近Co−Ni合金をポリエステル・フイ
ルム上に形成するものがオーディオ用磁気テープ
として実用に供され始めている。Co−Ni薄膜は
斜入射蒸着することと、酸素雰囲気中で蒸着する
ことの2つの条件で比較的容易に大きな抗磁力を
得るためには、飽和磁束密度としてバルクの値の
半分以下にまで低下させなければならない。
Second, regarding materials with high coercive force for magnetic recording media, recently, a magnetic recording medium using a metal thin film, in which a Co-Ni alloy is formed on a polyester film, has been put into practical use as an audio magnetic tape. It's starting to happen. In order to obtain a large coercive force relatively easily under the two conditions of oblique incidence deposition and deposition in an oxygen atmosphere, the Co-Ni thin film must be reduced to less than half of its bulk value as a saturation magnetic flux density. I have to let it happen.

大きな抗磁力を得るためには磁気的に薄めなけ
ればならないことは事実であるが、斜蒸着のよう
に薄膜内に空〓を作つて密度を下げる場合にはど
うしても信頼性の面で不十分になつて、防錆用の
インヒビターを塗布するなどの補助的手段を用い
なければならない。空〓を作らないで、抗磁力を
下げることがなければよいわけである。その方法
としては従来からある塗布型媒体のバインダの役
割を金属で置換えることができればよい。バイン
ダの役割をする金属としては非磁性で耐食性の良
いものが望ましい。
It is true that magnetic thinning is required to obtain a large coercive force, but when lowering the density by creating voids within a thin film, such as in oblique deposition, reliability is inevitably insufficient. Therefore, supplementary measures such as applying rust inhibitors must be used. It is good as long as the coercive force is not lowered without creating a void. As a method, it is sufficient to replace the role of the binder in the conventional coating type media with metal. The metal that acts as a binder is preferably non-magnetic and has good corrosion resistance.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、高い残留磁束密度をもち、
かつ、抗磁力については従来得られなかつた範囲
の十分に低いまたは十分に高い抗磁力をもつ磁性
薄膜を提供すること、ならびにそのような磁性薄
膜の製造方法を提供することである。
The purpose of this invention is to have a high residual magnetic flux density,
Another object of the present invention is to provide a magnetic thin film having a sufficiently low or sufficiently high coercive force in a range that has not been previously available, and to provide a method for producing such a magnetic thin film.

〔発明の構成〕 この発明の磁性薄膜は、鉄(以下Feで表わす)
と、銀(Ag)、マグネシウム(Mg)およびビス
マス(Bi)のうちから選んだ少なくとも1種の
金属(以下Zで表わす)と、ホウ素(以下Bで表
わす)を含み、組成式が Fe1-(X+a)ZxBa (ただし 0.2≦x≦0.8 0<a<0.2 x,aは原子数比) で表わされるものである。
[Structure of the Invention] The magnetic thin film of the present invention is made of iron (hereinafter referred to as Fe).
contains at least one metal selected from silver (Ag), magnesium (Mg) and bismuth (Bi) (hereinafter referred to as Z), and boron (hereinafter referred to as B), and has a compositional formula of Fe 1- (X+a) Z x B a (0.2≦x≦0.8 0<a<0.2 x, a is the atomic ratio).

そして、このような組成の磁性薄膜で同一組成
のものでも、その製造の違いによつて特性の異な
る2種のものが得られる。一つは低抗磁力のもの
であり、これは軟磁性材料に適する。もう一つは
高抗磁力のものであり、これは磁気記録媒体に適
する。
Even if such magnetic thin films have the same composition, two types of magnetic thin films with different characteristics can be obtained depending on the manufacturing process. One is one with low coercive force, which is suitable for soft magnetic materials. The other is one with high coercive force, which is suitable for magnetic recording media.

以下にこの点を詳しく説明する。 This point will be explained in detail below.

上記のような組成の磁性薄膜のうちで、各構成
元素が薄膜内の原子レベルで一様かつ無秩序に分
布しているものは結晶に起因する異方性が小さく
なり、例えは磁気特性も内面では異方性がなくな
るので低抗磁力のものが得られる。
Among magnetic thin films with the above composition, those in which each constituent element is uniformly and disorderly distributed at the atomic level within the thin film have less anisotropy caused by the crystal, and for example, the magnetic properties may vary from the inner surface. Since the anisotropy is eliminated, a product with low coercive force can be obtained.

一方同一の構成元素を有していても原子レベル
では一様でなく、強磁性金属原子と非磁性金属原
子が分離して、それぞれ数10〜数100Åの大きさ
の粒子となるような系も考えられる。この場合は
まさしく、非磁性金属粒子と強磁性金属粒子が混
り合つて、金属バインタ中に強磁性粒子が浮いて
いる状態となる。このような構造を有する薄膜は
抗磁力が大きく、磁気記録媒体用に適している。
問題となるのはこのような構造をどのようにして
実現するかである。
On the other hand, even if they have the same constituent elements, they are not uniform at the atomic level, and there are also systems in which ferromagnetic metal atoms and non-magnetic metal atoms separate to form particles with a size of several tens to hundreds of angstroms. Conceivable. In this case, the non-magnetic metal particles and the ferromagnetic metal particles are mixed, and the ferromagnetic particles are floating in the metal binder. A thin film having such a structure has a large coercive force and is suitable for use in magnetic recording media.
The problem is how to realize such a structure.

元来、合金を作らない元素同士の薄膜を作製す
るのは困難と考えられるが、薄膜を構成する元素
を別々に蒸着させる、いわゆる多元蒸着をすれば
可能である。ただし、異種元素間の凝集エネルギ
が反発に働く方向なので、基板の温度が高いと、
蒸着された原子が拡散移動し、同種の原子同士が
凝集するので、基板温度は顕著な原子拡散が生じ
る温度以下に保持しなければならない。こうすれ
ば原子レベルで見て異種の原子が確率的に無秩序
に分布する薄膜を得ることが可能である。原子レ
ベルで原子がランダムに分布する薄膜は当然のこ
とながら異方性が小さく、透磁率に対して、悪影
響を及ぼす結晶磁気異方性を低減させる方向に働
く。これは軟磁性材料として有用であることにな
る。
Originally, it is thought to be difficult to produce a thin film made of elements that do not form an alloy, but it is possible if the elements constituting the thin film are deposited separately, so-called multi-component vapor deposition. However, since the cohesive energy between different elements acts in a repulsive direction, if the temperature of the substrate is high,
Since the deposited atoms diffuse and migrate, and atoms of the same type agglomerate, the substrate temperature must be kept below the temperature at which significant atomic diffusion occurs. In this way, it is possible to obtain a thin film in which atoms of different types are stochastically and randomly distributed at the atomic level. A thin film in which atoms are randomly distributed at the atomic level naturally has low anisotropy, and works in the direction of reducing magnetocrystalline anisotropy, which has a negative effect on magnetic permeability. This makes it useful as a soft magnetic material.

ただし、この場合強磁性金属の原子半径Ryと
非磁性金属の原子半径Rzの非Rz/Ryがおよそ
1.25以上の場合は、ランダム構造となつた時、強
磁性を失つて非磁性になる場合がある。ところ
が、組成によるが100℃〜200℃の範囲で熱処理す
ると磁性が生じる。これは熱処理によつて、ラン
ダム構造が多少とも緩和されて、同種元素の凝集
が起こるためと思われる。しかしこの時前記の温
度以上で熱処理すると以下に述べる高抗磁力材料
になるので温度を十分管理する必要がある。
However, in this case, the non-Rz/Ry of the atomic radius Ry of the ferromagnetic metal and the atomic radius Rz of the non-magnetic metal is approximately
If it is 1.25 or more, it may lose its ferromagnetism and become non-magnetic when it becomes a random structure. However, depending on the composition, magnetism occurs when heat treated in the range of 100°C to 200°C. This seems to be because the random structure is relaxed to some extent by the heat treatment, causing aggregation of similar elements. However, at this time, if the material is heat-treated at a temperature higher than the above-mentioned temperature, it will become a material with a high coercive force as described below, so it is necessary to adequately control the temperature.

非金属元素のB(ホウ素)の役割は、第1に薄
膜自体を安定化し、薄膜中の内部応力を緩和する
ことであり、また第2に熱処理温度の制御性をよ
くすることである。第3には信頼性を改善するこ
とである。
The role of the non-metallic element B (boron) is firstly to stabilize the thin film itself and relieve internal stress within the thin film, and secondly to improve the controllability of the heat treatment temperature. The third is to improve reliability.

なお、製造されるFe−Z−B組成の薄膜が高
い抗磁力を得るために、Zで表わした銀(Ag)、
マグネシウム(Mg)およびビスマス(Bi)のう
ちから選んだ少なくとも1種の金属の原子数比の
値、すなわちxの値を0.2≦x≦0.8と限定し、こ
のxの値からFe−Z−Bの各組成が、0になら
ないようにaの値を定めた。
In addition, in order to obtain a high coercive force for the thin film of Fe-Z-B composition to be manufactured, silver (Ag) represented by Z,
The value of the atomic ratio of at least one metal selected from magnesium (Mg) and bismuth (Bi), that is, the value of x, is limited to 0.2≦x≦0.8, and from this value of x, Fe-Z-B The value of a was determined so that each composition did not become 0.

〔実施例の説明〕[Explanation of Examples]

この発明の磁性薄膜は真空中で形成する。製造
装置としては第1図に示すような多源真空蒸着装
置を用いる。また第2図に示すような連続巻取式
真空蒸着装置を用いてもよい。この場合は基板と
してフレキシブルなプラスチツクフイルムを用い
る。
The magnetic thin film of this invention is formed in vacuum. As a manufacturing apparatus, a multi-source vacuum evaporation apparatus as shown in FIG. 1 is used. Alternatively, a continuous winding type vacuum evaporation apparatus as shown in FIG. 2 may be used. In this case, a flexible plastic film is used as the substrate.

第1図で1は強磁性体を蒸発させる電子ビーム
加熱ハース、2は非磁性金属を蒸着させるアルミ
ナコートのタングステンヒータ、3は基板、4は
シヤツタ、5は真空排気系である。B(ホウ素)
などの添加元素はハース1あるいはヒータ2より
混合状態で蒸発させるか、あるいは第3の蒸発源
を設けてもよい。第2図は連続蒸着機の模式図で
あり、1は電子ビーム加熱ハース、2は非磁性金
属蒸発用のルツボ、3はフレキシブル基板、5は
排気系、6は基板冷却用のローラ、7は巻出ロー
ル、8は巻取ロールである。
In FIG. 1, 1 is an electron beam heating hearth for evaporating ferromagnetic material, 2 is an alumina-coated tungsten heater for depositing non-magnetic metal, 3 is a substrate, 4 is a shutter, and 5 is a vacuum evacuation system. B (boron)
The additional elements may be evaporated in a mixed state from the hearth 1 or the heater 2, or a third evaporation source may be provided. Figure 2 is a schematic diagram of a continuous evaporation machine, in which 1 is an electron beam heating hearth, 2 is a crucible for non-magnetic metal evaporation, 3 is a flexible substrate, 5 is an exhaust system, 6 is a roller for cooling the substrate, and 7 is a The unwinding roll and 8 are the take-up rolls.

本質的に混合しない金属の薄膜を形成するわけ
であるから、多源の装置を用いなければならない
が、複合ターゲツトを用いたスパツタリングでも
同様のことが可能である。さて磁性金属には電子
ビーム加熱を用いるのが安定的でよいが、抵抗加
熱法を用いてもよい。蒸気圧が比較的低い銀
(Ag)元素の場合は電子ビーム加熱法や抵抗加熱
法が適当であるが、蒸気圧が非常に大きいマグネ
シウム(Mg)元素の場合には、小孔のあるふた
を取り付けたアルミナ製のルツボより蒸発させる
ことにより安定化をはかることができる。
Since thin films of essentially immiscible metals are formed, multi-source equipment must be used, but sputtering with composite targets can also accomplish the same thing. For magnetic metals, it is stable to use electron beam heating, but resistance heating may also be used. For silver (Ag), which has a relatively low vapor pressure, electron beam heating and resistance heating are appropriate; however, for magnesium (Mg), which has a very high vapor pressure, a lid with small holes is used. Stabilization can be achieved by evaporating it from an attached alumina crucible.

実施例 1 第1図に示す装置で(Fe0.95B0.051-XAgXの組
成を有する薄膜を作製した。作製条件を以下に示
す。
Example 1 A thin film having a composition of (Fe 0.95 B 0.05 ) 1-X Ag X was produced using the apparatus shown in FIG. The manufacturing conditions are shown below.

真空度 2×10-6Torr以下 基板速度 45℃以下 基 板 ソーダーガラス板 耐熱プラスチツクフイルム 蒸着温度 FeB合金 300Å/分 Ag 0〜2000Å/分 入射角 0゜〜30゜ 膜 厚 1500Å 得られた薄膜の磁性合金とAgの原子比に対す
る抗磁力Hcと初透磁率μの値を第3図に示す。
Degree of vacuum 2×10 -6 Torr or less Substrate speed 45°C or less Substrate Soda glass plate Heat-resistant plastic film Deposition temperature FeB alloy 300 Å/min Ag 0 to 2000 Å/min Incident angle 0° to 30° Film thickness 1500 Å The obtained thin film Figure 3 shows the values of coercive force Hc and initial magnetic permeability μ with respect to the atomic ratio of magnetic alloy and Ag.

つぎにxが0.40と0.55の場合につき温度安定性
および高抗磁力化のための熱処理の結果を示す。
熱処理はアルゴン雰囲気(1気圧)下で行ない、
定温保持時間は1時間である。結果を第4図に示
す。200℃までは抗磁力は殆んど変化しないが、
それ以上になると急激に抗磁力が増加する。組成
による変化があるが、しかし傾向は同じである。
しかも250℃〜350℃の範囲内で熱処理した場合硬
質磁性薄膜となる。したがつて、軟質磁性材料と
しては200℃以下で安定である。
Next, the results of heat treatment to improve temperature stability and increase coercive force are shown for cases where x is 0.40 and 0.55.
Heat treatment was performed under an argon atmosphere (1 atm),
The constant temperature holding time is 1 hour. The results are shown in Figure 4. The coercive force hardly changes up to 200℃,
Above that, the coercive force increases rapidly. There are compositional variations, but the trend is the same.
Moreover, when heat treated within the range of 250°C to 350°C, it becomes a hard magnetic thin film. Therefore, as a soft magnetic material, it is stable at temperatures below 200°C.

熱処理を300℃、1時間行なつた時の(Fe0.95
B0.051-XAgXの抗磁力の値を第5図に示す。FeB
とAgがおよそ等量の時に抗磁力が最大になる。
When heat treated at 300℃ for 1 hour (Fe 0.95
Figure 5 shows the coercive force values of B 0.05 ) 1-X Ag X. FEB
The coercive force is maximum when the amounts of and Ag are approximately equal.

実施例 2 第2図に概要を示す装置で(Fe0.95B0.051-X
Mgxを耐熱プラスチツクフイルム上に連続的に作
製した。作製条件を以下に示す。
Example 2 Using the apparatus outlined in Figure 2 (Fe 0.95 B 0.05 ) 1-X
Mg x was continuously fabricated on a heat-resistant plastic film. The manufacturing conditions are shown below.

真空度 5×10-6Torr以下 基 板(キヤン温度) 水温 基 板 耐熱プラスチツクフイルム 蒸着速度 FeB合金 1000Å/秒 Mg 0〜10000Å/秒 入射角 0°〜±45° 膜 厚 1500Å 得られた膜厚の磁性合金とMgの原子比に対す
る抗磁力Hcと初透磁率を第6図に示す。なお、
この系の薄膜ではxが0.5以上で蒸着直後は磁化
が小さくなつているので、具体的には大規模な原
子拡散が生じて、抗磁力が増加しない温度すなわ
ち120℃で一旦磁化を増加させてから測定を行つ
た。この熱処理を行なつたのは第7図に概要を示
すような連続式の雰囲気中熱処理装置である。第
7図中、9は熱処理用加熱ローラ、10は雰囲気
ガス加熱用ヒータ、11は雰囲気ガス導入孔で、
本実施例では雰囲気ガスとして、不活性ガスのア
ルゴンを用いたが、他の不活性ガスを用いてもよ
い。12は巻出ロール、13は巻取ロール、14
は予備加熱ローラ、16は徐冷ローラ、16は予
備ガスシール室である。この装置を用いると、安
定な条件で熱処理することができる。
Vacuum degree 5×10 -6 Torr or less Substrate (can temperature) Water temperature Substrate Heat-resistant plastic film Vapor deposition rate FeB alloy 1000 Å/sec Mg 0 to 10000 Å/sec Incident angle 0° to ±45° Film thickness 1500 Å Obtained film thickness Figure 6 shows the coercive force Hc and initial magnetic permeability for the atomic ratio of magnetic alloy and Mg. In addition,
In this type of thin film, when x is 0.5 or more, the magnetization is small immediately after evaporation, so specifically, large-scale atomic diffusion occurs and the magnetization is increased once at a temperature at which the coercive force does not increase, that is, 120°C. Measurements were made from This heat treatment was carried out using a continuous atmosphere heat treatment apparatus as schematically shown in FIG. In FIG. 7, 9 is a heating roller for heat treatment, 10 is a heater for heating atmospheric gas, 11 is an atmospheric gas introduction hole,
In this embodiment, the inert gas argon was used as the atmospheric gas, but other inert gases may be used. 12 is an unwinding roll, 13 is a winding roll, 14
16 is a preliminary heating roller, 16 is a slow cooling roller, and 16 is a preliminary gas sealing chamber. By using this apparatus, heat treatment can be performed under stable conditions.

つぎに、高抗磁力磁性薄膜としての(FeB)・
Mg薄膜を説明する。第7図の雰囲気中熱処理装
置を用いて250℃、30秒間の熱処理を連続して行
なつた。その結果を第8図に示す。(FeB)Mg系
の薄膜は(FeB)・Ag系に比べて低い温度で熱処
理が可能である。また熱処理時間も連続的に行な
えるので、急加熱、急冷が可能となり短時間化さ
れる。
Next, we will discuss (FeB) as a high coercive force magnetic thin film.
Explain Mg thin film. Heat treatment was performed continuously at 250° C. for 30 seconds using the atmospheric heat treatment apparatus shown in FIG. The results are shown in FIG. (FeB)Mg-based thin films can be heat-treated at lower temperatures than (FeB)/Ag-based films. Furthermore, since the heat treatment time can be carried out continuously, rapid heating and cooling can be performed and the time can be shortened.

実施例 3 FeBAg系およびFeBMg系金属硬質磁性薄膜を
原子拡散が顕著に起こる基板温度で蒸着して作製
した。作製条件を以下に示す。
Example 3 FeBAg-based and FeBMg-based metal hard magnetic thin films were fabricated by vapor deposition at a substrate temperature at which atomic diffusion occurs significantly. The manufacturing conditions are shown below.

真空度 5×10-6Torr以下 基板温度 50〜350℃(可変) 基 板 耐熱プラスチツクフイルム ガラス板 蒸着速度 Fe0.95B0.05合金 約300Å/分 MgおよびAg 約400Å/分 入射角 0°〜30° 膜 厚 1400Å (Fe0.95B0.050.45Ag0.55および(Fe0.95B0.050.
45

Mg0.55の薄膜を基板温度に変化させて作製した時
の抗磁力の値を第9図に示す。Ag系とMg系で基
板温度に対する依存性が異なつているが、これは
それぞれの金属の融点の違いと考えられる。
Degree of vacuum 5×10 -6 Torr or less Substrate temperature 50 to 350℃ (variable) Substrate Heat-resistant plastic film Glass plate Vapor deposition rate Fe 0.95 B 0.05 alloy Approx. 300 Å/min Mg and Ag Approx. 400 Å/min Incident angle 0° to 30° Film thickness 1400Å (Fe 0.95 B 0.05 ) 0.45 Ag 0.55 and (Fe 0.95 B 0.05 ) 0.
45

Figure 9 shows the coercive force values when a thin film of Mg 0.55 was prepared by changing the substrate temperature. The dependence on substrate temperature is different between Ag and Mg systems, but this is thought to be due to the difference in the melting points of the respective metals.

実施例 4 FeBBi系金属硬質磁性薄膜を、基板温度をほ
ぼ室温付近に保持して、真空蒸着法で作製後、ア
ルゴン雰囲気中で熱処理することにより得た。以
下に作製条件を示す。
Example 4 A FeBBi-based metal hard magnetic thin film was prepared by vacuum evaporation while maintaining the substrate temperature at about room temperature, and then heat-treated in an argon atmosphere. The manufacturing conditions are shown below.

真空度 5×10-6Torr以下 基板温度 25℃ 基 板 ガラス板 蒸着速度 Fe0.95B0.05合金 約300Å/分 Bi 0〜1500Å/
分 入射角 0°〜30° 膜 厚 1800Å 熱処理温度 50〜350℃(変化) Fe−B合金とBiの比を変化させた場合の結果
を第10図に示す。
Degree of vacuum 5×10 -6 Torr or less Substrate temperature 25℃ Substrate Glass plate Vapor deposition rate Fe 0.95 B 0.05 alloy Approx. 300Å/min Bi 0 to 1500Å/
Min. Incident angle 0° to 30° Film thickness 1800 Å Heat treatment temperature 50 to 350°C (variation) Figure 10 shows the results when the ratio of Fe-B alloy to Bi was varied.

実施例 5 Fe−B−Ag系、Fe−B−Mg系およびFe−B
−Bi系薄膜で、B(ホウ素)の割合を変化させて
特性を調べた。薄膜作製法は実施例1、2、4と
同様であり、熱処理を行なつて、硬磁性薄膜とし
た。結果を第11図に示す。なお熱処理温度は
Fe−B−Ag系薄膜においては300℃、Fe−B−
Mg系薄膜において250℃、Fe−B−Bi系薄膜に
おいては120℃である。
Example 5 Fe-B-Ag system, Fe-B-Mg system and Fe-B
- Characteristics of Bi-based thin films were investigated by varying the proportion of B (boron). The thin film manufacturing method was the same as in Examples 1, 2, and 4, and heat treatment was performed to obtain a hard magnetic thin film. The results are shown in FIG. The heat treatment temperature is
For Fe-B-Ag thin films, 300℃, Fe-B-
The temperature is 250°C for Mg-based thin films and 120°C for Fe-B-Bi-based thin films.

以上の各実施例で説明したようにこの発明は、
Feを主成分とする硬質および軟質の磁性薄膜の
作製に関して、有用な特性を示すことがわかる。
As explained in each of the above embodiments, this invention
It can be seen that this material exhibits useful properties for the production of hard and soft magnetic thin films containing Fe as the main component.

〔発明の効果〕〔Effect of the invention〕

この発明によれは、高い残留磁束密度をもち、
かつ、抗磁力については従来得られなかつた範囲
の十分に低いまたは十分に高い抗磁力をもつ磁性
薄膜を得ることができるという効果がある。
According to this invention, the magnet has a high residual magnetic flux density,
In addition, there is an effect that a magnetic thin film having a sufficiently low or sufficiently high coercive force in a range that has not been obtained conventionally can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は多源の真空蒸着装置の概略構成図、第
2図は連続巻取式真空蒸留装置の概略構成図、第
3図はFe−B−Ag系軟質磁性薄膜の抗磁力と初
透磁率の組成依存性を示すグラフ、第4図は低温
蒸着されたFe−B−Ag系磁性薄膜の熱処理温度
と抗磁力の関係を示すグラフ、第5図はFe−B
−Ag系軟質磁性薄膜の熱処理後の抗磁力の組成
依存性を示すグラフ、第6図はFeB−Mg系軟質
磁性薄膜の抗磁力と初透磁率の組成依存性を示す
グラフ、第7図は連続蒸着膜の熱処理装置の概略
構成図、第8図はFe−B−Mg系硬質磁性薄膜の
熱処理後の抗磁力の組成依存性を示すグラフ、第
9図はFe−B−Ag系およびFe−B−Mg系硬質
磁性薄膜の基板温度と抗磁力の関係を示すグラ
フ、第10図はFe−B−Bi系硬質磁性薄膜の熱
処理温度と抗磁力の関係を示すグラフ、第11図
はFe−B−Ag、Fe−B−MgおよびFe−B−Bi
系硬質磁性薄膜の熱処理後の抗磁力とB(ホウ素)
の含有比との関係を示すグラフである。
Figure 1 is a schematic diagram of a multi-source vacuum evaporation apparatus, Figure 2 is a diagram of a continuous winding vacuum distillation apparatus, and Figure 3 is a diagram of the coercive force and initial permeability of a Fe-B-Ag soft magnetic thin film. A graph showing the compositional dependence of magnetic property. Figure 4 is a graph showing the relationship between heat treatment temperature and coercive force of a Fe-B-Ag based magnetic thin film deposited at a low temperature. Figure 5 is a graph showing the relationship between coercive force and Fe-B-Ag magnetic thin film deposited at a low temperature.
-A graph showing the compositional dependence of coercive force after heat treatment of Ag-based soft magnetic thin film. Figure 6 is a graph showing compositional dependence of coercive force and initial permeability of FeB-Mg-based soft magnetic thin film. Figure 7 is A schematic configuration diagram of a heat treatment apparatus for continuously deposited films. Figure 8 is a graph showing the compositional dependence of coercive force after heat treatment of Fe-B-Mg based hard magnetic thin films. Figure 9 is a graph showing the composition dependence of coercive force after heat treatment of Fe-B-Mg based hard magnetic thin films. -A graph showing the relationship between substrate temperature and coercive force of a B-Mg based hard magnetic thin film, Figure 10 is a graph showing the relationship between heat treatment temperature and coercive force of an Fe-B-Bi based hard magnetic thin film, and Figure 11 is a graph showing the relationship between coercive force and substrate temperature of a Fe-B-Bi based hard magnetic thin film. -B-Ag, Fe-B-Mg and Fe-B-Bi
Coercive force and B (boron) after heat treatment of hard magnetic thin film
It is a graph showing the relationship between the content ratio of

Claims (1)

【特許請求の範囲】 1 鉄(以下Feで表わす)と、銀(Ag)、マグ
ネシウム(Mg)およびビスマス(Bi)のうちか
ら選んだ少なくとも1種の金属(以下Zで表わ
す)と、ホウ素(以下Bで表わす)を含み、組成
式が Fe1-(X+a)ZxBa (ただし 0.2≦x≦0.8 0<a<0.2 x,aは原子数比) の磁性薄膜。 2 鉄(以下Feで表わす)と、銀(Ag)、マグ
ネシウム(Mg)およびビスマス(Bi)のうちか
ら選んだ少なくとも1種の金属(以下Zで表わ
す)と、ホウ素(以下Bで表わす)を含み、組成
式が Fe1-(X+a)ZxBa (ただし 0.2≦x≦0.8 0<a<0.2 x,aは原子数比) の磁性薄膜を基板上に形成する方法であつて、薄
膜形成時に薄膜の構成原子が顕著に拡散移動しな
い温度に基板を保持することを特徴とする磁性薄
膜の製造方法。 3 前記薄膜の構成原子が顕著に拡散移動しない
温度に基板を保持して薄膜を形成したのち、100
℃〜200℃の温度で熱処理して低抗磁力材料にす
ることを特徴とする特許請求の範囲第2項記載の
磁性薄膜の製造方法。 4 鉄(以下Feで表わす)と、銀(Ag)、マグ
ネシウム(Mg)およびビスマス(Bi)のうちか
ら選んだ少なくとも1種の金属(以下Zで表わ
す)と、ホウ素(以下Bで表わす)を含み、組成
式が Fe1-(X+a)ZxBa (ただし 0.2≦x≦0.8 0<a<0.2 x,aは原子数比) の磁性薄膜を基板上に形成する方法であつて、薄
膜形成時に薄膜の構成原子が顕著に拡散移動する
温度に基板を保持することを特徴とする磁性薄膜
の製造方法。
[Claims] 1. Iron (hereinafter referred to as Fe), at least one metal selected from silver (Ag), magnesium (Mg) and bismuth (Bi) (hereinafter referred to as Z), and boron (hereinafter referred to as Z); A magnetic thin film having a compositional formula of Fe 1-(X+a) Z x B a (0.2≦x≦0.8 0<a<0.2 x, where a is the atomic ratio). 2 Iron (hereinafter referred to as Fe), at least one metal selected from silver (Ag), magnesium (Mg) and bismuth (Bi) (hereinafter referred to as Z), and boron (hereinafter referred to as B). A method for forming a magnetic thin film on a substrate, including Fe 1-(X+a) Z x B a (where 0.2≦x≦0.8 0<a<0.2 x, a is the atomic ratio). A method for manufacturing a magnetic thin film, which comprises maintaining a substrate at a temperature at which atoms constituting the thin film do not significantly diffuse and move during formation of the thin film. 3 After forming a thin film by holding the substrate at a temperature at which the constituent atoms of the thin film do not significantly diffuse and move,
The method for manufacturing a magnetic thin film according to claim 2, characterized in that the material is made into a low coercive force material by heat treatment at a temperature of .degree. C. to 200.degree. 4 Iron (hereinafter referred to as Fe), at least one metal selected from silver (Ag), magnesium (Mg) and bismuth (Bi) (hereinafter referred to as Z), and boron (hereinafter referred to as B). A method for forming a magnetic thin film on a substrate, including Fe 1-(X+a) Z x B a (where 0.2≦x≦0.8 0<a<0.2 x, a is the atomic ratio). A method for producing a magnetic thin film, which comprises maintaining a substrate at a temperature at which atoms constituting the thin film are significantly diffused and moved during the formation of the thin film.
JP9715283A 1983-05-31 1983-05-31 Magnetic thin film and its manufacture Granted JPS59220907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9715283A JPS59220907A (en) 1983-05-31 1983-05-31 Magnetic thin film and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9715283A JPS59220907A (en) 1983-05-31 1983-05-31 Magnetic thin film and its manufacture

Publications (2)

Publication Number Publication Date
JPS59220907A JPS59220907A (en) 1984-12-12
JPH0338726B2 true JPH0338726B2 (en) 1991-06-11

Family

ID=14184592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9715283A Granted JPS59220907A (en) 1983-05-31 1983-05-31 Magnetic thin film and its manufacture

Country Status (1)

Country Link
JP (1) JPS59220907A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5774783A (en) * 1995-03-17 1998-06-30 Fujitsu Limited Magnetic recording medium

Also Published As

Publication number Publication date
JPS59220907A (en) 1984-12-12

Similar Documents

Publication Publication Date Title
US3342633A (en) Magnetic coating
JPS60157715A (en) Magnetic recording medium
JPH02229406A (en) Soft magnetic alloy film
US4663193A (en) Process for manufacturing magnetic recording medium
US4645690A (en) Method of manufacturing a magnetic media
JPH0451963B2 (en)
JPH0338726B2 (en)
CA1131438A (en) Method and alloying elements for producing high coercive force and high squareness magnetic film for magnetic recording medium
US6117282A (en) Method of producing amorphous Co-Tb magnetic recording thin films
JP2710441B2 (en) Soft magnetic laminated film
JP2579184B2 (en) Magnetic recording media
JPS59162622A (en) Vertical magnetic recording material and its production
JPH0475577B2 (en)
JP2759150B2 (en) Magnetic recording thin film and method of manufacturing the same
Ohji et al. Magnetic stability of Fe-9.0 wt.% S/Permalloy multi-layered films in high temperature processes
JPH0311531B2 (en)
JPH0337724B2 (en)
JPH0311530B2 (en)
JPH0565043B2 (en)
JPH01319119A (en) Magnetic recording medium
JPH0512765B2 (en)
JPS5816512A (en) Magnetic recording medium
JPS6357856B2 (en)
JPS6278805A (en) Soft magnetic thin film
JPH0550054B2 (en)