JPH0338436Y2 - - Google Patents

Info

Publication number
JPH0338436Y2
JPH0338436Y2 JP1983002693U JP269383U JPH0338436Y2 JP H0338436 Y2 JPH0338436 Y2 JP H0338436Y2 JP 1983002693 U JP1983002693 U JP 1983002693U JP 269383 U JP269383 U JP 269383U JP H0338436 Y2 JPH0338436 Y2 JP H0338436Y2
Authority
JP
Japan
Prior art keywords
fuel injection
heater
air regulator
control
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983002693U
Other languages
Japanese (ja)
Other versions
JPS59110348U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP269383U priority Critical patent/JPS59110348U/en
Publication of JPS59110348U publication Critical patent/JPS59110348U/en
Application granted granted Critical
Publication of JPH0338436Y2 publication Critical patent/JPH0338436Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【考案の詳細な説明】 本考案はエアレギユレータ制御機能を設けた燃
料噴射量制御用コントロールユニツトに関する。
[Detailed Description of the Invention] The present invention relates to a control unit for fuel injection amount control provided with an air regulator control function.

エアレギユレータは機関の暖機を円滑に行わせ
るためのもので、第1図に示す如く、吸気回路1
のスロツトルバルブ2をバイパスするバイパス通
路3にエアレギユレータ4を介装し、機関始動直
後、即ちヒータ5の通電開始直後はバイメタル温
度が低く全開状態でバイパス通路3の空気流量を
多くしアイドリング回転を高くする。そして、ヒ
ータ5への通電時間の経過とともにバイメタル温
度が高くなりバイパス通路3を除々に閉鎖し空気
流量を少なくするように制御する。即ち、第2図
に示すような空気流制御特性を有している。
The air regulator is used to warm up the engine smoothly, and as shown in Figure 1, the air regulator
An air regulator 4 is interposed in the bypass passage 3 that bypasses the throttle valve 2 of the engine, and immediately after the engine is started, that is, immediately after the heater 5 starts to be energized, the bimetal temperature is low and the air flow rate in the bypass passage 3 is increased in the fully open state to maintain idling rotation. Make it expensive. Then, as the time for energizing the heater 5 passes, the bimetal temperature increases, and the bypass passage 3 is gradually closed and the air flow rate is controlled to be reduced. That is, it has air flow control characteristics as shown in FIG.

ところで、このヒータ通電制御式エアレギユレ
ータを備えた従来の電子制御燃料噴射式内燃機関
では、エアレギユレータ4のヒータ通電制御を燃
料噴射量制御用コントロールユニツト内で行わ
ず、第1図のようにオイルプレツシヤスイツチ及
びオルタネータ信号により機関の運転又は停止の
状態を判別させ、運転時にエアレギユレータリレ
ー6をオンさせることによりヒータ5へ通電する
ようにしていた。
By the way, in the conventional electronically controlled fuel injection internal combustion engine equipped with this heater energization control type air regulator, the heater energization control of the air regulator 4 is not performed within the control unit for controlling the fuel injection amount, and the oil plate is operated as shown in FIG. The running or stopping state of the engine is determined by the shift switch and alternator signals, and the heater 5 is energized by turning on the air regulator relay 6 during operation.

このため、エアレギユレータ専用のリレー及び
配線を必要としコスト高であつた。尚、第1図中
7はエアフローメータ、8は機関本体である。
Therefore, a relay and wiring dedicated to the air regulator were required, resulting in high cost. In FIG. 1, 7 is an air flow meter, and 8 is an engine body.

本考案は上記の実情に鑑みなされたもので、燃
料噴射量制御用コントロールユニツトで演算され
る燃料噴射パルス巾に応じてエアレギユレータの
ヒータ通電量をデユーテイ制御する機能を燃料噴
射量制御用コントロールユニツトに付加する構成
とすることより、従来の問題点を解決すると共に
機関の負荷状態に見合つた適切なヒータ通電制御
ができるようすることを目的とする。
The present invention was developed in view of the above-mentioned circumstances, and it incorporates the function of duty-controlling the amount of electricity supplied to the heater of the air regulator in accordance with the width of the fuel injection pulse calculated by the control unit for controlling the amount of fuel injection into the control unit for controlling the amount of fuel injection. The purpose of this additional configuration is to solve the conventional problems and to perform heater energization control appropriate to the load condition of the engine.

以下、本考案の実施例を図面に基づいて詳細に
説明する。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第3図は本考案に係わるコントロールユニツト
の一実施例を示す。
FIG. 3 shows an embodiment of the control unit according to the present invention.

図において、燃料噴射量制御用コントロールユ
ニツト11内には燃料噴射パルス巾を演算する噴
射パルス巾演算部12が内蔵され、空気量信号、
水温、吸気温信号、スイツチ信号、点火信号等の
燃料噴射制御に使用する機関回転に同期する機関
回転信号等に基づいて燃料噴射パルス巾を演算
し、このパルス信号を増巾部13で増巾した後、
この増巾パルス信号により燃料噴射弁14を駆動
制御する。
In the figure, a fuel injection amount control control unit 11 has a built-in injection pulse width calculation section 12 that calculates the fuel injection pulse width, and an air amount signal,
The fuel injection pulse width is calculated based on engine rotation signals synchronized with engine rotation used for fuel injection control such as water temperature, intake air temperature signals, switch signals, ignition signals, etc., and the width of this pulse signal is amplified by the width increaser 13. After that,
The fuel injection valve 14 is driven and controlled by this amplified pulse signal.

更に、このコントロールユニツト11内には、
前記噴射パルス巾演算部12から出力される噴射
パルス信号を入力しかかるパルス信号に基づいて
後述するヒータ通電回路を開閉するスイツチング
手段としての増巾部16をデユーテイ制御するヒ
ータ通電制御手段に相当するパルス巾拡張部15
(拡張率は約10程度とする)を設けてある。この
パルス巾拡張部15は、燃料噴射パルスのデユー
テイが第4図aの如く小さくヒータ5の通電制御
にそのままでは使用し難いので、燃料噴射パルス
巾を第4図bの如く拡張するものである。前記増
巾部16は、コレクタがエアレギユレータ4のヒ
ータ5を介してバツテリ19の正極に接続され、
エミツタが接地され、前記パルス巾拡張部15か
ら出力される拡張された燃料噴射パルス信号のデ
ユーテイに基づいてオン・オフするトランジスタ
17を備えている。18は固定抵抗である。
Furthermore, inside this control unit 11,
It corresponds to heater energization control means that inputs the injection pulse signal output from the injection pulse width calculation section 12 and duty-controls a width increasing section 16 as a switching means for opening and closing a heater energization circuit, which will be described later, based on the pulse signal. Pulse width extension section 15
(The expansion rate is approximately 10). This pulse width expanding section 15 is for expanding the fuel injection pulse width as shown in FIG. 4b, since the duty of the fuel injection pulse is small as shown in FIG. . The collector of the widening portion 16 is connected to the positive electrode of the battery 19 via the heater 5 of the air regulator 4,
It includes a transistor 17 whose emitter is grounded and which turns on and off based on the duty of the expanded fuel injection pulse signal output from the pulse width expansion section 15. 18 is a fixed resistor.

次に作用を説明する。 Next, the action will be explained.

機関暖機時に、入力する各信号に基づいて噴射
パルス巾演算部12でその時の機関負荷に応じた
噴射パルス巾が演算され出力される。パルス巾拡
張部15は、噴射パルス巾演算部12から出力さ
れるパルス信号を拡張した後、増巾部16に出力
する。増巾部16では、パルス拡張部15からの
出力パルス信号のデユーテイに応じてトランジス
タ17がオン・オフし、バツテリ19からエアレ
ギユレータ4のヒータ5への通電量が前記デユー
テイに対応して制御される。
When the engine is warmed up, the injection pulse width calculation section 12 calculates and outputs an injection pulse width corresponding to the engine load at that time based on each input signal. The pulse width expansion section 15 expands the pulse signal output from the injection pulse width calculation section 12 and outputs the expanded pulse signal to the width expansion section 16 . In the width increasing section 16, the transistor 17 is turned on and off according to the duty of the output pulse signal from the pulse expanding section 15, and the amount of current flowing from the battery 19 to the heater 5 of the air regulator 4 is controlled in accordance with the duty. .

このように、エアレギユレータの制御機能を燃
料噴射制御用コントロールユニツト11内に組み
込んだことによつて、従来のようなエアレギユレ
ータ制御用リレー及び配線類等が不用となりコス
トを低減できる。
By incorporating the air regulator control function into the fuel injection control control unit 11 in this way, the conventional air regulator control relays, wiring, etc. are no longer necessary, and costs can be reduced.

また、かかる構成によれば、噴射パルス巾は機
関負荷状態に対応して異なるもので、エアレギユ
レータ4のヒータ通電量を暖機時の負荷状態に見
合つたものに制御することができ、空気流量制御
の精度を高めることができる。
Further, according to this configuration, the injection pulse width differs depending on the engine load state, and the amount of electricity supplied to the heater of the air regulator 4 can be controlled to match the load state during warm-up, and the air flow rate can be controlled. accuracy can be increased.

即ち、従来において、第2図に示す如く空気流
量はヒータ通電時間のみによつて決定されてい
た。このため、アイドル持続の暖機(低負荷時)
のような機関の暖機が遅い場合に暖機が不充分に
も拘らず空気流量が零になることがあつたり、走
行中の暖気(高負荷時)のような機関の暖機が早
い場合に暖機が済んでいるにも拘らず空気流量が
零にならないことがある等の問題があつた。
That is, in the past, as shown in FIG. 2, the air flow rate was determined only by the heater energization time. For this reason, the warm-up of the idle duration (during low load)
If the engine warms up slowly, such as when the engine warms up slowly, the air flow rate may drop to zero despite insufficient warming, or if the engine warms up quickly, such as when warming up while driving (at high load). There were problems such as the air flow rate sometimes not reaching zero even after warming up.

ところが、本実施例によれば、機関の暖機が遅
い低負荷時では、噴射パルス巾のデユーテイが小
さいため、エアレギユレータ4のヒータ5への単
位時間当たりの通電量も少なく第5図Aに示す如
く空気流量の減少も遅くなる。
However, according to this embodiment, when the engine warms up slowly at low load, the duty of the injection pulse width is small, so the amount of current supplied to the heater 5 of the air regulator 4 per unit time is also small, as shown in FIG. 5A. Similarly, the decrease in air flow rate also becomes slower.

一方、機関暖機の早い高負荷時には、噴射パル
ス巾のデユーテイが低負荷時に比べて大きいた
め、エアレギユレータ4のヒータ5への単位時間
当たりの通電量が多くなり第5図Bに示す如く空
気流量の減少も早くなる。
On the other hand, when the engine is warmed up quickly and under high load, the duty of the injection pulse width is larger than when the load is low, so the amount of electricity per unit time to the heater 5 of the air regulator 4 increases, and the air flow rate increases as shown in Figure 5B. also decreases faster.

このように、本実施例では機関の暖機速度に見
合つた空気流量特性を得ることができるという効
果がある。
In this way, this embodiment has the effect of being able to obtain air flow characteristics commensurate with the warming-up speed of the engine.

以上説明したように本考案によれば、エアレギ
ユレータのヒータ通電制御を燃料噴射量制御用の
コントロールユニツト内で行う構成としたので、
従来のエアレギユレータ制御用リレー及び配線類
等が不用となりコストを低減できる。また、燃料
噴射パルスを利用してヒータ通電をデユーテイ制
御するようにしたので、機関暖機時の負荷状態に
見合つたエアレギユレータでの空気流量制御を行
うことができ、空気流量制御の精度を向上でき
る。
As explained above, according to the present invention, since the heater energization control of the air regulator is performed within the control unit for controlling the fuel injection amount,
Conventional air regulator control relays and wiring are unnecessary, reducing costs. In addition, since the heater energization is duty-controlled using fuel injection pulses, the air flow rate can be controlled by the air regulator according to the load condition during engine warm-up, improving the accuracy of air flow control. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のエアレギユレータ制御装置を示
す構成図、第2図は同上エアレギユレータの空気
流量制御特性を示す図、第3図は本考案の一実施
例を示すブロツク図、第4図aは噴射パルス巾演
算部の出力パルス、bはパルス巾拡張部の出力パ
ルスをそれぞれ示す図、第5図は同上実施例の機
関暖機時のエアレギユレータにおける空気流量制
御特性を示す図で、Aは低負荷時、Bは高負荷時
のそれぞれの場合を示すものである。 2……スロツトルバルブ、3……バイパス通
路、4……エアレギユレータ、5……ヒータ、1
1……コントロールユニツト、12……噴射パル
ス巾演算部、15……パルス巾拡張部、16……
増巾部。
Fig. 1 is a configuration diagram showing a conventional air regulator control device, Fig. 2 is a diagram showing air flow control characteristics of the same air regulator, Fig. 3 is a block diagram showing an embodiment of the present invention, and Fig. 4 a shows an injection Figure 5 is a diagram showing the air flow rate control characteristics of the air regulator during warm-up of the engine in the same example as above; Time and B indicate the respective cases under high load. 2...Throttle valve, 3...Bypass passage, 4...Air regulator, 5...Heater, 1
DESCRIPTION OF SYMBOLS 1... Control unit, 12... Injection pulse width calculation section, 15... Pulse width expansion section, 16...
Width part.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 燃料噴射量制御用コントロールユニツトと、ス
ロツトルバルブのバイパス通路に介装されヒータ
への通電時間の経過と共に閉弁動作して当該バイ
パス通路を除々に閉鎖し暖機時の空気流量を制御
するヒータ通電制御式エアレギユレータとを備え
た電子制御燃料噴射式内燃機関において、前記エ
アレギユレータの通電回路を開閉するスイツチン
グ手段と、前記コントロールユニツト内の燃料噴
射パルス巾演算手段から出力される燃料噴射パル
ス信号に応じて前記スイツチング手段の開閉をデ
ユーテイ制御するヒータ通電制御手段とを設けた
ことを特徴とするエアレギユレータ制御機能付燃
料噴射量制御用コントロールユニツト。
A control unit for controlling the fuel injection amount, and a heater that is installed in the bypass passage of the throttle valve and operates to close the valve as the heater is energized, gradually closing the bypass passage and controlling the air flow rate during warm-up. In an electronically controlled fuel injection internal combustion engine equipped with an energization control type air regulator, switching means for opening and closing the energization circuit of the air regulator and a fuel injection pulse signal outputted from a fuel injection pulse width calculation means in the control unit are provided. 1. A control unit for fuel injection amount control with an air regulator control function, further comprising heater energization control means for duty-controlling the opening and closing of the switching means.
JP269383U 1983-01-14 1983-01-14 Control unit for fuel injection amount control with air regulator control function Granted JPS59110348U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP269383U JPS59110348U (en) 1983-01-14 1983-01-14 Control unit for fuel injection amount control with air regulator control function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP269383U JPS59110348U (en) 1983-01-14 1983-01-14 Control unit for fuel injection amount control with air regulator control function

Publications (2)

Publication Number Publication Date
JPS59110348U JPS59110348U (en) 1984-07-25
JPH0338436Y2 true JPH0338436Y2 (en) 1991-08-14

Family

ID=30134346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP269383U Granted JPS59110348U (en) 1983-01-14 1983-01-14 Control unit for fuel injection amount control with air regulator control function

Country Status (1)

Country Link
JP (1) JPS59110348U (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612029A (en) * 1979-07-10 1981-02-05 Toyota Motor Corp Control method for speed of revolution in internal combustion engine
JPS5827843B2 (en) * 1977-11-26 1983-06-11 株式会社東京精密 coordinate measuring machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827843U (en) * 1981-08-19 1983-02-23 寺崎電気産業株式会社 Earth leakage display device for circuit breakers and breakers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827843B2 (en) * 1977-11-26 1983-06-11 株式会社東京精密 coordinate measuring machine
JPS5612029A (en) * 1979-07-10 1981-02-05 Toyota Motor Corp Control method for speed of revolution in internal combustion engine

Also Published As

Publication number Publication date
JPS59110348U (en) 1984-07-25

Similar Documents

Publication Publication Date Title
US5347966A (en) Speed-dependent air intake system and method for internal combustion engines
JPS6342106B2 (en)
JP2780244B2 (en) Drive control method and apparatus for idle control valve
JPH0338436Y2 (en)
JPH04232451A (en) Heating control device for discharged gas sensor
JPS5982545A (en) Start controller for fuel supply device
JPS6215749B2 (en)
JP2747592B2 (en) Fuel injection device for internal combustion engine
JPS622279Y2 (en)
JPS6147726B2 (en)
JPS6235868Y2 (en)
JPS6224785Y2 (en)
JPS6198937A (en) Starting of engine
JPS6027818B2 (en) Electronically controlled fuel injection device
JPS581644Y2 (en) Engine intake air heating device
JP2785590B2 (en) Air flow control device for internal combustion engine
JPH0144777Y2 (en)
JPS6140935Y2 (en)
JPS6123666Y2 (en)
JPS6130135B2 (en)
JPS59160064A (en) Heating method of suction air for internal-combustion engine
CA1118076A (en) Control system for regulating air/fuel ratio
JPS6166858A (en) Driving device for fuel pump
JPS6039504Y2 (en) Intake heating device
JPH0517380Y2 (en)