JPH0338288B2 - - Google Patents

Info

Publication number
JPH0338288B2
JPH0338288B2 JP56043489A JP4348981A JPH0338288B2 JP H0338288 B2 JPH0338288 B2 JP H0338288B2 JP 56043489 A JP56043489 A JP 56043489A JP 4348981 A JP4348981 A JP 4348981A JP H0338288 B2 JPH0338288 B2 JP H0338288B2
Authority
JP
Japan
Prior art keywords
water
polymerization
cellulose
polymer
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56043489A
Other languages
Japanese (ja)
Other versions
JPS57158210A (en
Inventor
Harumasa Yamazaki
Shoichiro Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP4348981A priority Critical patent/JPS57158210A/en
Publication of JPS57158210A publication Critical patent/JPS57158210A/en
Publication of JPH0338288B2 publication Critical patent/JPH0338288B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】 本発明は水に溶解せず、大量の水性液体を高度
に吸収し、且つそれを安定に保持することのでき
る吸水材料に関するものである。更に詳しくは高
吸水性であり、しかも吸水速度の速い水不溶性の
ビーズ状自己架橋型吸水ポリマーからなる吸水材
料に関するものである。 従来、紙、パルプ、海綿等が吸水ないし保水材
料として生理用ナプキン、紙オシメ等の衛生材料
及び農業分野に使用されてきたが、これらの材料
はその吸水能力が低く、しかも一旦吸収された水
も圧力が加わればそのかなりの部分がしぼり出さ
れてしまう。これらの材料に代わるものとして近
年デンプン−アクリルニトリルグラフト重合体の
加水分解物、変成セルロースエーテル並びにポリ
エチレンオキシド変成物等のいくつかの吸水材料
が提案されてきている。しかしそれらは吸水剤と
しての性能が不十分であつたり、又、天然物を原
料とするため腐敗する危険性があつたり、更に製
造方法が煩雑であつたりして、十分な吸水材料と
は云い難いものである。 本発明者らは先にこれらの欠点を改良した吸水
材料の製造方法を提案した(特公昭54−30710号
公報)。一般に吸水材料の要求物性としては(1)吸
水量、(2)吸水速度、(3)吸水後のゲル強度、(4)形状
が挙げられ、これらの物性を満足しはじめて良い
吸水材料と言うことができる。 しかるに前記特公昭54−30710号公報に開示さ
れた方法で製造された吸水材料も種々の欠点を有
している。すなわち、w/o懸濁重合方法におけ
る保護コロイドとしてソルビタン脂肪酸エステル
を用いているために得られた重合体の粒径が
100μm以下と非常に微粉末なものとなつてしま
い、粉末を取り扱う場合、粉塵対策が必要であ
る。又、粉体が水性液体と接した時“ままこ”現
象を起し易く、その結果、吸水速度が遅いと云う
欠点である。 本発明者らはこれらの欠点を改良し、しかも上
記の要求物性を満足する吸水材料の開発に鋭意研
究を重ねた結果、モノマー水溶液を疎水性液体に
分散・懸濁させ重合する方法、つまりw/o懸濁
重合方法において保護コロイドに重合温度で油溶
性であるセルロースエステル又はセルロースエー
テルを使用し、溶媒にハロゲン化芳香族炭化水素
又は炭化水素を用い、重合開始剤として過硫酸塩
を使用し、単量体水溶液の濃度を特定範囲内とす
ることにより、得られた重合体の粒径が100μm
以上と大きく、しかも高吸水性で吸水速度の速い
吸水材料が得られることを見い出し、本発明を完
成した。 即ち、本発明は架橋剤を含有しないアクリル
酸、アクリル酸塩、アクリルアミド及びN−置換
アクリルアミドから選ばれる水溶性エチレン性不
飽和単量体の水溶液を炭化水素又はハロゲン化芳
香族炭化水素中に分散・懸濁し、重合するに際
し、保護コロイドとして重合温度で油溶性である
セルロースエステル又はセルロースエーテルを使
用するとともに、重合開始剤として過硫酸塩を使
用し、更に単量体水溶液の濃度を40重量%〜飽和
濃度の範囲内とし、60℃以上の温度で重合して得
られる水不溶性ビーズ状自己架橋型吸水ポリマー
からなる吸水材料を提供するものである。 油溶性のセルロースエステル又はセルロースエ
ーテルを保護コロイドとするw/o懸濁重合方法
は例えば、特開昭55−7825号公報に水溶性ポリア
クリル酸ソーダ、ポリアクリルアミドを中心に開
示されており、これらの技術を本発明に応用する
ことができる。 本発明に使用される上記水溶性エチレン性不飽
和単量体として好ましいものはアクリル酸ナトリ
ウム、アクリルアミド、2−アクリルアミド−2
−メチルプロパンスルホン酸である。しかもこれ
らの単量体を2種以上用いることができる。 吸水材料を得るためには単量体水溶液の単量体
濃度は特に重要であり、本発明の様に、架橋剤の
不在下において自己架橋を行なわしめ、水不溶性
とするためには単量体濃度は40wt%以上飽和濃
度までである。単量体濃度が40wt%未満では十
分な架橋反応が起らず、その結果として水溶性ポ
リマーが生成し、十分な吸水量と吸水速度を与え
ない。従つて本発明から除外されるものである。
因みに中和度75mol%におけるアクリル酸ソーダ
の室温での飽和濃度は約45wt%である。 本発明におけるw/o懸濁重合の保護コロイド
として使用する重合温度で油溶性であるセルロー
スエステル又はセルロースエステルとは、室温に
おいて分散媒である炭化水素又はハロゲン化芳香
族炭化水素に対して不溶性又は難溶性で且つ重合
温度(50℃以上)において可溶であるものをい
う。 この様なセルロースエステル又はエーテルとし
てはセルロースアセテート、セルロースプロピオ
ネート、セルロースブチレート、セルロースアセ
テートプロピオネート、セルロースアセテートブ
チレート、セルロースアセテートフタレート、エ
チルセルロース、ベンジルセルロース、エチルヒ
ドロキシエチルセルロース等が挙げられる。特に
セルロースアセテートブチレート、エチルセルロ
ース、エチルヒドロキシエチルセルロースが好ま
しい。 本発明における分散媒としては炭素数6〜10の
炭化水素又はハロゲン化芳香族炭化水素が好まし
い。例えばベンゼン、エチルベンゼン、トルエ
ン、キシレン等の芳香族炭化水素、シクロヘキサ
ン、メチルシクロヘキサン、シクロオクタン、デ
カリン等の脂還族炭化水素、ヘキサン、ペンタ
ン、ヘプタン、オクタン等の脂肪族炭化水素、ク
ロルベンゼン、ブロムベンゼン、ジクロルベンゼ
ン等のハロゲン化炭化水素などであり、好ましく
はトルエン、キシレン、シクロヘキサン、メチル
シクロヘキサン、ヘキサン、ヘプタン、クロルベ
ンゼン、ジクロルベンゼンである。これらの分散
媒はセルロースエステル又はエーテルの種類によ
り、2種以上の溶剤を混合して使用することがで
きる。又使用するセルロースエステル又はエーテ
ルを選択することにより単一溶媒を分散媒として
使用することができる。この場合分散媒のリサイ
クルが容易となり、工業的には極めて有利とな
る。 トルエン、キシレン、エチルベンゼン、クロル
ベンゼン、ジクロルベンゼンなどを単独で分散媒
とする場合に適するセルロース誘導体はエトキシ
基の含有量が43〜47wt%であるエチルセルロー
スやブチリル基の含有量が20〜50wt%であるセ
ルロースアセテートブチレートである。シクロヘ
キサン、シクロペンタン、メチルシクロヘキサ
ン、デカリンなどを単独で分散媒とする場合に適
するセルロース誘導体はエトキシ基の含有量が47
〜50wt%であるエチルセルロースである。n−
ヘキサン、n−ヘプタン、n−オクタンなどを単
独で分散媒とする場合に適するセルロース誘導体
はエチルヒドロキシエチルセルロースである。保
護コロイドの使用量は分散媒に対して0.05〜10wt
%、好ましくは0.5〜5wt%の範囲である。重合温
度は50℃から、分散媒の沸点まで任意の温度で重
合できる。好ましくは60℃以上であり、重合熱除
去の点からも分散媒と水の共沸温度で重合を行な
うのが特に好ましい。分散媒と単量体水溶液の比
率体積比は広い範囲にわたつて可変であるが重合
熱の除去及び重合温度のコントロールの点から一
般に1:2〜5:1の範囲が適当である。単量体
水溶液の重合のための重合開始剤としては過硫酸
塩、例えば過硫酸カリウム、過硫酸アンモニウム
等を使用することが必要である。他のラジカル重
合開始剤、例えばt−ブチルハイドロパーオキシ
ド、クメンハイドロパーオキシド等のハイドロパ
ーオキシド、2,2′−アゾビス−2−アミジノプ
ロパン塩酸塩等のアゾ化合物を使用すると得られ
るポリマーは水溶性となり、本発明の目的を達成
することはできない。 本発明に於いては、前述の如く、架橋剤を含有
せず、過硫酸塩を含有せしめた、単量体濃度が40
重量%以上である水溶性エチレン性不飽和単量体
水溶液を用いるとともに、保護コロイドとして重
合温度において油溶性であるセルロースエステル
又はセルロースエーテルを使用して、水不溶性の
ビーズ状自己架橋型吸水ポリマーを製造してい
る。前記の特開昭55−7825号公報で開示されてい
るものは、高分子量で均一な水溶性ポリマーを得
るために、分散媒として炭化水素又はハロゲン化
炭化水素を用い、保護コロイドとして室温におい
て不溶ないし難溶性で、かつ重合温度において可
溶である油溶性のセルロースエステル又はセルロ
ースエーテルを用いるというものである。 一方、本発明は、特開昭55−7825号公報記載の
方法を応用し、更に、架橋剤を含有せず、過硫酸
塩を含有せしめた、単量体濃度が40重量%以上で
ある水溶性エチレン性不飽和単量体水溶液を用い
ることによつて、高分子量で均一な水不溶性の自
己架橋型高吸水性ポリマーを得ることを可能にし
たものである。従つて、本発明によつて製造され
た自己架橋型のビーズ状ポリマーは、粒径が大き
くかつ均一で、水不溶性かつ高吸水性のものであ
る。ここで不溶性とは水にポリマーを入れて室温
において撹拌すると吸水・膨潤してゲル状となる
が、撹拌を停止して放置すると流動性を失つた
り、相分離を起こすことを指し、水溶性とは撹拌
により均一な水溶液状となり、撹拌を止めて同一
温度に放置してもこの状態が継続することを指
す。特開昭55−7825号公報の方法では水溶性ポリ
マーを得るためにアゾ系開始剤を用いることによ
り架橋反応を防止している。 本発明により製造されるポリマーは本質的に水
に不溶のものであり、水を吸水し、これを保持す
るという特異な性質をもつものである。この性質
を具備せしめるためにその製造において架橋反応
を生起せしめてポリマーを不溶化することが必須
である。水溶性ポリマーが本発明に係る水不溶性
ポリマーに混入すると吸水速度を低下せしめ、又
吸水後のポリマーをヌルヌルした感じのものとな
し、サラツとした感触を与えず、その取扱いを困
難にするという理由により、本発明の目的から水
溶性ポリマーは排除されるのである。 本発明において積極的に架橋反応を行なわし
め、水不溶性の吸水ポリマーを得ようとするこの
目的を達成するための手段として具体的には特公
昭54−30710号公報で提案した様な高モノマー濃
度の自己架橋反応による不溶化の方法がある。こ
の場合には自己架橋反応を生ぜしめるための必要
条件は開始剤に過硫酸塩を用い、単量体水溶液の
濃度が40wt%以上であることである。アゾ系開
始剤、水溶性ハイドロパーオキシド系開始剤はこ
の場合自己架橋反応を生ぜしめないこと、又、単
量体水溶液の濃度が40wt%以下でも自己架橋反
応を生ぜしめないのである。 本発明により製造されるポリマーは粒子径が著
しく大きいものであり、粒子径が大きい故に高吸
水性で吸水速度が大きいという属性を具備するも
のである。このような水不溶性で粒子径の大きい
ポリマーは、上述の如く懸濁重合において、自己
架橋反応を生ぜしめる条件を採用するとともに、
保護コロイドとして油溶性のセルロースエステル
又はセルロースエーテルを使用することによつて
はじめて製造が可能となるのである。 かかる自己架橋反応により粒子径が100μm以
上と著しく大きく、しかも高吸収性で吸水速度の
速い吸水材料を得る条件としては、モノマー濃
度、重合温度及び重合開始剤の種類の組み合わせ
が重要である。本発明は保護コロイドである油溶
性のセルロースエステル又はセルロースエーテル
の存在下、モノマー濃度40重量%〜飽和濃度、重
合温度60℃以上で、重合開始剤として過硫酸塩の
使用の組み合わせにより優れた吸水性能を有する
水不溶性ビーズ状ポリマーを得たものであり、本
発明の組み合わせは新規であり、且つ従来予想し
得なかつた顕著な効果を奏するものである。 本発明の利点は生成ポリマーの粒径が大きくな
つたことにより、粉塵対策が不用なものとなる
点、又高吸水性で吸水速度の速い吸水材料が得ら
れたことにより重合体の用途を拡げることが可能
になつた点にある。例えば、従来の保水剤に加え
て油と水との混合物から一瞬に水を除去すること
もできる。つまり脱水剤として用いることができ
るほか、衛生用品の材料としても用いることがで
きる。即ち、紙オシメの様に一度に大量の尿等を
吸収しなくてはいけない分野においても一瞬の内
に吸収することにより“もれ”や“ぬれ感”が無
くなり、後に不快感を残すことはないと云うこと
を可能にした。 本発明における吸水量とは次の操作によつて求
められる値である。即ちポリマー約1gを大過剰
の生理食塩水に分散し、充分膨潤させ、ついで80
メツシユの金網で過する。得られた膨潤ポリマ
ー重量(W)を測定し、この値を初めのポリマー
重量(W0)で割つて得られる値、 つまり 吸水量(g/g)=W/W0とした。 又、吸水速度は生理食塩水5mlをポリマー0.5
gが吸収するに要する時間でもつて表わした。 以下実施例及び比較例によつて本発明を具体的
に説明する。 なお、ここで使用するセルロースエステル又は
エーテルのアセチル基、ビチリル基及びエトキシ
基の含有量は次の通りである。 セルロースアセテートブチレート(イーストマ
ンコダツク社製、商標CAB381−20)…アセチル
基含有量13wt%、ブチリル基含有量37mt% エチルセルロース(ハーキユリーズ社製、商標
エチルセルロースN−200)…エトキシ基含有量
47.5〜49.0wt% 実施例 1 撹拌機、還流冷却器、滴下斗、窒素ガス導入
管を付した500ml四つ口丸底フラスコにシクロヘ
キサン230ml、エチルセルロース1.86g(ハーキ
ユリーズ製、商標エチルセルロースN−200)を
仕込み、窒素ガスを吹き込んで溶存酸素を追い出
し75℃まで昇温した。別にフラスコ中でアクリル
酸30gを外部より冷却しつつ、イオン交換水40g
に溶解した13.4gの98%苛性ソーダで中和した。
水相中のモノマー濃度は45wt%となつた。つい
で過硫酸カリウム0.1gを添加溶解した後、窒素
ガスを吹き込んで水溶液内に存在する酸素を除去
した。このフラスコ内容物を上記四つ口フラスコ
に一括添加し、重合した。重合終了後75℃に保持
して1時間反応を続けた。シクロヘキサンを減圧
下に留去し、残つた膨潤ポリマー部分を80〜100
℃で減圧下に乾燥し、中心粒径が100〜350μmの
球状粒子を得た。 実施例 2 実施例1と同様に操作し、但しモノマー水溶液
部分でイオン交換水50gとした。つまり水相中の
モノマー濃度は40wt%となつた。以下実施例1
と同様にして中心粒径100〜420μmの球状粒子を
得た。 実施例 3 実施例1と同様に操作し、但し保護コロイドと
してエチルセルロース1.0g(ハーキユリーズ製、
商標エチルセルロールN−22)を用いた。以下実
施例1と同様にして中心粒径100〜450μmの球状
粒子を得た。 実施例 4 実施例1の重合反応器の中にヘキサン230ml、
エチルヒドロキシエチルセルロース2.21g(ハー
キユリーズ製、商標E・H・E・C・Low)を
仕込み、65℃まで昇温した。他方フラスコ中でア
クリル酸26g、2−アクリルアミド−2メチルプ
ロパンスルホン酸4gをイオン交換水44gに溶解
した12.2gの98%苛性ソーダで中和した。更に過
硫酸アンモニウム0.1gを添加溶解した溶液をモ
ノマー水溶液とした。水相中のモノマー濃度は約
42wt%であつた。以下実施例1と同様に操作し
中心粒径100〜350μmの球状粒子を得た。 実施例 5 実施例4の重合処方の内、モノマー水溶液の部
分で、アクリル酸24gをイオン交換水50gに溶解
した10.2gの98%苛性ソーダで中和した後、更に
アクリルアミド6g、過硫酸カリウム0.1gを添
加溶解し、溶液とした。水相中のモノマー濃度は
40wt%であつた。以下実施例4と同様に操作し、
中心粒径100〜300μmの球状粒子を得た。 実施例 6 実施例1の重合反応器の中にモノクロルベンゼ
ン230ml、セルロースアセテートブチレート2.3g
(イーストマンコダツク製、商標CAB381−20)
を仕込み、80℃まで昇温した。他方フラスコ中で
アクリルアミド50g、イオン交換水50g、過硫酸
アンモニウム0.1gでモノマー水溶液を調製した。
水相中のモノマー濃度は50wt%であつた。以下
実施例1と同様に操作し、中心粒径100〜250μm
の球状粒子を得た。 比較例 1 特公昭54−30710号公報記載の実施例1に従つ
て水不溶性の球状ポリマーを得た。すなわち保護
コロイドとしてソルビタンモノステアレートを用
いた。このものの中心粒径は10〜70μmであつ
た。 比較例 2 実施例2における重合処方において保護コロイ
ドとしてソルビタンジステアレート1.86gを用い
て重合を行ない球状ポリマーを得た。このものの
中心粒径は10〜70μmであつた。 比較例 3 実施例1の重合条件下で開始剤に2,2′−アゾ
ビス−2−アミジノプロパン塩酸塩を用いて球状
ポリマーを得た。このものの中心粒径は100〜
350μmであつたが、水に溶解し粘稠な水溶液と
なつた。 比較例 4 実施例1の重合条件においてアクリル酸ソーダ
水溶液の濃度を30wt%まで希釈したものをモノ
マー水溶液として用い球状ポリマーを得た。この
ものの中心粒径は100〜350μmであつたが、水に
溶解し粘稠な水溶液となつた。 実施例1〜6及び比較例1〜4で得られた各ポ
リマーの吸水量及び吸水速度を表−1に示した。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water-absorbing material that does not dissolve in water, can highly absorb a large amount of aqueous liquid, and can stably retain it. More specifically, the present invention relates to a water-absorbing material made of a water-insoluble bead-like self-crosslinking water-absorbing polymer that is highly water-absorbent and has a high water absorption rate. Conventionally, paper, pulp, sponge, etc. have been used as water-absorbing or water-retaining materials in sanitary materials such as sanitary napkins and paper diapers, and in the agricultural field. However, if pressure is applied, a large portion of it will be squeezed out. As alternatives to these materials, several water-absorbing materials have been proposed in recent years, such as hydrolysates of starch-acrylonitrile graft polymers, modified cellulose ethers, and modified polyethylene oxides. However, they are not sufficient water-absorbing materials because their performance as water-absorbing agents is insufficient, and because they are made from natural materials, there is a risk of spoilage, and the manufacturing method is complicated. It's difficult. The present inventors have previously proposed a method for producing a water-absorbing material that improves these drawbacks (Japanese Patent Publication No. 30710/1983). In general, the required physical properties of a water-absorbing material include (1) water absorption amount, (2) water absorption rate, (3) gel strength after water absorption, and (4) shape, and a water-absorbing material is only good if it satisfies these physical properties. Can be done. However, the water-absorbing material produced by the method disclosed in Japanese Patent Publication No. 54-30710 also has various drawbacks. That is, because sorbitan fatty acid ester is used as a protective colloid in the w/o suspension polymerization method, the particle size of the obtained polymer is
It becomes a very fine powder of less than 100 μm, so when handling powder, dust countermeasures are required. Another drawback is that when the powder comes into contact with an aqueous liquid, it tends to cause a "sticky" phenomenon, resulting in a slow water absorption rate. The present inventors have conducted intensive research to improve these drawbacks and to develop a water-absorbing material that satisfies the above-mentioned required physical properties.As a result, we have developed a method in which an aqueous monomer solution is dispersed/suspended in a hydrophobic liquid and then polymerized. /o In the suspension polymerization method, a cellulose ester or cellulose ether that is oil-soluble at the polymerization temperature is used as a protective colloid, a halogenated aromatic hydrocarbon or hydrocarbon is used as a solvent, and a persulfate is used as a polymerization initiator. By adjusting the concentration of the monomer aqueous solution within a specific range, the particle size of the obtained polymer was 100 μm.
The inventors have discovered that it is possible to obtain a water-absorbing material that is large in size, highly absorbent, and has a high water absorption rate, and has completed the present invention. That is, the present invention involves dispersing an aqueous solution of a water-soluble ethylenically unsaturated monomer selected from acrylic acid, acrylate, acrylamide, and N-substituted acrylamide in a hydrocarbon or halogenated aromatic hydrocarbon without containing a crosslinking agent.・When suspending and polymerizing, use cellulose ester or cellulose ether that is oil-soluble at the polymerization temperature as a protective colloid, use persulfate as a polymerization initiator, and further increase the concentration of the monomer aqueous solution to 40% by weight. The present invention provides a water-absorbing material made of a water-insoluble bead-like self-crosslinking water-absorbing polymer obtained by polymerization at a temperature of 60° C. or higher at a saturation concentration. A w/o suspension polymerization method using oil-soluble cellulose ester or cellulose ether as a protective colloid is disclosed, for example, in JP-A-55-7825, focusing on water-soluble sodium polyacrylate and polyacrylamide. This technique can be applied to the present invention. Preferred water-soluble ethylenically unsaturated monomers used in the present invention are sodium acrylate, acrylamide, and 2-acrylamide-2.
-Methylpropanesulfonic acid. Moreover, two or more types of these monomers can be used. In order to obtain a water-absorbing material, the monomer concentration of the monomer aqueous solution is particularly important, and as in the present invention, in order to perform self-crosslinking in the absence of a crosslinking agent and make it water-insoluble, the monomer concentration is particularly important. The concentration is 40wt% or more up to saturation concentration. If the monomer concentration is less than 40 wt%, sufficient crosslinking reaction will not occur, resulting in the formation of a water-soluble polymer, which will not provide sufficient water absorption amount and water absorption rate. Therefore, they are excluded from the present invention.
Incidentally, the saturated concentration of sodium acrylate at room temperature at a neutralization degree of 75 mol% is approximately 45 wt%. The cellulose ester or cellulose ester that is oil-soluble at the polymerization temperature and used as a protective colloid in w/o suspension polymerization in the present invention refers to the cellulose ester or cellulose ester that is insoluble or cellulose ester in the hydrocarbon or halogenated aromatic hydrocarbon that is the dispersion medium at room temperature. Refers to substances that are poorly soluble and soluble at polymerization temperatures (50°C or higher). Examples of such cellulose esters or ethers include cellulose acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, ethyl cellulose, benzyl cellulose, and ethyl hydroxyethyl cellulose. Particularly preferred are cellulose acetate butyrate, ethylcellulose, and ethylhydroxyethylcellulose. The dispersion medium used in the present invention is preferably a hydrocarbon having 6 to 10 carbon atoms or a halogenated aromatic hydrocarbon. For example, aromatic hydrocarbons such as benzene, ethylbenzene, toluene, xylene, alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, cyclooctane, decalin, aliphatic hydrocarbons such as hexane, pentane, heptane, octane, chlorobenzene, bromine, etc. These include halogenated hydrocarbons such as benzene and dichlorobenzene, preferably toluene, xylene, cyclohexane, methylcyclohexane, hexane, heptane, chlorobenzene, and dichlorobenzene. These dispersion media can be used in combination of two or more types of solvents depending on the type of cellulose ester or ether. Moreover, a single solvent can be used as a dispersion medium by selecting the cellulose ester or ether to be used. In this case, recycling of the dispersion medium becomes easy, which is extremely advantageous industrially. Suitable cellulose derivatives when toluene, xylene, ethylbenzene, chlorobenzene, dichlorobenzene, etc. are used alone as a dispersion medium include ethylcellulose with an ethoxy group content of 43 to 47 wt%, and ethyl cellulose with a butyryl group content of 20 to 50 wt%. It is cellulose acetate butyrate. Cellulose derivatives suitable for using cyclohexane, cyclopentane, methylcyclohexane, decalin, etc. as a dispersion medium have an ethoxy group content of 47
~50wt% ethylcellulose. n-
A cellulose derivative suitable for using hexane, n-heptane, n-octane, etc. alone as a dispersion medium is ethylhydroxyethylcellulose. The amount of protective colloid used is 0.05 to 10wt relative to the dispersion medium.
%, preferably in the range of 0.5 to 5 wt%. Polymerization can be carried out at any temperature from 50°C to the boiling point of the dispersion medium. The temperature is preferably 60° C. or higher, and it is particularly preferable to carry out the polymerization at an azeotropic temperature of the dispersion medium and water from the viewpoint of removing polymerization heat. The volume ratio of the dispersion medium to the aqueous monomer solution can vary over a wide range, but is generally in the range of 1:2 to 5:1 from the standpoint of removing polymerization heat and controlling the polymerization temperature. As polymerization initiators for the polymerization of aqueous monomer solutions it is necessary to use persulfates, such as potassium persulfate, ammonium persulfate, etc. When other radical polymerization initiators are used, such as hydroperoxides such as t-butyl hydroperoxide and cumene hydroperoxide, and azo compounds such as 2,2'-azobis-2-amidinopropane hydrochloride, the resulting polymer is water-soluble. Therefore, the purpose of the present invention cannot be achieved. In the present invention, as mentioned above, the monomer concentration is 40%, which does not contain a crosslinking agent but contains a persulfate.
A water-insoluble bead-like self-crosslinking water-absorbing polymer is produced by using an aqueous solution of a water-soluble ethylenically unsaturated monomer having a concentration of at least % by weight and using a cellulose ester or cellulose ether that is oil-soluble at the polymerization temperature as a protective colloid. Manufactured. The method disclosed in JP-A-55-7825 uses a hydrocarbon or halogenated hydrocarbon as a dispersion medium, and a protective colloid that is insoluble at room temperature in order to obtain a water-soluble polymer with a high molecular weight and uniformity. Alternatively, an oil-soluble cellulose ester or cellulose ether that is sparingly soluble and soluble at the polymerization temperature is used. On the other hand, the present invention applies the method described in JP-A No. 55-7825, and further provides an aqueous solution which does not contain a crosslinking agent but contains a persulfate and has a monomer concentration of 40% by weight or more. By using an aqueous ethylenically unsaturated monomer solution, it is possible to obtain a uniform, water-insoluble, self-crosslinking superabsorbent polymer with a high molecular weight. Therefore, the self-crosslinking bead-like polymer produced according to the present invention has a large and uniform particle size, is water-insoluble, and has high water absorption. Insoluble means that when a polymer is placed in water and stirred at room temperature, it absorbs water and swells to form a gel, but if stirring is stopped and the polymer is left standing, it loses fluidity or undergoes phase separation. This means that a homogeneous aqueous solution is formed by stirring, and this state continues even if the stirring is stopped and the solution is left at the same temperature. In the method disclosed in JP-A-55-7825, a crosslinking reaction is prevented by using an azo initiator to obtain a water-soluble polymer. The polymer produced according to the present invention is essentially insoluble in water and has the unique property of absorbing and retaining water. In order to provide this property, it is essential to cause a crosslinking reaction to insolubilize the polymer during its production. The reason is that when a water-soluble polymer is mixed with the water-insoluble polymer according to the present invention, the water absorption rate decreases, and the polymer after water absorption becomes slimy, does not have a smooth feel, and is difficult to handle. This excludes water-soluble polymers for the purposes of this invention. In the present invention, a crosslinking reaction is actively carried out to obtain a water-insoluble water-absorbing polymer.As a means for achieving this purpose, specifically, a high monomer concentration as proposed in Japanese Patent Publication No. 54-30710 is used. There is a method of insolubilization by self-crosslinking reaction. In this case, the necessary conditions for the self-crosslinking reaction to occur are that a persulfate is used as an initiator and that the concentration of the aqueous monomer solution is 40 wt% or more. In this case, the azo initiator and the water-soluble hydroperoxide initiator do not cause a self-crosslinking reaction, and even if the concentration of the monomer aqueous solution is 40 wt% or less, they do not cause a self-crosslinking reaction. The polymer produced according to the present invention has a significantly large particle size, and because of its large particle size, it has the attributes of high water absorption and high water absorption rate. Such a water-insoluble polymer with a large particle size is produced by using conditions that cause a self-crosslinking reaction in suspension polymerization as described above, and
Production becomes possible only by using oil-soluble cellulose esters or cellulose ethers as protective colloids. The combination of monomer concentration, polymerization temperature, and type of polymerization initiator is important as conditions for obtaining a water-absorbing material with a significantly large particle size of 100 μm or more, high absorbency, and a fast water absorption rate through such self-crosslinking reaction. The present invention provides excellent water absorption in the presence of an oil-soluble cellulose ester or cellulose ether as a protective colloid, at a monomer concentration of 40% by weight to saturated concentration, at a polymerization temperature of 60°C or higher, and in combination with the use of persulfate as a polymerization initiator. The combination of the present invention is novel and produces remarkable effects that could not have been predicted in the past. The advantages of the present invention are that the particle size of the produced polymer has increased, making dust countermeasures unnecessary, and that a water-absorbing material with high water absorption and a fast water absorption rate has been obtained, which expands the uses of the polymer. This is now possible. For example, in addition to conventional water retention agents, water can also be instantly removed from oil and water mixtures. In other words, it can be used not only as a dehydrating agent but also as a material for sanitary products. In other words, even in fields where a large amount of urine, etc. must be absorbed at once, such as with paper diapers, by absorbing it in an instant, there is no "leakage" or "wet feeling", and there is no discomfort left afterwards. It made it possible to say no. The water absorption amount in the present invention is a value determined by the following operation. That is, about 1 g of polymer was dispersed in a large excess of physiological saline, sufficiently swollen, and then
Spend time in mesh wire mesh. The resulting swollen polymer weight (W) was measured, and this value was divided by the initial polymer weight (W 0 ) to obtain a value, that is, water absorption (g/g) = W/W 0 . Also, the water absorption rate is 5ml of physiological saline and 0.5ml of polymer.
It is also expressed as the time required for absorption of g. The present invention will be specifically explained below using Examples and Comparative Examples. The contents of acetyl groups, bityryl groups, and ethoxy groups in the cellulose ester or ether used here are as follows. Cellulose acetate butyrate (manufactured by Eastman Kodak Co., Ltd., trademark CAB381-20)...acetyl group content 13 wt%, butyryl group content 37 mt% Ethyl cellulose (manufactured by Hercules Co., Ltd., trademark ethyl cellulose N-200)...ethoxy group content
47.5-49.0wt% Example 1 In a 500ml four-neck round bottom flask equipped with a stirrer, reflux condenser, dropping funnel, and nitrogen gas inlet tube, 230ml of cyclohexane and 1.86g of ethylcellulose (manufactured by Hercules, trademark ethylcellulose N-200) were added. After charging, nitrogen gas was blown in to drive out dissolved oxygen, and the temperature was raised to 75°C. Separately, in a flask, while cooling 30g of acrylic acid from the outside, add 40g of ion-exchanged water.
Neutralized with 13.4 g of 98% caustic soda dissolved in
The monomer concentration in the aqueous phase was 45 wt%. Next, 0.1 g of potassium persulfate was added and dissolved, and then nitrogen gas was blown into the aqueous solution to remove oxygen present in the aqueous solution. The contents of this flask were added all at once to the four-necked flask and polymerized. After the polymerization was completed, the temperature was maintained at 75°C and the reaction was continued for 1 hour. Cyclohexane is distilled off under reduced pressure, and the remaining swollen polymer portion is
It was dried under reduced pressure at °C to obtain spherical particles with a center particle size of 100 to 350 μm. Example 2 The procedure was carried out in the same manner as in Example 1, except that 50 g of ion-exchanged water was used in the monomer aqueous solution portion. In other words, the monomer concentration in the aqueous phase was 40 wt%. Example 1 below
Spherical particles having a center particle diameter of 100 to 420 μm were obtained in the same manner as above. Example 3 The procedure was carried out in the same manner as in Example 1, except that 1.0 g of ethyl cellulose (manufactured by Hercules) was used as a protective colloid.
Trademark ethylcellulose N-22) was used. Thereafter, spherical particles having a center particle diameter of 100 to 450 μm were obtained in the same manner as in Example 1. Example 4 In the polymerization reactor of Example 1, 230 ml of hexane,
2.21 g of ethyl hydroxyethyl cellulose (manufactured by Hercules, trademark E.H.E.C.Low) was charged, and the temperature was raised to 65°C. On the other hand, in a flask, 26 g of acrylic acid and 4 g of 2-acrylamido-2methylpropanesulfonic acid were neutralized with 12.2 g of 98% caustic soda dissolved in 44 g of ion-exchanged water. Further, 0.1 g of ammonium persulfate was added and dissolved to form a monomer aqueous solution. The monomer concentration in the aqueous phase is approximately
It was 42wt%. Thereafter, the same procedure as in Example 1 was carried out to obtain spherical particles having a center particle diameter of 100 to 350 μm. Example 5 In the polymerization recipe of Example 4, in the monomer aqueous solution portion, 24 g of acrylic acid was neutralized with 10.2 g of 98% caustic soda dissolved in 50 g of ion-exchanged water, and then 6 g of acrylamide and 0.1 g of potassium persulfate were added. was added and dissolved to form a solution. The monomer concentration in the aqueous phase is
It was 40wt%. The following operations were carried out in the same manner as in Example 4,
Spherical particles with a center particle diameter of 100 to 300 μm were obtained. Example 6 230 ml of monochlorobenzene and 2.3 g of cellulose acetate butyrate were placed in the polymerization reactor of Example 1.
(Manufactured by Eastman Kodatsu, trademark CAB381-20)
was charged and the temperature was raised to 80°C. On the other hand, an aqueous monomer solution was prepared in a flask with 50 g of acrylamide, 50 g of ion-exchanged water, and 0.1 g of ammonium persulfate.
The monomer concentration in the aqueous phase was 50 wt%. The following operation was carried out in the same manner as in Example 1, and the central particle size was 100 to 250 μm.
spherical particles were obtained. Comparative Example 1 A water-insoluble spherical polymer was obtained according to Example 1 described in Japanese Patent Publication No. 54-30710. That is, sorbitan monostearate was used as a protective colloid. The center particle size of this product was 10 to 70 μm. Comparative Example 2 Polymerization was carried out using 1.86 g of sorbitan distearate as a protective colloid in the polymerization recipe of Example 2 to obtain a spherical polymer. The center particle size of this product was 10 to 70 μm. Comparative Example 3 A spherical polymer was obtained under the polymerization conditions of Example 1 using 2,2'-azobis-2-amidinopropane hydrochloride as an initiator. The central particle size of this material is 100~
Although it had a diameter of 350 μm, it dissolved in water and became a viscous aqueous solution. Comparative Example 4 A spherical polymer was obtained using a sodium acrylate aqueous solution diluted to a concentration of 30 wt % under the polymerization conditions of Example 1 as a monomer aqueous solution. This material had a central particle size of 100 to 350 μm, but dissolved in water to form a viscous aqueous solution. Table 1 shows the water absorption amount and water absorption rate of each polymer obtained in Examples 1 to 6 and Comparative Examples 1 to 4. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 架橋剤を含有しないアクリル酸、アクリル酸
塩、アクリルアミド及びN−置換アクリルアミド
から選ばれる水溶性エチレン性不飽和単量体の水
溶液を炭化水素又はハロゲン化芳香族炭化水素中
に分散・懸濁し、重合するに際し、保護コロイド
として重合温度で油溶性であるセルロースエステ
ル又はセルロースエーテルを使用するとともに、
重合開始剤として過硫酸塩を使用し、更に単量体
水溶液の濃度を40重量%〜飽和濃度の範囲内と
し、60℃以上の温度で重合して得られる水不溶性
ビーズ状自己架橋型吸水ポリマーからなる吸水材
料。
1. Dispersing and suspending an aqueous solution of a water-soluble ethylenically unsaturated monomer selected from acrylic acid, acrylate, acrylamide, and N-substituted acrylamide that does not contain a crosslinking agent in a hydrocarbon or halogenated aromatic hydrocarbon, During polymerization, a cellulose ester or cellulose ether that is oil-soluble at the polymerization temperature is used as a protective colloid, and
A water-insoluble bead-shaped self-crosslinking water-absorbing polymer obtained by polymerizing at a temperature of 60°C or higher using a persulfate as a polymerization initiator and adjusting the concentration of the monomer aqueous solution within the range of 40% by weight to saturated concentration. A water-absorbing material made of
JP4348981A 1981-03-25 1981-03-25 Production of bead-form self-crosslinking water-absorbing polymer Granted JPS57158210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4348981A JPS57158210A (en) 1981-03-25 1981-03-25 Production of bead-form self-crosslinking water-absorbing polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4348981A JPS57158210A (en) 1981-03-25 1981-03-25 Production of bead-form self-crosslinking water-absorbing polymer

Publications (2)

Publication Number Publication Date
JPS57158210A JPS57158210A (en) 1982-09-30
JPH0338288B2 true JPH0338288B2 (en) 1991-06-10

Family

ID=12665122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4348981A Granted JPS57158210A (en) 1981-03-25 1981-03-25 Production of bead-form self-crosslinking water-absorbing polymer

Country Status (1)

Country Link
JP (1) JPS57158210A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1256640A (en) * 1984-03-05 1989-06-27 Harumasa Yamasaki Absorptive material
JP5989650B2 (en) 2011-08-30 2016-09-07 住友精化株式会社 Water-absorbent resin production method and water-absorbent resin obtained thereby

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481391A (en) * 1977-12-13 1979-06-28 Mitsubishi Chem Ind Ltd Preparation of bead-like polymer
JPS54134794A (en) * 1978-04-11 1979-10-19 Mitsubishi Chem Ind Ltd Preparation of bead polymer
JPS557825A (en) * 1978-06-30 1980-01-21 Mitsubishi Chem Ind Ltd Preparation of water-soluble polymer beads

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481391A (en) * 1977-12-13 1979-06-28 Mitsubishi Chem Ind Ltd Preparation of bead-like polymer
JPS54134794A (en) * 1978-04-11 1979-10-19 Mitsubishi Chem Ind Ltd Preparation of bead polymer
JPS557825A (en) * 1978-06-30 1980-01-21 Mitsubishi Chem Ind Ltd Preparation of water-soluble polymer beads

Also Published As

Publication number Publication date
JPS57158210A (en) 1982-09-30

Similar Documents

Publication Publication Date Title
US4446261A (en) Process for preparation of high water-absorbent polymer beads
KR890002561B1 (en) Method for preparing hygroscopic resin
CA1190914A (en) Process for producing water-absorbent materials having excellent water absorption properties
JP3900538B2 (en) Water-absorbing polymer with improved properties, process for its production and use thereof
US4340706A (en) Alkali metal acrylate or ammonium acrylate polymer excellent in salt solution-absorbency and process for producing same
JP3155294B2 (en) Method for producing superabsorbent polymer
JPWO2007004529A1 (en) Method for producing water absorbent resin
JPS634843B2 (en)
JPS61108602A (en) Dispersion stabilizer for suspension polymerization of vinyl compound
JPH078882B2 (en) Manufacturing method of highly water-absorbent resin with excellent durability
US5621055A (en) Process for producing polymer particles with irregular shape
JPH04501877A (en) Manufacturing method of super absorbent resin
JPH082929B2 (en) Method for producing superabsorbent polyacrylate with low residual monomer content
JPH03195713A (en) Production of polymer having high water absorption
JPH0374241B2 (en)
JPH1045812A (en) Production of fiber-containing water absorbing resin
JPH0338288B2 (en)
JPS6343930A (en) Production of highly water-absorptive polymer
JPH03195709A (en) Production of polymer having high water absorption
JP3827354B2 (en) Method for producing superabsorbent polymer
JPS6215213A (en) Production of highly water absorbing resin having high water absorption rate
JP2967952B2 (en) Method for producing porous polymer
JPH0629299B2 (en) Method for producing beaded super absorbent polymer
JP2721658B2 (en) Method for producing polymer particles
JPS601204A (en) Production of highly water-absorptive resin