JPH0337994A - Organic thin film luminous element - Google Patents

Organic thin film luminous element

Info

Publication number
JPH0337994A
JPH0337994A JP1170063A JP17006389A JPH0337994A JP H0337994 A JPH0337994 A JP H0337994A JP 1170063 A JP1170063 A JP 1170063A JP 17006389 A JP17006389 A JP 17006389A JP H0337994 A JPH0337994 A JP H0337994A
Authority
JP
Japan
Prior art keywords
thin film
electrodes
organic thin
xinx
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1170063A
Other languages
Japanese (ja)
Inventor
Masayasu Ishiko
雅康 石子
Keiji Nunomura
布村 恵史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1170063A priority Critical patent/JPH0337994A/en
Publication of JPH0337994A publication Critical patent/JPH0337994A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain electrodes low in the deterioration of luminous characteristics and allowing formation with good repeatability by applying the chemical composition of Mg1-xInx(0.01<=x<=0.13) to one of the electrodes. CONSTITUTION:In an organic thin film luminous element made of a pair of electrodes 2 and 5 with at least one thereof transparent and clamping a luminous layer 4 made of one or more organic phosphors, the chemical composition of one 5 of the electrodes is Mg1-xInx(0.01<=x<=0.13). For film formation on the Mg1-xInx electrode, a co-deposition process may be used, but a normal vacuum deposition process can also be applied, using an alloy pellet. A slight deviation appears between the compositions of the pellet as a source and a formed alloy electrode film, but not so remarkable as in the case of magnesium and silver. Also, deposition controllability is substantially better than in the case of the co-deposition process, and excellent repeatability and uniformity are available. The Mg1-xInx cathode shows stable characteristics in the atmosphere.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は平面光源やデイスプレィに使用される有機薄膜
発光素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an organic thin film light emitting device used for flat light sources and displays.

(従来の技術) 有機物質を原料としたEL(電界発光)素子は、その豊
富な材料数と分子レベルの合成技術で、安価な大面積フ
ィルム状フルカラー表示素子を実現するものとして注目
を集めている。例えばアントラセンやペリレン等縮合多
環芳香族系を原料とじてLB法や真空蒸着法等で薄膜化
した直流駆動の有機薄膜発光素子が製造され、その発光
特性が研究されている。更に、最近有機薄膜を2層構造
にした新しいタイプの有機薄膜発光素子が報告され、強
い関心を集めている(アプライド・フィジクス、レター
ズ、第51巻、913ページ、1987年)。第2図に
示すように強い蛍光を発する金属キレート化合物を発光
層24にアミン系材料を正札伝導性有機物の正孔注入層
23に使用して明るい緑色発光を得たと報告している。
(Conventional technology) EL (electroluminescent) devices made from organic materials are attracting attention as a means of realizing inexpensive large-area film-like full-color display devices due to their abundant materials and molecular-level synthesis technology. There is. For example, DC-driven organic thin-film light-emitting devices have been produced using fused polycyclic aromatic systems such as anthracene and perylene as raw materials and made into thin films by the LB method, vacuum evaporation method, etc., and their light-emitting characteristics have been studied. Furthermore, a new type of organic thin film light emitting device having a two-layer organic thin film structure has recently been reported and is attracting strong interest (Applied Physics Letters, Vol. 51, p. 913, 1987). As shown in FIG. 2, it has been reported that bright green light was obtained by using a metal chelate compound that emits strong fluorescence in the light emitting layer 24 and an amine material in the hole injection layer 23 of a conductive organic material on the front plate.

最後に金属の陰極25を蒸着して有機薄膜EL素子が完
成する。6〜7■の直流印加で数100cd/m2の輝
度を得ている。最大発光効率は1.51m/Wと、実用
レベルに近い性能を持っている。
Finally, a metal cathode 25 is deposited to complete the organic thin film EL device. A brightness of several 100 cd/m2 was obtained by applying a direct current of 6 to 7 cm. The maximum luminous efficiency is 1.51m/W, which is close to the practical level.

この有機薄膜発光素子の発光層24への電荷注入を容易
にするためにできるだけ低い仕事関数をもつ金属を陰極
25として使用することがよく、その点でマグネシウム
はたいへん優れている。付着率の小さなマグネシウム蒸
着の困難性も、fa’ftの銀を共蒸着法で添加するこ
とでマグネシウム単独の場合より電極が均一に形成でき
るようになる。添加する銀は少なすぎると効果がなく、
また多すぎると仕事関数の増加をもたらし好ましくない
。通常は10原子%程度の銀を添加している。
In order to facilitate charge injection into the light-emitting layer 24 of this organic thin-film light-emitting device, a metal having a work function as low as possible is often used as the cathode 25, and magnesium is excellent in this respect. Although it is difficult to deposit magnesium due to a small deposition rate, by adding fa'ft silver by co-evaporation method, it becomes possible to form an electrode more uniformly than when magnesium is used alone. Adding too little silver will have no effect;
Moreover, if it is too large, the work function will increase, which is undesirable. Usually about 10 atom % of silver is added.

(本発明が解決しようとしてる課題) しかし、従来の有機薄膜発光素子のように、共蒸着法で
マグネシウムに銀が10原子%程度入ったマグネシウム
・銀陰極を形成することは困難であった。これは、マグ
ネシウムは蒸気圧が比較的高く、昇華性であるために、
マグネシウムの蒸発速度を一定に制御することは困難で
、再現性よく均一な組成にすることができないためであ
った。その結果、再現性よく大気中でも長時間安定な電
極を製造することは困難であった。
(Problems to be Solved by the Present Invention) However, it has been difficult to form a magnesium/silver cathode in which about 10 atomic % of silver is contained in magnesium by a co-evaporation method, as in conventional organic thin film light emitting devices. This is because magnesium has a relatively high vapor pressure and is sublimable.
This is because it is difficult to control the evaporation rate of magnesium at a constant rate, and it is not possible to obtain a uniform composition with good reproducibility. As a result, it has been difficult to produce electrodes that are stable for long periods of time even in the atmosphere with good reproducibility.

蒸発源が一つであれば蒸着制御が比較的容易になるが、
マグネシウムに銀は殆ど固溶しないため、強引にマグネ
シウム・銀(10原子%)ペレットを作っても蒸着中に
組成ずれが生じ、安定して再現性よく電極を形成するこ
とは困難であった。
If there is only one evaporation source, it will be relatively easy to control the evaporation, but
Since silver hardly dissolves in solid solution in magnesium, even if magnesium/silver (10 atomic %) pellets were forcibly made, compositional deviations occurred during vapor deposition, making it difficult to form electrodes stably and with good reproducibility.

更に、従来の陰極は大気中で容易に酸化し、その結果素
子の発光特性劣化の加速、不均一な発光を招いていた。
Furthermore, conventional cathodes are easily oxidized in the atmosphere, resulting in accelerated deterioration of the light emitting characteristics of the device and non-uniform light emission.

劣化速度を低下させ、かつ再現性も含め安定した#、極
金金属形成がこの有機薄膜発光素子の実用化の上で極め
て重要である。しかし、従来の技術ではこれらの問題解
決が困難であった。
It is extremely important to reduce the rate of deterioration and to form a stable #, ultra-gold metal, including reproducibility, for the practical application of this organic thin film light emitting device. However, it has been difficult to solve these problems with conventional techniques.

本発明の目的は、発光特性の劣化が小さく再現性よく形
成できる電極を備えた有機薄膜発光素子を提供すること
にある。
An object of the present invention is to provide an organic thin film light-emitting element having electrodes that can be formed with good reproducibility and less deterioration in light-emitting characteristics.

(課題を解決するための手段) 前述の課題を解決するために本発明が提供する手段は、
少なくとも一方が透明である一対の電極間に少なくとも
1以上の有機蛍光体よりなる発光層を挟持してなる有機
薄膜発光素子に於て、前記電極の一方がMg1−、In
x(0,01≦x≦0.13)であることを特徴とした
有機薄膜発光素子である。
(Means for Solving the Problems) Means provided by the present invention to solve the above-mentioned problems are as follows:
In an organic thin film light emitting device in which a light emitting layer made of at least one organic phosphor is sandwiched between a pair of electrodes, at least one of which is transparent, one of the electrodes is made of Mg1-, In.
This is an organic thin film light emitting device characterized by x (0,01≦x≦0.13).

(作用) 従来の有機薄膜発光素子のように、共蒸着でマグネシウ
ム・銀陰極を使用した場合、再現性よく大気中でも長時
間安定な電極を製造することは困難であった。上記の問
題の主要な原因は、マグネシウムが昇華性で蒸気圧が高
いこと、蒸着膜が化学的に不安定なこと、マグネシウム
に銀が均一に入らないことである。一方、マグネシウム
蒸着膜の化学的不安定さは適当な合金化でかなり解決で
きることが分かっている。そこで、陰極材料として優れ
ているマグネシウムの長所を損なわず、蒸着がしやすく
、化学的にも安定な、マグネシウム・銀に変わる金属を
探索した。金属としては付着率が高く、低仕事関数でか
つマグネシウムと合金が形成できるものがよい。その結
果、Mg1−xInx(0,01≦x≦0.13)が有
機薄膜発光素子の陰極として優れた性質をもつことを見
いだし、本発明となった。
(Function) When a magnesium/silver cathode is used by co-evaporation as in conventional organic thin film light emitting devices, it is difficult to produce an electrode that is stable for a long time even in the atmosphere with good reproducibility. The main causes of the above problems are that magnesium is sublimable and has a high vapor pressure, that the deposited film is chemically unstable, and that silver does not uniformly enter magnesium. On the other hand, it has been found that the chemical instability of deposited magnesium films can be largely resolved by appropriate alloying. Therefore, we searched for a metal that would be easy to vapor deposit and chemically stable, as an alternative to magnesium and silver, without sacrificing the advantages of magnesium, which is an excellent cathode material. The metal preferably has a high adhesion rate, a low work function, and can form an alloy with magnesium. As a result, it was discovered that Mg1-xInx (0,01≦x≦0.13) has excellent properties as a cathode of an organic thin film light emitting device, resulting in the present invention.

Mg1−xInx(0,01≦x≦0.13)電極の成
膜には共蒸着法でも良いが合金ベレットによる通常の真
空蒸着でも良い。ソースとなるベレットと成膜された合
金電極膜の組成には若干のずれが生じるものの、マグネ
シウム・銀はどでなく、かつ蒸着制御性も共蒸着法に比
べ格段によい。また、再現性、均一性に優れていた。仕
事関数はマグネシウム・銀とほぼ同じで、有機薄膜発光
素子の発光特性を低下させることはなかった。更に、M
g1−xIn!陰極は大気中でも安定した特性を示して
いた。これは、マグネシウムとインジウムが合金を形威
し、緻密で均一な膜であるためであると考えられる。
The Mg1-xInx (0,01≦x≦0.13) electrode may be formed by co-evaporation, or by ordinary vacuum evaporation using an alloy pellet. Although there is a slight difference in composition between the pellet serving as the source and the alloy electrode film formed, magnesium and silver are not included, and the vapor deposition controllability is much better than that of the co-evaporation method. Furthermore, the reproducibility and uniformity were excellent. Its work function was almost the same as that of magnesium and silver, and it did not deteriorate the light-emitting characteristics of organic thin-film light-emitting devices. Furthermore, M
g1-xIn! The cathode showed stable characteristics even in the atmosphere. This is thought to be because magnesium and indium form an alloy, resulting in a dense and uniform film.

Mg1−xInx(0,01≦x≦0.13)電極はス
パッタ法で形成すれば、組成のずれは少ない密な電極が
できる。コレモ、電子ビーム蒸着で形成したものと同じ
く大気中でも安定した特性を示していた。
If the Mg1-xInx (0,01≦x≦0.13) electrode is formed by sputtering, a dense electrode with less deviation in composition can be obtained. Like those formed by electron beam evaporation, the material exhibited stable properties even in the atmosphere.

このように、Mg1−xInx(0,01≦x≦0.1
3)を蒸着源に使用して陰極を形成すれば、従来の電極
に関する問題を解決することができた。
In this way, Mg1-xInx (0,01≦x≦0.1
3) was used as a deposition source to form a cathode, the problems associated with conventional electrodes could be solved.

(実施例) 以下実施例を以て、本発明の詳細な説明する。(Example) The present invention will be explained in detail below with reference to Examples.

(実施例1) 第1図に示すようにガラス基板1上にITO透明電極2
を形成してがらポリ(メチルフェニルシリレン)約60
重量%にN、 N、 N’、 N’−テトラフェニル−
4,4′−ジアミノビフェニルを約40重量%混合した
ポリシリレンからなる有機正孔注入層3を1000人、
トルエン溶媒を使用したデイツプコーティング法で形成
した。充分乾燥させたのち、発光層4として有機発光体
トリス(8−ハイドロキシキノリン)アルミニウムを6
00A真空蒸着法で形成した。蒸着中基板加熱は行わず
、真空度10−6[torr]台であった。最後にMg
とInが10=1で混合した合金ベレットを用いて背面
金属電極5を電子ビーム蒸着法で1500A形威して有
機薄膜発光素子が完成する。真空度は10−6[tor
r1台であった。
(Example 1) As shown in FIG. 1, an ITO transparent electrode 2 was placed on a glass substrate 1.
While forming poly(methylphenylsilylene) about 60
N, N, N', N'-tetraphenyl- in weight%
An organic hole injection layer 3 made of polysilylene mixed with about 40% by weight of 4,4'-diaminobiphenyl was prepared by 1000 people.
It was formed by dip coating method using toluene solvent. After sufficiently drying, the organic luminescent material tris(8-hydroxyquinoline) aluminum was added as the luminescent layer 4.
It was formed using the 00A vacuum evaporation method. The substrate was not heated during vapor deposition, and the degree of vacuum was on the order of 10-6 [torr]. Finally, Mg
The back metal electrode 5 is formed into a 1500A shape by electron beam evaporation using an alloy pellet containing a mixture of In and In in a ratio of 10=1 to complete an organic thin film light emitting device. The degree of vacuum is 10-6 [torr]
There was one r.

この素子の発光特性を乾燥窒素中で測定したところ、約
8■の直流電圧の印加で300cd/m2の緑色の発光
が得られた。この有機薄膜発光素子を電流密度0.5m
A/am2の状態でエージング試験をしたところ輝度半
減時間は1000時間以上であった。従来の素子では1
00から300時間であったから、この素子の信頼性は
大幅に改善されている。
When the luminescent properties of this element were measured in dry nitrogen, green luminescence of 300 cd/m2 was obtained by applying a DC voltage of about 8 cm. This organic thin film light-emitting element is used at a current density of 0.5 m.
When an aging test was conducted under the condition of A/am2, the luminance half-life was over 1000 hours. In conventional elements, 1
00 to 300 hours, the reliability of this device is significantly improved.

本発明はトリス(8−ハイドロキシキノリン)アルミニ
ウム有機蛍光体ばかりでなく、アントラセン、ピレン、
テトラセン、スチルベン、ペリレン、キノン、フェナン
スレン、ナフタン誘導体等、外の有機物でも同様な効果
が認められた。また、この有機蛍光体に10−5から1
0−2mo1程度のローダミン、シアン、ピクン、クマ
リン、フルオレン、POPOP等、他の蛍光の強い有機
分子を更に添加I7て、各種の発光色を得ることができ
る。透明電極はITO以外にZnO:Alや5n02:
Sb、 Auなどでもよい。
The present invention applies not only to tris(8-hydroxyquinoline)aluminum organic phosphors but also to anthracene, pyrene,
Similar effects were also observed with other organic substances such as tetracene, stilbene, perylene, quinone, phenanthrene, and naphthane derivatives. In addition, this organic phosphor has 10-5 to 1
By further adding other highly fluorescent organic molecules such as rhodamine, cyan, picun, coumarin, fluorene, POPOP, etc. in an amount of about 0-2 mo1, various luminescent colors can be obtained. In addition to ITO, the transparent electrode is made of ZnO:Al or 5n02:
Sb, Au, etc. may also be used.

マグネシウムに混入させるインジウムは10原子%程度
が適当であった。インジウムが13原子%以上であると
完全固溶とならず均一な組成とならない。また、インジ
ウムの量が1原子%より少ないと大気中で容易に酸化さ
れ易くなり、安定した特性を示さなくなる。
Appropriate amount of indium to be mixed into magnesium was about 10 atomic %. If indium is 13 atomic % or more, it will not be a complete solid solution and a uniform composition will not be obtained. Furthermore, if the amount of indium is less than 1 atomic %, it will be easily oxidized in the atmosphere and will not exhibit stable characteristics.

(実施例2) トリツエルニアミンと12−フタロペリノンを1O−6
1torr1台の真空中で、連続してそれぞれ750A
 。
(Example 2) Tritzelniamine and 12-phthaloperinone at 1O-6
Continuously 750A each in a vacuum of 1torr
.

800A程度抵抗加熱による真空蒸着で形成する。その
後マグネシウム・インジウム合金(In13原子%)の
ターゲットを使用して陰極をRFスパッタ法で形成する
。膜厚はおよそ150OA程度である。この方法で陰極
を形成した場合、密着性のよい膜が形成でき、素子の安
定性の向上、輝度劣化速度の低下などが認められた。
It is formed by vacuum evaporation using resistance heating of about 800A. Thereafter, a cathode is formed by RF sputtering using a target of magnesium-indium alloy (In: 13 atomic %). The film thickness is approximately 150 OA. When the cathode was formed using this method, a film with good adhesion could be formed, and it was observed that the stability of the device was improved and the rate of brightness deterioration was reduced.

(発明の効果) 以上説明したように本発明により信頼性を大幅に改善す
ることができた。
(Effects of the Invention) As explained above, the reliability could be significantly improved by the present invention.

本発明により得られる効果は、 ■大気中に保管しても劣化の少ない素子を提供する。The effects obtained by the present invention are as follows: ■Provide an element that exhibits little deterioration even when stored in the atmosphere.

■従来、マグネシウムの真空蒸着法で困雑であった蒸着
制御性を大幅に向上させた。
■ Vapor deposition controllability, which was difficult with conventional vacuum evaporation methods for magnesium, has been significantly improved.

■素子特性の安定性、再現性を従来のものより高めるこ
とができた。
■We were able to improve the stability and reproducibility of device characteristics compared to conventional ones.

このように、本発明により実用レベルの低電圧直流駆動
薄膜発光素子を提供でき、その工業的価値は高い。
As described above, the present invention makes it possible to provide a practical level low voltage direct current driven thin film light emitting device, which has high industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に使用した有機薄膜発光素子の
断面構造を示す。 第2図は従来の有機薄膜発光素子の断面構造を示してい
る。 1.22・・・ガラス基板、2,22・・・ITO透明
電極、3.23−1.有機正孔注入層、24,4・・・
発光層、25・・・背面電極、5・・・Mg:In合金
FIG. 1 shows a cross-sectional structure of an organic thin film light emitting device used in an example of the present invention. FIG. 2 shows a cross-sectional structure of a conventional organic thin film light emitting device. 1.22...Glass substrate, 2,22...ITO transparent electrode, 3.23-1. Organic hole injection layer, 24,4...
Light emitting layer, 25... Back electrode, 5... Mg:In alloy.

Claims (1)

【特許請求の範囲】[Claims]  少なくとも一方が透明である一対の電極間に少なくと
も1以上の有機蛍光体よりなる発光層を挟持してなる有
機薄膜発光素子において、前記電極の一方がMg_1_
−_xIn_x(0.01≦x≦0.13)であること
を特徴とした有機薄膜発光素子。
In an organic thin film light-emitting element in which a light-emitting layer made of at least one organic phosphor is sandwiched between a pair of electrodes, at least one of which is transparent, one of the electrodes is Mg_1_
An organic thin film light emitting device characterized in that -_xIn_x (0.01≦x≦0.13).
JP1170063A 1989-06-30 1989-06-30 Organic thin film luminous element Pending JPH0337994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1170063A JPH0337994A (en) 1989-06-30 1989-06-30 Organic thin film luminous element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1170063A JPH0337994A (en) 1989-06-30 1989-06-30 Organic thin film luminous element

Publications (1)

Publication Number Publication Date
JPH0337994A true JPH0337994A (en) 1991-02-19

Family

ID=15897945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1170063A Pending JPH0337994A (en) 1989-06-30 1989-06-30 Organic thin film luminous element

Country Status (1)

Country Link
JP (1) JPH0337994A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262461A (en) * 1988-03-30 1989-10-19 Cambridge Life Sci Plc Concentration measuring apparatus
JPH05174975A (en) * 1991-10-16 1993-07-13 Fuji Electric Co Ltd Organic thin film luminous element
JPH05283169A (en) * 1992-03-31 1993-10-29 Toppan Printing Co Ltd Organic thin-film el element
JPH07116643A (en) * 1993-10-22 1995-05-09 Kyowa Gijiyutsukenkiyuushiyo:Kk Treatment of water bloom of lakes and marshes or pond
JPH07288185A (en) * 1994-04-20 1995-10-31 Dainippon Printing Co Ltd Organic thin film electroluminescent (el) element
US6280860B1 (en) 1997-09-29 2001-08-28 Minolta Co., Ltd. Organic electroluminescent element
US6395409B2 (en) 1997-09-29 2002-05-28 Minolta Co., Ltd. Organic electroluminescent element
US6420055B1 (en) 1997-09-30 2002-07-16 Minolta Co., Ltd. Organic electroluminescent element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262461A (en) * 1988-03-30 1989-10-19 Cambridge Life Sci Plc Concentration measuring apparatus
JPH05174975A (en) * 1991-10-16 1993-07-13 Fuji Electric Co Ltd Organic thin film luminous element
JPH05283169A (en) * 1992-03-31 1993-10-29 Toppan Printing Co Ltd Organic thin-film el element
JPH07116643A (en) * 1993-10-22 1995-05-09 Kyowa Gijiyutsukenkiyuushiyo:Kk Treatment of water bloom of lakes and marshes or pond
JPH07288185A (en) * 1994-04-20 1995-10-31 Dainippon Printing Co Ltd Organic thin film electroluminescent (el) element
US6280860B1 (en) 1997-09-29 2001-08-28 Minolta Co., Ltd. Organic electroluminescent element
US6395409B2 (en) 1997-09-29 2002-05-28 Minolta Co., Ltd. Organic electroluminescent element
US6420055B1 (en) 1997-09-30 2002-07-16 Minolta Co., Ltd. Organic electroluminescent element

Similar Documents

Publication Publication Date Title
JP2879080B2 (en) EL device
JP2926845B2 (en) Organic thin film EL device
JPH02204996A (en) Organic film type el element
KR100377575B1 (en) A blue luiminiscence compound for organic electroluminscene device and the organic electroluminscene device using the same
JPH03114197A (en) Organic thin-film el element
JPH07312290A (en) Organic thin film el element
JP2797905B2 (en) Organic thin film EL device
JPH02305886A (en) Organic thin-film el element
JP2697120B2 (en) Thin film light emitting device and method of manufacturing the same
JPH04304466A (en) Organic thin-film light emitting element
JPH05182762A (en) Organic thin film luminous element
JPH04363896A (en) Organic film electroluminescence element and its manufacture
US20040214034A1 (en) Organic thin-film el device
JPH0337994A (en) Organic thin film luminous element
JPH0812967A (en) Organic electroluminescent element
JPH02289675A (en) Electric field light emitting element
JPH05320633A (en) Organic electroluminescent element
JPH02251429A (en) Transparent conductive film
JPH0419993A (en) Thin organic film luminescent element and manufacture thereof
JP3170976B2 (en) Organic thin film light emitting device
JP2001043976A (en) Organic electroluminescent element
JPH09194831A (en) Organic thin-film el element
JPH0860145A (en) Organic electroluminescent element
JP3033317B2 (en) Organic thin film light emitting device
JPH0633047A (en) Organic thin film luminescent element