JPH0337519A - Method and apparatus for detecting position - Google Patents

Method and apparatus for detecting position

Info

Publication number
JPH0337519A
JPH0337519A JP1172610A JP17261089A JPH0337519A JP H0337519 A JPH0337519 A JP H0337519A JP 1172610 A JP1172610 A JP 1172610A JP 17261089 A JP17261089 A JP 17261089A JP H0337519 A JPH0337519 A JP H0337519A
Authority
JP
Japan
Prior art keywords
signals
elements
phase difference
sine
output signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1172610A
Other languages
Japanese (ja)
Inventor
Kouichi Yamanoue
耕一 山野上
Minoru Yokota
稔 横田
Joji Nakamura
錠治 中村
Shinichi Konakano
信一 向中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP1172610A priority Critical patent/JPH0337519A/en
Priority to DE4021105A priority patent/DE4021105A1/en
Publication of JPH0337519A publication Critical patent/JPH0337519A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • G01D18/001Calibrating encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/2448Correction of gain, threshold, offset or phase control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/2449Error correction using hard-stored calibration data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To obtain two-phase sine waves whose accuracy is positively improved and to enhance the accuracy in detecting the position of a moving body by directly taking fundamental wave components out of electric signals outputted from a plurality of detecting elements. CONSTITUTION:A constant voltage power source is supplied from the outside through a wiring harness 109, and a rotor 103 is rotated together with a rotary shaft 102. Then, six-phase wave signals are outputted from Hall elements 21a - 21f. When the intervals between the rotor 103 and the elements 21a - 21f are sufficiently far, the waveforms from the elements 21f - 21f become multi phase sine waves whose phases are shifted by 60 degrees. The output signals from the elements 21a - 21f undergo operations in weighting and adding circuits and subtracting circuits. The output signals from the elements 21a - 21f are multiplied by the sine coefficients and the cosine coefficients based on the phase differences of the respective output signals, and the results are added. Thus, the fundamental wave components of the output signals from the elements 21a - 21f are taken out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、回転運動や直進運動を行う移動体の位置を検
出する位置検出方法及びその装置に関す〔従来の技術〕 従来より、磁気式又は光学式エンコーダからの位相差9
0度の2つの正弦波信号に基づき、回転運動或いは直進
運動を行う移動体の位置を検出する位置検出装置が知ら
れている。この位置検出装置においては、移動体の位置
検出の精度が2つの正弦波信号の精度に左右される。こ
のため、例えば特開昭63−225124号公報におい
ては、回転運動を行う移動体としての磁気媒体の偏心等
により磁気媒体と磁気センサとの間隔が変化して、磁気
センサから出力される信号の振幅が変化したり、歪んだ
りした場合にも、高精度な正弦波信号を作成することが
可能な位置検出装置が示されている。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a position detection method and device for detecting the position of a moving body that performs rotational motion or linear motion [Prior Art] Conventionally, magnetic type Or phase difference 9 from optical encoder
2. Description of the Related Art A position detection device is known that detects the position of a moving body that performs rotational motion or linear motion based on two 0 degree sine wave signals. In this position detection device, the accuracy of position detection of a moving body depends on the accuracy of two sine wave signals. For this reason, for example, in Japanese Patent Application Laid-Open No. 63-225124, the distance between the magnetic medium and the magnetic sensor changes due to the eccentricity of the magnetic medium as a moving body that performs rotational motion, and the signal output from the magnetic sensor changes. A position detection device is shown that is capable of creating a highly accurate sinusoidal signal even when the amplitude changes or is distorted.

〔発明が解決しようとする課題] しかしながら、上記の位置検出装置においては、出力基
本波に対する高調波成分が互いに逆位相で相殺される位
相となるように磁気抵抗効果素子群を複数郡設け、正弦
波形を有する基本波成分のみを取り出すように構成され
ている。このため、磁気抵抗効果素子を特殊なピッチで
精度良く取り付ける必要があるとともに、高調波成分の
減衰によって出力基本波を得ているので、精度を向上さ
せるためには非常に高い次数までの高調波成分を取り除
かなければならず、現実的には非常に難しい。
[Problems to be Solved by the Invention] However, in the above-mentioned position detection device, a plurality of magnetoresistive element groups are provided so that the harmonic components with respect to the output fundamental wave are in opposite phases and cancel each other out. It is configured to extract only the fundamental wave component having a waveform. For this reason, it is necessary to install magnetoresistive elements with high precision at a special pitch, and the output fundamental wave is obtained by attenuating harmonic components. The ingredients must be removed, which is extremely difficult in practice.

本発明は上記の点に鑑みてなされたもので、各検出素子
から出力された信号より直接払本波成分を抽出すること
により確実に2相正弦波の精度を向上させ、これにより
位置検出の精度か向上した位置検出方法及びその位置を
提供することを目的とする。
The present invention has been made in view of the above points, and it reliably improves the accuracy of two-phase sine waves by extracting the fundamental wave component directly from the signal output from each detection element, thereby improving position detection. It is an object of the present invention to provide a position detection method and its position with improved accuracy.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明による位置検出方法
及びその装置は、 移動体と固定体とを有し、前記移動体の位置に応じた9
0度の位相差を有する2つの正弦波信号を生威し、これ
らの正弦波信号を用いて前記移動体の位置を検出する位
置検出装置において前記移動体と前記固定体とのいずれ
か一方に配設されるとともに、所定間隔ごとに逆極性に
着磁された複数の磁極を有する多極磁石と、前記多極磁
石と対向して前記移動体と前記固定体のいずれか一方に
配置され、前記多極磁石による磁界を検出し電気信号に
変換する複数の検出素子と、 前記複数の検出素子から出ノjされた電気信号に対して
、これらの電気信号の位相差に基づく正弦係数および余
弦係数を乗じて、これらをそれぞれ加算することにより
前記90度の位相差を有する2つの正弦波信号を算出す
る算出手段とを備える。
In order to achieve the above object, a position detection method and a device thereof according to the present invention include a movable body and a fixed body, and a position detection method according to the position of the movable body.
In a position detection device that generates two sine wave signals having a phase difference of 0 degrees and detects the position of the movable body using these sine wave signals, a multipolar magnet having a plurality of magnetic poles magnetized with opposite polarities at predetermined intervals; and a multipolar magnet disposed opposite to the multipolar magnet on either the moving body or the fixed body; a plurality of detection elements that detect the magnetic field generated by the multipolar magnet and convert it into an electric signal; and a sine coefficient and a cosine of the electric signals outputted from the plurality of detection elements based on the phase difference of these electric signals. and calculation means for calculating the two sine wave signals having the 90 degree phase difference by multiplying by coefficients and adding these, respectively.

〔作用〕[Effect]

本発明は上記した構成により、移動体の移動に伴って各
検出素子から周期的な電気信号が出力される。これらの
電気信号に対して、各電気信号の位相差に基づく正弦係
数および余弦係数を乗じ、さらに正弦係数を乗じた信号
および余弦係数を乗じた信号をそれぞれ加算する。この
ような処理は、各検出素子の出力信号より得られる磁束
密度分布に対して離散的フーリエ変換を行い、基本波成
分を求めたことと等価である。このため、各検出素子か
ら出力された信号より直接基本波成分を抽出することが
でき、2相正弦波の精度を向上させることができる。
With the above-described configuration, the present invention outputs periodic electrical signals from each detection element as the moving object moves. These electrical signals are multiplied by a sine coefficient and a cosine coefficient based on the phase difference of each electrical signal, and a signal multiplied by the sine coefficient and a signal multiplied by the cosine coefficient are added, respectively. Such processing is equivalent to performing discrete Fourier transform on the magnetic flux density distribution obtained from the output signal of each detection element to obtain the fundamental wave component. Therefore, the fundamental wave component can be directly extracted from the signal output from each detection element, and the accuracy of the two-phase sine wave can be improved.

[実施例] 以下本発明の位置検出装置について、第1の実施例の構
成を図面に従って説明する。
[Embodiment] The configuration of a first embodiment of the position detection device of the present invention will be described below with reference to the drawings.

第3図において、101は下端面のみが開放された金属
製、例えばアルくニウムよりなる円筒形のハウジングで
ある。このハウジング101の上面中央部には、銅系金
属より成る、ドーナツ形の軸受け100が圧入されてい
る。
In FIG. 3, reference numeral 101 is a cylindrical housing made of metal, for example, aluminum, with only the lower end surface open. A donut-shaped bearing 100 made of copper-based metal is press-fitted into the center of the upper surface of the housing 101.

この軸受け100の中央部の穴には、金属製の回転軸1
02が回転可能な状態で挿入されている。
A metal rotating shaft 1 is inserted into the hole in the center of this bearing 100.
02 is inserted in a rotatable state.

そして、ハウジング101の内側には、回転軸102に
対して直角に固定したロータ103が設けられている。
A rotor 103 fixed at right angles to the rotating shaft 102 is provided inside the housing 101.

このロータ103の外側円周上に、等しいピッチで交互
に逆極性の磁極が形成された例えばフェライトより威る
多極磁石工が圧入又は接着されている。
On the outer circumference of the rotor 103, a multi-pole magnet, which is more powerful than ferrite, in which magnetic poles of opposite polarity are alternately formed at equal pitches, is press-fitted or bonded.

さらに、ハウジング101の内側にはロータ103に対
向し、かつロータ103と平行に回路基板104が固定
された状態で配設されている。この回路基板104の外
側端部で、ロータ103と対向する面上に、ロータ10
3上の多極磁石1における直径方向の幅に対して中心付
近と一致する位置に6個のホール素子21a〜21fよ
りなるホール素子アレー21が設けられている。また、
このホール素子アレー21を形成する各ホール素子21
a 〜21fは、それぞれ回If!、基板64の面に対
して垂直方向の磁束を検出するように配置されている。
Further, a circuit board 104 is fixedly disposed inside the housing 101, facing the rotor 103 and parallel to the rotor 103. At the outer end of this circuit board 104, a rotor 10 is placed on the surface facing the rotor 103.
A Hall element array 21 consisting of six Hall elements 21a to 21f is provided at a position that coincides with the center of the multipolar magnet 1 on the diametrical width thereof. Also,
Each Hall element 21 forming this Hall element array 21
a to 21f are times If! , are arranged to detect magnetic flux in a direction perpendicular to the surface of the substrate 64.

なおホール素子アレー21の検出面とロータ103上の
多極磁石1とのすきまは約0.5mmとなるように、ハ
ウジング101の内側に設けた突出部110によって回
路基板104を位置決めしである。
Note that the circuit board 104 is positioned by the protrusion 110 provided inside the housing 101 so that the gap between the detection surface of the Hall element array 21 and the multipolar magnet 1 on the rotor 103 is about 0.5 mm.

ここで、ロータ103の多極磁石lと、ホール素子アレ
ー21との配置状態を第1図に示す。第1図において、
移動体である多極磁石1の磁極ピッチlを6個のホール
素子21a〜21fにて等間隔に区分するようにホール
素子アレー21が配置される。
Here, the arrangement of the multipolar magnet l of the rotor 103 and the Hall element array 21 is shown in FIG. In Figure 1,
The Hall element array 21 is arranged so that the magnetic pole pitch l of the multipolar magnet 1, which is a moving body, is divided into six Hall elements 21a to 21f at equal intervals.

本実施例では、多極磁石1の磁石幅の中心円形が22+
+++nであり、かつ多極磁石1は20極の磁極(N極
X20.S極×20)を持つ構成である。
In this embodiment, the center circle of the magnet width of the multipolar magnet 1 is 22+
+++n, and the multipolar magnet 1 has a configuration of 20 magnetic poles (N pole x 20, S pole x 20).

また、多極磁石1の磁極ピッ千iが約3.46 mmで
あるのに対して、6個のホール素子が、0.58 mm
間隔で磁石幅の中心円に沿って、円弧状に配置されてい
る。
Furthermore, while the magnetic pole pitch of the multipolar magnet 1 is approximately 3.46 mm, the six Hall elements are approximately 0.58 mm.
They are arranged in an arc shape along the center circle of the magnet width at intervals.

ハウジング101の下端面は、ハウジング101の内側
に接するカバー105によって閉塞される。そして、こ
のカバー105とハウジング101の突出部110とに
よって回路基板104が挟持される。また、カバー10
5の中心部には穴部が設けられており、コードブシュ1
07がこの穴部を貫通し、回路基板104に対して電源
を供給するとともに、リード線106を介して検出信号
を出力するワイヤーハーネス109を固定している。
The lower end surface of the housing 101 is closed by a cover 105 that contacts the inside of the housing 101. The circuit board 104 is held between the cover 105 and the protrusion 110 of the housing 101. Also, cover 10
A hole is provided in the center of the cord bush 1.
07 passes through this hole, and fixes a wire harness 109 that supplies power to the circuit board 104 and outputs a detection signal via the lead wire 106.

なお、回転軸102の下端部は、回路基板1゜4の中央
に設けた図示しないスラスト軸受けによって、上下方向
の位置決めがなされるように構成される。
The lower end of the rotating shaft 102 is configured to be positioned in the vertical direction by a thrust bearing (not shown) provided at the center of the circuit board 1.4.

またカバー105は、ハウジング101の円周に設けら
れた4個のねじ108によってハウジング101に固定
される。
Further, the cover 105 is fixed to the housing 101 by four screws 108 provided around the circumference of the housing 101.

次に、回路基板104上に形成される検出回路の構成に
ついて、第2図に従って説明する。
Next, the configuration of the detection circuit formed on the circuit board 104 will be explained according to FIG. 2.

第2図において、320は定電圧電源で、前述のワイヤ
ーハーネス109を介して外部より電源を供給する。ホ
ール素子21a〜21fは定電圧電源320から電源の
供給を受けるとともに、その出力端子は各々差動増幅器
301〜306に接続されている。
In FIG. 2, 320 is a constant voltage power supply, which is supplied with power from the outside via the wire harness 109 described above. The Hall elements 21a to 21f receive power from a constant voltage power supply 320, and their output terminals are connected to differential amplifiers 301 to 306, respectively.

差動増幅器301〜306の出力側には、加算器307
,308,310,311が設けられ、抵抗Ll 〜R
S6+  Rc、 〜Rc6. Rsによって重み付き
加算回路が形成されている。
An adder 307 is provided on the output side of the differential amplifiers 301 to 306.
, 308, 310, 311 are provided, and resistors Ll to R
S6+ Rc, ~Rc6. A weighted addition circuit is formed by Rs.

ここで、これらの抵抗Rs l”” Rs 6+  R
c + 〜Rc bを各々RSn+  RCnで表し、
かつ多極磁石1の磁柱ピノチlを1周期(0〜360d
eg)として各々のホール素子21a〜21fの位置を
角度(0゜60.180,240,300deg−θn
)で表した時、各抵抗RsI−R,6,Rc1〜Rc6
の抵抗値を Rs n = Rs  / S I n  θn−(+
)Rcn=Rs  /cos  θn・・・(2)で示
される値に設定する。すなわち抵抗RSの値をlOkΩ
とすると、各抵抗Rsr〜Rsbr Rc+〜Rc6の
値は表1の如く設定される。
Here, these resistors Rs l”” Rs 6+ R
c + ~Rc b are each represented by RSn + RCn,
And the magnetic column pinoch l of the multipolar magnet 1 is set to one period (0 to 360d
eg), the position of each Hall element 21a to 21f is set at an angle (0°60.180, 240, 300deg-θn
), each resistance RsI-R, 6, Rc1 to Rc6
The resistance value of Rs n = Rs / S I n θn-(+
) Rcn=Rs/cos θn...Set to the value shown in (2). In other words, the value of resistance RS is lOkΩ
Then, the values of the resistors Rsr to Rsbr Rc+ to Rc6 are set as shown in Table 1.

(以下余白) 表1 (1)、 (2)式によって各抵抗Rs+”” RS6
1  Rcl”” RC6の抵抗値を計算する際、si
n θn又はcos θnが(−)符号となるものは、
各々加算器3o8.及び311に接続してあり、(+)
符号となるものは各々加算器307及び310に接続し
ている。
(Left below) Table 1 Based on formulas (1) and (2), each resistor Rs+””RS6
1 Rcl"" When calculating the resistance value of RC6, si
When n θn or cos θn has a (-) sign,
Each adder 3o8. and 311, (+)
The codes are connected to adders 307 and 310, respectively.

なお抵抗値の計算結果かのになった抵抗RSI+  R
,,4ついては加算を行わない。(例えば接続自体を止
める、或いは非常に大きな抵抗値の抵抗を接続する等。
In addition, the resistance RSI + R is the result of calculating the resistance value.
, , 4 are not added. (For example, stop the connection itself, or connect a resistor with a very large resistance value, etc.)

) そして各抵抗Rs + 〜Rs 6+ Rc + 〜R
c bの抵抗値によって重み付L−Jがなされ、各加算
器307.308.310.311によってそれぞれ符
号別に加算された加算信号は、差動増幅器309,31
2に人力され、十符号の加算信号から一符号の加算信号
が減算される。この減算結果はそれぞれの出力端子T 
1. T 2よりリート線1.06及びワイヤーハーネ
ス109を介して出力される。
) and each resistor Rs + ~Rs 6+ Rc + ~R
The weighted L-J is performed by the resistance value of cb, and the added signals added by each sign by each adder 307, 308, 310, 311 are sent to differential amplifiers 309, 31.
2, the one-symbol addition signal is subtracted from the ten-symbol addition signal. The result of this subtraction is
1. It is output from T 2 via the Riet wire 1.06 and the wire harness 109.

以上のように構成された、第1の実施例の作用を各図に
従って説明する。
The operation of the first embodiment configured as above will be explained with reference to each figure.

ワイヤーハーネス109を介して外部より定電圧電源が
供給され回転軸102とともにロータ103が回転する
と、各ホール素子21a〜21fから、第4図に示すよ
うに磁極ピンチ1間を6等分した6相波信号SHI〜S
 H6が出力される。
When a constant voltage power supply is supplied from the outside via the wire harness 109 and the rotor 103 rotates together with the rotating shaft 102, six phases are generated from each Hall element 21a to 21f, dividing the space between the magnetic pole pinches 1 into six equal parts, as shown in FIG. Wave signal SHI~S
H6 is output.

ここで、各ホール素子21a〜21fから出力される信
号SHI〜S l−16の波形はロータ103と各ホー
ル素子21a〜21fとの間隔が充分に遠い場合等には
正弦波に近い波形、すなわら6o度位相のずれた多相正
弦波形となる。そして、この各ホール素子2]a〜21
fからの出力信号SH1〜SH6ば、それぞれ差動増幅
器301〜306によって増幅され、その後抵抗Rs+
〜R−6.Rc〜Rc5.Rsと差動増幅器307,3
08,310.311とによって構成される重み付は加
算回路及び差動増幅器309,312による減算回路に
よって(3)、 (4)式に示される演算が行われる。
Here, when the distance between the rotor 103 and each Hall element 21a to 21f is sufficiently far, the waveform of the signals SHI to S1-16 output from each Hall element 21a to 21f is a waveform close to a sine wave, or a waveform close to a sine wave. This results in a polyphase sine waveform with a phase shift of 60 degrees. And, each of these Hall elements 2] a to 21
Output signals SH1 to SH6 from f are amplified by differential amplifiers 301 to 306, respectively, and then connected to resistors Rs+
~R-6. Rc~Rc5. Rs and differential amplifier 307,3
The weighting configured by 08, 310, and 311 is performed by the addition circuit and the subtraction circuit by the differential amplifiers 309 and 312 as shown in equations (3) and (4).

K・Σ  SHn・R5,、・・・ (3)K・ Σ 
 5lln・Rい ・・・ (4)ただしKは定数 すなわち、(3)、 (4)式では、各ホール素子21
a〜21fの配置された位置に対応じた、つまり各出力
信号SHI〜SH6の位相差に応じた正弦及び余弦係数
R9I’l+  RCnを各ホール素子21a〜21r
の出力信号SHI〜SH6に乗じて加算する。
K・Σ SHn・R5,... (3) K・Σ
5lln・R... (4) However, K is a constant, that is, in equations (3) and (4), each Hall element 21
The sine and cosine coefficients R9I'l+RCn corresponding to the arranged positions of a to 21f, that is, the phase difference of each output signal SHI to SH6, are applied to each Hall element 21a to 21r.
The output signals SHI to SH6 are multiplied and added.

ところで上式(3)、 (4)は ■ のように変形することができる。すなわち(3)、 (
4)式における演算は、各ホール素子21a〜21fの
出力信号から求められる磁束密度分布を、磁極ピッチl
を周期として離散的フーリエ変換を行い、基本波成分を
求めたものと等価となっている。このように各ホール素
子21a〜2]fの出力信号SHI〜SH6にそれぞれ
の出力信号S H1〜SH6の位相差に基づく正弦及び
余弦係数R3I’l+  PCllを乗して加算するこ
とにより、各ホール素子21a〜21fから出力される
信号SHI〜SH6の基本波成分を抽出することができ
るため、例えばロータ103と各ホール素子21a〜2
1fとの間隔変化による波形歪が生した場合にも、それ
に影響されることなく、第5図に示すような正確な2相
正弦波φ1.φ2を出力することができる。
By the way, the above equations (3) and (4) can be transformed as shown in ■. That is, (3), (
The calculation in equation 4) calculates the magnetic flux density distribution obtained from the output signals of each Hall element 21a to 21f by changing the magnetic pole pitch l.
This is equivalent to performing a discrete Fourier transform with a period of , and obtaining the fundamental wave component. In this way, by multiplying the output signals SHI to SH6 of each of the Hall elements 21a to 2]f by the sine and cosine coefficients R3I'l+PCll based on the phase difference of the respective output signals SH1 to SH6 and adding them, each hall Since the fundamental wave components of the signals SHI to SH6 output from the elements 21a to 21f can be extracted, for example, the rotor 103 and each Hall element 21a to 2
Even if waveform distortion occurs due to a change in the distance from φ1.1f, the accurate two-phase sine wave φ1.1 as shown in FIG. φ2 can be output.

従って、この2相正弦波φ1.φ2からよって高精度な
補間が可能となる。ちなみに本実施例ではロータ103
の磁極ピッチ1間を212(4(196)で補間するこ
とにより4/1000degの分解能を得ることができ
た。
Therefore, this two-phase sine wave φ1. Highly accurate interpolation is possible from φ2. Incidentally, in this embodiment, the rotor 103
By interpolating between the magnetic pole pitches of 1 with 212 (4 (196)), a resolution of 4/1000 degrees could be obtained.

また本実施例では、各ホール素子の21a〜21fの不
平衡電圧等のばらつきの影響を低減できる効果もある。
Further, this embodiment has the effect of reducing the influence of variations in unbalanced voltages, etc. of each Hall element 21a to 21f.

つまり、例えば第2図におけるホル素子21bと21e
に同程度の不平衡電圧が生したものとすると、表1に示
ずホール素子21b、21eに関する正弦及び余弦係数
RSr1.RC11は同値であり、かつ符号のみが逆と
なっている。
That is, for example, the Hall elements 21b and 21e in FIG.
Assuming that the same degree of unbalanced voltage is generated in the Hall elements 21b and 21e, the sine and cosine coefficients RSr1. RC11 has the same value, and only the sign is reversed.

このため、出力端子T、、T2にそれらのホール素子2
1b、2]eの不平衡電圧成分は現れない。
Therefore, those Hall elements 2 are connected to the output terminals T, , T2.
1b, 2]e unbalanced voltage component does not appear.

すなわち、ホール素子数を約20個以上とし、各ホール
素子の不平衡電圧がO■を中心に正規分布であるか、ラ
ンダムに分布しているものとすると、各々のホール素子
の不平衡電圧成分の影響をほぼ排除することができるの
である。
In other words, if the number of Hall elements is about 20 or more and the unbalanced voltage of each Hall element is normally distributed or randomly distributed around O, then the unbalanced voltage component of each Hall element is It is possible to almost eliminate the influence of

なお、第1実施例では、移動体として所定の磁極ピッチ
lで交互に逆極性の磁極が形成された多極磁石1を使用
したが、これ以外にも例えばリラクタンス型として公知
の強磁性体歯車とバイアス用永久磁石とを使用しても良
い。また検出素子としては、ホール素子以外に強磁性体
薄膜抵抗素子や、磁気抵抗素子等でも良い。また、移動
体は、ロータ103のような回転体に限らず、直線的に
変位する公知のリニアエンコーダとしても構成できる。
In the first embodiment, a multipolar magnet 1 in which magnetic poles of opposite polarity are alternately formed at a predetermined magnetic pole pitch l is used as a moving body, but in addition to this, for example, a ferromagnetic gear known as a reluctance type may be used. and a permanent magnet for bias may be used. In addition to the Hall element, the detection element may be a ferromagnetic thin film resistance element, a magnetoresistive element, or the like. Furthermore, the moving body is not limited to a rotating body such as the rotor 103, but can also be configured as a known linear encoder that is linearly displaced.

また、前述の第1実施例では各ホール素子21a〜21
fを等間隔で配置する例について述べたが、実際に製作
を行う上で多少の位置誤差を生しることがある。このよ
うな場合には、ロータ103を連続回転させながら、各
ホール素子21a〜21fより出力される信号SHI〜
SH6の位相を計測し、この位相差に基づいて正弦及び
余弦係数R3ゎ1Rcnを適切に変更すれば良い。
Further, in the first embodiment described above, each Hall element 21a to 21
Although the example in which f is arranged at equal intervals has been described, some positional errors may occur during actual manufacturing. In such a case, while continuously rotating the rotor 103, the signals SHI~ outputted from each Hall element 21a~21f.
What is necessary is to measure the phase of SH6 and appropriately change the sine and cosine coefficients R3ゎ1Rcn based on this phase difference.

すなわち、本実施例ではホール素子を配設する位置に制
約は無く、それぞれのホール素子が配設された位置にて
検出する磁界に対応する電気信号の位置差に基づいて正
弦及び余弦係数RSn+  Rcnを定めれば良い。
That is, in this embodiment, there is no restriction on the position where the Hall elements are arranged, and the sine and cosine coefficients RSn+Rcn are determined based on the positional difference of the electric signal corresponding to the magnetic field detected at the position where each Hall element is arranged. All you have to do is determine.

次に本発明の位置検出装置について、第2の実施例にお
ける構成と作用を第6図に従って説明する。なお、前述
の第1実施例と本実施例との相違点はホール素子の配置
方法のみであるため、以下この点について説明する。
Next, the structure and operation of a second embodiment of the position detection device of the present invention will be explained with reference to FIG. Incidentally, since the difference between the first embodiment described above and this embodiment is only in the method of arranging the Hall elements, this point will be explained below.

第6図(a)、 (b)、 (C)では、多極磁石1の
磁極ビッヂiに対して、ホール素子71a 〜71d、
72a〜72f、73a〜73fの素子ザイズ又は基板
等への実装面積が比較的大きく、多極磁石1の磁極ピッ
チl内に、必要なすべてのホール素子71a 〜71d
、72a 〜72f、73a 〜73fが配置できない
場合の有効な素子配置方式を示している。
In FIGS. 6(a), (b), and (C), for the magnetic pole bit i of the multipolar magnet 1, Hall elements 71a to 71d,
The element size of 72a to 72f, 73a to 73f or the mounting area on a substrate etc. is relatively large, and all the necessary Hall elements 71a to 71d are included within the magnetic pole pitch l of the multipolar magnet 1.
, 72a to 72f, and 73a to 73f cannot be arranged.

すなわち、第6図(a)では磁極ピッチlに対して、素
子配列ピッチlsを、乏+−(n:素子数)としてホー
ル素子71a〜71dを配置したものである。この場合
にも、前述の第1実施例と同様にホール素子数に対応じ
た多相信号が、各ホール素子71a〜71dから得るこ
とができる。従っで、各ホール素子71a〜71dの出
力信号を、7 前述の第1実施例と同様の検出回路に入力することによ
って、多極磁石1の磁極ピッチlに対応じた正確な2相
正弦波を検出することができる。
That is, in FIG. 6(a), the Hall elements 71a to 71d are arranged such that the element arrangement pitch ls is poor +- (n: number of elements) with respect to the magnetic pole pitch l. In this case, as in the first embodiment described above, multiphase signals corresponding to the number of Hall elements can be obtained from each Hall element 71a to 71d. Therefore, by inputting the output signals of each Hall element 71a to 71d to a detection circuit similar to that of the first embodiment described above, an accurate two-phase sine wave corresponding to the magnetic pole pitch l of the multipolar magnet 1 is generated. can be detected.

結局のところ、多数のホール素子から得られる検出信号
の位相が360°/素子数づつ離れていれば良いから、
第6図(2)のように2つのホール素子を1組とした等
間隔配置、または第6図(C)のように3つのホール素
子を1組とした等間隔配置が可能である。
After all, it is sufficient that the phases of the detection signals obtained from a large number of Hall elements are separated by 360°/number of elements.
It is possible to arrange two Hall elements in one set at equal intervals as shown in FIG. 6(2), or to arrange three Hall elements in one set at equal intervals as shown in FIG. 6(C).

なお、第6図(C)の例では、ホール素子73a〜73
fから出力される信号の位相順序と、素子配置の順序が
異なる構成となっている。
In addition, in the example of FIG. 6(C), the Hall elements 73a to 73
The phase order of the signals output from f and the order of element arrangement are different.

次に本発明の第3の実施例について第7図、第8図に従
って説明する。
Next, a third embodiment of the present invention will be described with reference to FIGS. 7 and 8.

本実施例では、各ホール素子8a〜8fの出力信号を差
動増幅器801〜806によって増幅した後、この増幅
信号をマルチプレクサ(MPX)807によって選択的
にアナログ・デジタル(A/D)コンバータ808に入
力してデジタル信号に変換し、このデジタル信号に変換
された各ホー8 ル素子8a〜8fの出力信号に対して中央演算処理装置
(CPU)809によって所定の演算を行う。
In this embodiment, after the output signals of the Hall elements 8a to 8f are amplified by differential amplifiers 801 to 806, the amplified signals are selectively sent to an analog-to-digital (A/D) converter 808 by a multiplexer (MPX) 807. The input signal is converted into a digital signal, and a central processing unit (CPU) 809 performs a predetermined calculation on the output signal of each Hall element 8a to 8f converted into the digital signal.

このCPU809の演算内容を第8図(a)、 (b)
のフローチャートに示す。
The calculation contents of this CPU 809 are shown in Fig. 8 (a) and (b).
This is shown in the flowchart below.

第8図(a)、 (b)において、ステップ910にて
初期化処理が行われた後、ステップ920にてMPX8
07の切換えが行われ、A/D変換を行う信号が選択さ
れる。ステップ930ではA/Dコンバータ808にA
/D変換処理の開始を指令し、ステップ940にてその
A/D変換処理が終了したか否かを判断する。そして、
A/D変換処理が終了した時点でステップ950に進み
A/D変換された信号をCPU809のRAMに一時記
憶させる。ステップ960にて、各ホール素子8a〜8
fから出力された信号が全てA/D変換され、その信号
がCPU809に人力されたか否か判別される。この判
別結果において、まだ全ての信号がCPU809に人力
されていないときにはステップ920に戻り、逆に全て
の信号が入力されているときにはステップ970に進む
。ステップ970では、人力されたデータDiに基づき
、以下の演算を実行する ただしi;データ番号(素子番号)、n:全素子数 (8)、 (9)式によって、前述の第1実施例と同様
の重み付は加算が行われたのち、ステップ980にて、
演算粘果V、、V2の符号判定を実行する。
In FIGS. 8(a) and 8(b), after the initialization process is performed in step 910, the MPX8
07 is performed, and the signal to be subjected to A/D conversion is selected. In step 930, the A/D converter 808
A command is issued to start the A/D conversion process, and it is determined in step 940 whether the A/D conversion process has ended. and,
When the A/D conversion processing is completed, the process advances to step 950 and the A/D converted signal is temporarily stored in the RAM of the CPU 809. At step 960, each Hall element 8a-8
All signals output from f are A/D converted, and it is determined whether the signals have been input manually to the CPU 809. As a result of this determination, if all the signals have not yet been input to the CPU 809, the process returns to step 920, and on the other hand, if all the signals have been input, the process proceeds to step 970. In step 970, the following calculation is performed based on the manually input data Di, where i: data number (element number), n: total number of elements (8). After similar weighting is performed, in step 980,
The sign determination of the calculation results V, , V2 is executed.

すなわち、演算結果V、、V2の符号か共に十符号の場
合、共に一符号の場合、■1が1−符号かつV2が一符
号の場合、および■1が一符号かつV2が十符号の場合
の4つのケースのどれに合ではまるかを判定する。ステ
ップ990では、演算結果V、、V2について、それぞ
れの絶対値か算出される。そしてステップ1000にお
いて、ステップ980にて判定した演算結果V、、V2
の符号に基づき、角度計算を行うステップがステップ1
010〜1040の中から選択される。本実施例におい
ては、2相正弦波としての演算結果■■2のそれぞれの
位相から、多極磁石1の磁極ピッチlを1周期(0〜3
60°)として、磁極の位置を角度によって表す。この
位置に応じた角度を0〜360°の範囲で算出するため
に演算結果V、、V2の符号に応して4つのケースに分
けら、れて、それぞれステップ1010〜1040にお
いて角度計算が実行される。
That is, when the signs of the calculation results V, , V2 are both tens signs, when they are both one sign, (1) when 1 is a 1-sign and V2 is one sign, and () when 1 is one sign and V2 is a tens sign. Determine which of the four cases applies. In step 990, the absolute values of the calculation results V, , V2 are calculated. Then, in step 1000, the calculation results V, , V2 determined in step 980
Step 1 is to calculate the angle based on the sign of
Selected from 010-1040. In this example, the magnetic pole pitch l of the multipolar magnet 1 is set for one cycle (0 to 3
60°), the position of the magnetic pole is expressed in terms of angle. In order to calculate the angle corresponding to this position in the range of 0 to 360 degrees, the angle is divided into four cases depending on the sign of the calculation result V, V2, and the angle calculation is executed in steps 1010 to 1040. be done.

以下のように本実施例では各ホール素子8a〜8fの出
力信号をデシクル信号に変換することによって、CPU
809により直接磁極の位置に対応する角度を求めるこ
とができ、またノイズ等を除去する各種信号処理が可能
である。しかしその反面演算処理等に時間を要するため
、位置検出のために、ある程度の応答時間が必要になっ
てくる。
As described below, in this embodiment, by converting the output signals of each Hall element 8a to 8f into decile signals, the CPU
809, it is possible to directly obtain the angle corresponding to the position of the magnetic pole, and various signal processing to remove noise and the like is possible. However, on the other hand, since calculation processing and the like require time, a certain amount of response time is required for position detection.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、多極磁石の磁界を
検出し電気信号に変換する複数の検出素子を備えるとと
もに、各検出素子から出力された電気信号より直接基本
波成分を抽出しているために、確実に精度の向上した2
相正弦波を得ることができる。従ってこの高精度な2相
正弦波を用いて公知の補間計算を行うことにより、移動
体の位置検出の精度も向上させることができる。
As explained above, the present invention includes a plurality of detection elements that detect the magnetic field of a multipolar magnet and converts it into an electrical signal, and also extracts the fundamental wave component directly from the electrical signal output from each detection element. 2, which has definitely improved accuracy.
A phase sine wave can be obtained. Therefore, by performing known interpolation calculations using this highly accurate two-phase sine wave, the accuracy of position detection of the moving body can also be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例における多極磁石に対する
ホール素子の配置状能を示す説明図、第2図は、第1実
施例の検出回路の構成を示す回路図、第3図は第1実施
例の全体の構成を示す構成図、第4図は各ホール素子か
ら出力される信号波形を示す波形図、第5図は、第2図
の検出回路から出力される2相正弦波を示す波形図、第
6図(a)。 (b)、 (C)は本発明の第2実施例における多極磁
石に対するホール素子の配置状態を示す説明図、第7図
は本発明の第3実施例の検出回路を示す回路図、第8図
(a)、 (b)は第7図のCPUが実行する制御手2 順を示すフローチャー1〜である。 1・・・多極磁石、21・・・ホール素子アレー、21
a〜21f・・・ホール素子、301〜312・・・差
動増幅器、320・・・定電圧電源。
FIG. 1 is an explanatory diagram showing the arrangement of the Hall element with respect to the multipolar magnet in the first embodiment of the present invention, FIG. 2 is a circuit diagram showing the configuration of the detection circuit of the first embodiment, and FIG. A configuration diagram showing the overall configuration of the first embodiment, FIG. 4 is a waveform diagram showing signal waveforms output from each Hall element, and FIG. 5 is a two-phase sine wave output from the detection circuit in FIG. 2. A waveform diagram showing FIG. 6(a). (b) and (C) are explanatory diagrams showing the arrangement of the Hall elements with respect to the multipolar magnet in the second embodiment of the present invention, and FIG. 7 is a circuit diagram showing the detection circuit of the third embodiment of the present invention. 8(a) and 8(b) are flowcharts 1 to 8 showing the control procedure 2 executed by the CPU of FIG. 1... Multipolar magnet, 21... Hall element array, 21
a to 21f... Hall element, 301 to 312... Differential amplifier, 320... Constant voltage power supply.

Claims (2)

【特許請求の範囲】[Claims] (1)90度の位相差を有する2つの正弦波信号を用い
て移動体の位置を検出する位置検出方法において、 前記移動体の所定距離の移動ごとに周期的に出力される
複数の信号に対して、これら複数の信号の位相差に基づ
く正弦係数および余弦係数を乗じた後、前記正弦係数を
乗じた複数の信号および前記余弦係数を乗じた複数の信
号をそれぞれ加算することにより、前記90度の位相差
を有する2つの正弦波信号を生成することを特徴とする
位置検出方法。
(1) In a position detection method that detects the position of a moving object using two sine wave signals having a phase difference of 90 degrees, a plurality of signals that are periodically output every time the moving object moves a predetermined distance. On the other hand, by multiplying these plurality of signals by a sine coefficient and a cosine coefficient based on the phase difference, and then adding the plurality of signals multiplied by the sine coefficient and the plurality of signals multiplied by the cosine coefficient, the 90 A position detection method characterized by generating two sinusoidal signals having a phase difference of degrees.
(2)移動体と固定体とを有し、前記移動体の位置に応
じた90度の位相差を有する2つの正弦波信号を生成し
、これらの正弦波信号を用いて前記移動体の位置を検出
する位置検出装置において、前記移動体と前記固定体と
のいずれか一方に配設されるとともに、所定間隔ごとに
逆極性に着磁された複数の磁極を有する多極磁石と、 前記多極磁石と対向して前記移動体と前記固定体のいず
れか一方に配置され、前記多極磁石による磁界を検出し
電気信号に変換する複数の検出素子と、 前記複数の検出素子から出力された電気信号に対して、
これらの電気信号の位相差に基づく正弦係数および余弦
係数を乗じて、これらをそれぞれ加算することにより前
記90度の位相差を有する2つの正弦波信号を算出する
算出手段とを備えたことを特徴とする位置検出装置。
(2) It has a moving body and a fixed body, and generates two sine wave signals having a phase difference of 90 degrees depending on the position of the moving body, and uses these sine wave signals to determine the position of the moving body. a multipolar magnet disposed on either the movable body or the fixed body and having a plurality of magnetic poles magnetized with opposite polarities at predetermined intervals; a plurality of detection elements that are arranged on either the moving body or the fixed body to face the polar magnets and detect the magnetic field generated by the multipolar magnet and convert it into an electric signal; and a plurality of detection elements that are output from the plurality of detection elements For electrical signals,
Calculating means for calculating two sine wave signals having a phase difference of 90 degrees by multiplying the sine coefficient and cosine coefficient based on the phase difference of these electric signals and adding these, respectively. position detection device.
JP1172610A 1989-07-03 1989-07-03 Method and apparatus for detecting position Pending JPH0337519A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1172610A JPH0337519A (en) 1989-07-03 1989-07-03 Method and apparatus for detecting position
DE4021105A DE4021105A1 (en) 1989-07-03 1990-07-02 Measuring position of movable body - using two sinusoidal signals with phase difference of 90 deg. derived from measuring elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1172610A JPH0337519A (en) 1989-07-03 1989-07-03 Method and apparatus for detecting position

Publications (1)

Publication Number Publication Date
JPH0337519A true JPH0337519A (en) 1991-02-18

Family

ID=15945065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1172610A Pending JPH0337519A (en) 1989-07-03 1989-07-03 Method and apparatus for detecting position

Country Status (2)

Country Link
JP (1) JPH0337519A (en)
DE (1) DE4021105A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2717575A1 (en) * 1994-03-17 1995-09-22 Simonny Roger Liquid level measuring device
WO2006051590A1 (en) * 2004-11-11 2006-05-18 Hitachi, Ltd. Rotation detection device
JP2007143226A (en) * 2005-11-15 2007-06-07 Nippon Pulse Motor Co Ltd Position detector of shaft type linear motor
JP2010529456A (en) * 2007-06-06 2010-08-26 ハイドロ エアー インコーポレイテッド Angular position sensor
JP2019219311A (en) * 2018-06-21 2019-12-26 株式会社デンソー Linear position sensor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4121724A1 (en) * 1991-07-01 1993-01-07 Schaeffler Waelzlager Kg Pulse transducer mfr. method - producing alternating regions of different magnetic properties on component by structural heat treatment
JP3347766B2 (en) * 1992-06-08 2002-11-20 日本トムソン株式会社 Linear encoder and guide unit having the same
DE4333465A1 (en) * 1993-09-30 1995-04-06 Thomson Brandt Gmbh Control circuit having a number of sensors
DE19734303B4 (en) * 1997-08-08 2005-09-22 Siemens Ag magnetic wheel
JP3820548B2 (en) 2001-06-01 2006-09-13 ソニー株式会社 Information input device and electronic device using the same
DE102008060840A1 (en) * 2008-12-05 2010-06-10 Robert Bosch Gmbh Method for producing feedback signal of synchronous motor, involves adapting sinusoidal signal to zeros by Fourier transform, and producing feedback signal from sinusoidal signal
DE102014223884A1 (en) 2014-11-24 2016-05-25 Micro-Epsilon Messtechnik Gmbh & Co. Kg Sensor arrangement and method for determining a position and / or a position change of a measurement object
US10584953B2 (en) * 2015-11-26 2020-03-10 Mitsubishi Electric Corporation Angle detection device and electric power steering device
WO2021158265A1 (en) * 2020-02-05 2021-08-12 The Timken Company Position sensor system using equidistantly spaced magnetic sensor arrays
CN113514086A (en) * 2020-12-31 2021-10-19 上海凯恺机电科技发展有限公司 Small-stroke absolute encoder and rotating device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2717575A1 (en) * 1994-03-17 1995-09-22 Simonny Roger Liquid level measuring device
WO2006051590A1 (en) * 2004-11-11 2006-05-18 Hitachi, Ltd. Rotation detection device
JPWO2006051590A1 (en) * 2004-11-11 2008-05-29 株式会社日立製作所 Rotation detector
JP2007143226A (en) * 2005-11-15 2007-06-07 Nippon Pulse Motor Co Ltd Position detector of shaft type linear motor
JP2010529456A (en) * 2007-06-06 2010-08-26 ハイドロ エアー インコーポレイテッド Angular position sensor
JP2019219311A (en) * 2018-06-21 2019-12-26 株式会社デンソー Linear position sensor

Also Published As

Publication number Publication date
DE4021105A1 (en) 1991-02-07

Similar Documents

Publication Publication Date Title
JPH0337519A (en) Method and apparatus for detecting position
JP3848670B1 (en) Rotation angle detector
JPS62204118A (en) Magnetically detecting device for position or speed
US5115239A (en) Magnetic absolute position encoder with an undulating track
CN113039410B (en) Method and device for realizing zero-forcing equalization vector synthesis absolute encoder
Zare et al. The effect of winding arrangements on measurement accuracy of sinusoidal rotor resolver under fault conditions
JP4052797B2 (en) Digital position detector
JP5522845B2 (en) Rotary position detector
WO2007055135A1 (en) Magnetic encoder device
Wang et al. Research on angle subdivision method of multi-pole magnetic encoder based on pole number quotient remainder
KR102071753B1 (en) Magnetism-sensor device
JP4258831B2 (en) Angle and angular velocity integrated detection device and servo motor using the same
JP2004239699A (en) Angle detection device and bearing with angle detection device
JP2004333481A (en) Resolver device and angle position detection device
Alipour-Sarabi et al. Linearized resolver
JP2001272204A (en) Torsion quantity measuring apparatus
US6211641B1 (en) Capacitive resolver
EP0382856B1 (en) Magnetic absolute position encoder
JPH0348722A (en) Position detecting device
Suzuki et al. Position detection for shaft-type linear motor by measurement of shaft surface magnetic flux
FI71621B (en) VARVTALSGIVARE
WO2023140760A1 (en) A motor assembly
JPH0723690Y2 (en) Magnetic encoder signal processing circuit
JP2005106495A (en) Sensor signal processing method
JPH03191821A (en) Magnetic encoder