JPH033749A - Working method - Google Patents

Working method

Info

Publication number
JPH033749A
JPH033749A JP13613489A JP13613489A JPH033749A JP H033749 A JPH033749 A JP H033749A JP 13613489 A JP13613489 A JP 13613489A JP 13613489 A JP13613489 A JP 13613489A JP H033749 A JPH033749 A JP H033749A
Authority
JP
Japan
Prior art keywords
machining
cutter
square
case
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13613489A
Other languages
Japanese (ja)
Inventor
Masahiro Kawamura
川村 正弘
Masao Nishigai
西貝 正夫
Shusuke Tateishi
秀典 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP13613489A priority Critical patent/JPH033749A/en
Publication of JPH033749A publication Critical patent/JPH033749A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)

Abstract

PURPOSE:To eliminate the need for preparing a lot of minute date in the case of a square spot facing by deciding the position by the XY coordinate date of an optional one point of input data and internal processing by a numerical control device based on the square shape data. CONSTITUTION:In case of performing the square spot facing of a longitudinal dimension H, horizontal dimension B and corner R, it is instructed by command code GOX Y B H R P D . GO expresses a square working, X Y the working start position of a square 11 by X, Y coordinates, a center coordi nate O herein, B in the B H the horizontal dimension, H the longitudinal dimension, R a corner R, P the maximum increase part and D a cutter diameter correction amount respectively and the amount subtracting D from H becomes the final peripheral round cutter locus. A control device performs the internal processing, positioning a cutter 12 at a work starting position O by X Y , descending Z axis to a designated spot facing depth, working along the cutter locus 13, calculating the number of peripheral rounds in H direction by the max. increase part P in case of H>B, setting the number of peripheral rounds the same even in B direction and working with B as the reference in case of H<B.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、基板の四角形座くり加工に好適な加工方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a processing method suitable for processing a rectangular spot in a substrate.

以下、本発明を基板の四角形座ぐり加工に適用した場合
について述べる。
Hereinafter, a case will be described in which the present invention is applied to rectangular counterbore processing of a substrate.

〔従来の技術〕[Conventional technology]

基板、例えばプリンI−基板に、ICなどの電子部品を
、その一部ないし全部を埋め込むように位置(=Jけて
取り付けられることがある。このような場合に、数値制
御基板加工機を用いて基板の座ぐり加工をすることが従
来から行われている。
Electronic components such as ICs are sometimes attached to a board, such as a printed circuit board, so that they are partially or completely embedded.In such cases, a numerically controlled board processing machine is used to Conventionally, counterbore processing of the board has been carried out.

従来のこの種の加工方法は、カッタの動き全てについて
指令データを作成し、加工機の数値制御装置に入力する
ものであった。
In the conventional machining method of this type, command data for all movements of the cutter is created and input into the numerical control device of the machining machine.

〔発明が解決しようとする課題] このため上記従来技術では、加工指令データの作成が繁
雑となった。特に、四角形加工の場合、まず加工開始位
置を表ずx、 y軸座標データを作成し、次に所定方向
に所定寸法の直線補間データを、続いて円弧補間データ
を、さらに直線補間データを作成し、以下同様に円弧補
間データ→直線補間データ→円弧補間データ→直線補間
データを多数回繰り返して作成していたため、加工指令
データの作成に多大な手間と時間を要し、このため作成
ミスも発生し易く、信頼性も劣るという問題点があった
[Problems to be Solved by the Invention] For this reason, in the above-mentioned prior art, the creation of processing command data has become complicated. In particular, in the case of rectangular machining, first the x and y axis coordinate data representing the machining start position is created, then linear interpolation data of a predetermined dimension in a predetermined direction is created, then circular interpolation data is created, and then linear interpolation data is created. However, since the process of circular interpolation data → linear interpolation data → circular interpolation data → linear interpolation data was repeated many times to create the machining command data, it took a lot of time and effort to create the machining command data, which also led to creation errors. There are problems in that this phenomenon is easy to occur and reliability is poor.

四角形形状に、コーナアールを必要としないときは上記
加工指令データ中の円弧補間は不要となるが、いずれに
しても、従来技術では同様のデータの多数回繰返しを必
要とし1以4め、加工指令データの作成に多大な手間と
時間を要した。
When a corner radius is not required for a rectangular shape, circular interpolation in the above machining command data is not necessary, but in any case, in the conventional technology, it is necessary to repeat the same data many times, It took a lot of effort and time to create the command data.

本発明の目的は、加工指令データの作成が極めて容易な
加工方法を提供することにある。
An object of the present invention is to provide a machining method in which creation of machining command data is extremely easy.

〔課題を解決するだめの手段〕[Failure to solve the problem]

上記1」的は、加工指示データとして入力された加工形
状、加工寸法(縦、横、深さ)、加工開始位置、使用工
具径、の各データに基づいて、指定された加工領域内に
おける工具の必要周回数、各周回毎の工具の移動量、及
び移動軌跡を求め、その結果に基づいて、被加工物と工
具を相対移動させて加工することにより達成される。
Target 1 above is based on the machining shape, machining dimensions (vertical, horizontal, depth), machining start position, and tool diameter input as machining instruction data, and the tool within the specified machining area. This is achieved by determining the required number of revolutions, the amount of movement of the tool for each revolution, and the movement trajectory, and then moving the workpiece and tool relative to each other based on the results.

(作用〕 例えば四角形の座くり加工の入力データのうち、四角形
の任意の一点のX、Y軸座標データにより基板に加工す
る四角形が位置決めされる。また、四角形形状データ及
び各寸法データに基づき、数値制御装置が内部処理し、
これにより加工領域内での工具の周回数、各周回毎の工
具の移動量及び移動軌跡などが決められ、四角形加工が
行われるもので、工具の移動につき、いちいち細かく、
かつ多量なデータを作成する必要はなくなり、加工指令
データの作成が極めて容易になる。
(Function) For example, among the input data for machining a rectangular counterbore, the rectangle to be machined on the board is positioned based on the X and Y axis coordinate data of an arbitrary point on the rectangle.Furthermore, based on the rectangle shape data and each dimension data, The numerical control device processes internally,
This determines the number of revolutions of the tool within the machining area, the amount of tool movement for each revolution, the movement trajectory, etc., and rectangular machining is performed.
In addition, there is no need to create a large amount of data, and processing command data can be created extremely easily.

〔実施例〕〔Example〕

以下、図面を参照して本発明の詳細な説明する。第1図
は、本発明による加工方法の一実施例を説明するための
図で、ここでは四角形の座くり加工について説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram for explaining an embodiment of the processing method according to the present invention, and here, a rectangular counterbore processing will be explained.

第1図のように縦寸法H。Vertical dimension H as shown in Figure 1.

横寸法B、コーナアール(丸み)Rの四角形座くり加工
を行う場合、本発明方法では、加工指令コード(加工指
令データ)GQX△YΔB△H△17△P△D△によっ
て指示する。以下、このコート中の各記号について説明
する。なお、上記加工指令コード中の○は四角形を意味
する予め決められた数値となり、△は任意の指令数値が
入る。
When performing rectangular counterbore machining with horizontal dimension B and corner radius R, in the method of the present invention, instructions are given using machining command code (machining command data) GQX△YΔB△H△17△P△D△. Each symbol in this coat will be explained below. Note that ◯ in the above machining command code is a predetermined value that means a square, and △ is an arbitrary command value.

まず、Goは、そのうちの○が四角形11を表す予め決
められた数値であり、GO全全体四角形加工表示コード
を表す。XへY△はX、 Y軸座標による四角形11の
加工開始位置、ここでは四角形11の中心座標Oを表す
First, Go is a predetermined numerical value, of which ◯ represents the rectangle 11, and represents the GO all-over rectangle processing display code. Y to X represents the machining start position of the rectangle 11 according to the X and Y axis coordinates, here the center coordinate O of the rectangle 11.

またB△H△中のBは四角形11の横寸法(X方向)、
11は四角形11の縦寸法(X方向)を表す。
Also, B in B△H△ is the horizontal dimension (X direction) of square 11,
11 represents the vertical dimension (X direction) of the rectangle 11.

R△はコーナアールの大きさを表す。P△は、加工時の
増分(X、Y軸方向切込み量)の最大値、すなわち最大
増分を表す。この値は、カッタ12の径りより小さい値
とするもので、可能な最大増分P△はほぼカッタ径りに
等しい。
R△ represents the size of the corner radius. PΔ represents the maximum value of the increment (the amount of cut in the X and Y axis directions) during machining, that is, the maximum increment. This value is to be smaller than the diameter of the cutter 12, and the maximum possible increment PΔ is approximately equal to the cutter diameter.

さらに、D△はカッタ径補正量を表す。B又はIIから
I〕を引いた量が最終周回カッタ軌跡となる。
Further, D△ represents the cutter diameter correction amount. The amount obtained by subtracting I] from B or II becomes the cutter locus of the last round.

このような加工指令コードを数値制御装置に人力すると
、同装置は内部処理を行い、まずX△Y△の指令コード
により、加工開始位置0にカッタ12を位置決めする。
When such a machining command code is manually input to the numerical control device, the device performs internal processing and first positions the cutter 12 at the machining start position 0 based on the command code of X△Y△.

そして、指定座ぐり深さまでZ軸を下降し、基板にカッ
タ12を切り込む。なお、座ぐり深さ指定は別の指令コ
ードで指示されるもので、ここではその説明を省略する
Then, the Z-axis is lowered to the specified counterbore depth, and the cutter 12 cuts into the substrate. Note that the counterbore depth designation is instructed by a separate command code, and its explanation will be omitted here.

その後は、カッタ軌跡13(ラック12中心の軌跡全体
を図中矢印で示す)に沿って加工する。このときのX、
Y軸方向の切込み量について説明する。
Thereafter, processing is performed along a cutter locus 13 (the entire locus of the center of the rack 12 is indicated by an arrow in the figure). X at this time,
The depth of cut in the Y-axis direction will be explained.

まず第1例として、最終周回前までは、最大増分P△の
切込み量で加工し、最終周回への切込み量P′△で残余
分を加工する。長方形(H>B)の場合も同様に加工し
て行き、B方向の加工は1]方向の加工が終了するまで
最終軌跡(最終周回の軌跡と同一軌跡)で加工する。長
方形(H<B)の場合も同様にして加工する。
First, as a first example, machining is performed with the maximum increment P△ of the cutting depth until the final round, and the remaining amount is machined with the cutting depth P'△ of the final round. In the case of a rectangle (H>B), machining is carried out in the same way, and the machining in the B direction is performed on the final trajectory (the same trajectory as the trajectory of the last round) until the machining in the 1] direction is completed. A rectangular shape (H<B) is processed in the same manner.

第2の例としては、最大増分P△での周回数を算出し、
周回毎に同一ピッチになるように切込み量を設定する。
As a second example, calculate the number of laps at the maximum increment P△,
Set the depth of cut so that the pitch is the same every round.

いずれの例においても、長方形(1−1> B )の場
合には、最大増分PΔでH方向の周回数を算出し、B方
向についてもH方向の周回数が同一になるように切込み
量を設定する。長方形(H>B)の場合は、Bを基準と
し、同様に加工する。
In either example, in the case of a rectangle (1-1>B), the number of turns in the H direction is calculated using the maximum increment PΔ, and the depth of cut is adjusted so that the number of turns in the H direction is the same in the B direction. Set. In the case of a rectangle (H>B), use B as a reference and process in the same way.

上記第1の例、第2の例のどちらを選択するかは任意で
ある。
It is arbitrary to select either the first example or the second example.

ごごで、カッタ直径をDとし、D−1)としたとき、上
記第1例では、最終周回への切込み量P′は、 υ で表される。
In the first example above, when the cutter diameter is D and D-1), the depth of cut P' to the final round is expressed as υ.

また上記第2例でのカッタ周回数Nは、−D N−・・・・・・(2) で表される。Further, the number of cutter revolutions N in the second example is -D N-・・・・・・(2) It is expressed as

なおこの実施例では、D=P、P=2P’N=4の場合
を例示している。
Note that this embodiment exemplifies the case where D=P, P=2P'N=4.

さて、加工終了位置14まで加工を行ったら、Z軸を上
昇させて次の座ぐり加工部に移動し、同様に加工を行う
もので、第2図に示すように、1枚の基板21に、最終
的に多数の四角形座ぐり部22を得る。
Now, once the machining has been completed to the machining end position 14, the Z-axis is raised and moved to the next counterbore machining section, and the machining is performed in the same manner.As shown in Fig. 2, one board 21 is , a large number of rectangular counterbore portions 22 are finally obtained.

本発明方法が適用される数値制御基板加工機の一例を第
3図に基づき説明する。図示するように、この種の加工
機は、機械本体ベースがヘット31、クロスレール32
で構成され、X軸モーク33によるX、Yテーブル34
の前後移動(図示面に対して垂直方向の移動)によりX
軸移動が行われる。また、スピンドル35が取り付けら
れたサドル36が、Y軸モータ37により左右移動(図
中左右方向に移動)することによりY軸移動が行われ、
スピンドル35とサドル36がZ軸モータ38により上
下移動(図中上下方向に移動)するごとによりカンタ3
9のX軸移動が行われる。
An example of a numerically controlled board processing machine to which the method of the present invention is applied will be explained based on FIG. As shown in the figure, this type of processing machine has a machine body base including a head 31 and a cross rail 32.
The X and Y tables 34 are composed of
By moving back and forth (movement perpendicular to the drawing plane),
An axis movement is performed. Further, the saddle 36 to which the spindle 35 is attached is moved left and right by the Y-axis motor 37 (moves in the left-right direction in the figure), thereby performing Y-axis movement.
Every time the spindle 35 and saddle 36 are moved up and down by the Z-axis motor 38 (in the vertical direction in the figure), the canter 3
9 X-axis movements are performed.

以上のようなX、  Y軸移動によりカッタ位置決め及
び四角形切削送りが行われ、X軸移動により座ぐり深さ
までの切削送りが行われる。
The cutter positioning and rectangular cutting feed are performed by moving the X and Y axes as described above, and cutting feed to the counterbore depth is performed by moving the X axis.

このとき、x、y、zモータ33,37.38は、加工
指令データが入力された数値制御装置40からの信号が
、インタフェースケーブル41を介して与えられること
によって駆動制御される。
At this time, the x, y, and z motors 33, 37, and 38 are driven and controlled by being supplied with a signal from the numerical control device 40 to which machining command data is input via the interface cable 41.

ここで、上述加工機を用いて第2図に示した連続塵ぐり
加工を行う場合の手順の一例を、第4図のフローチャー
トに示しておく。
Here, an example of the procedure when performing the continuous dust boring process shown in FIG. 2 using the above-mentioned processing machine is shown in the flowchart of FIG. 4.

なお上述実施例では、本発明を座くり加工に適用した場
合について説明したが、これのみに限られることばない
。例えば、X軸移動を基板板厚以上として、本発明を抜
き加工に適用してもよく、これによれば、プレスによる
抜き加工に比べて切り粉(切り片)は小さくなり、排出
が容易になる。
In the above-described embodiments, the present invention is applied to counterbore machining, but the present invention is not limited to this. For example, the present invention may be applied to punching by setting the X-axis movement to be greater than or equal to the thickness of the substrate. According to this, the chips (slices) are smaller and can be easily discharged compared to punching using a press. Become.

また四角形加工において、コーナアールを設けるか否か
については任意である。さらに四角形加工に限定される
こともない。
In addition, in rectangular machining, it is optional whether or not to provide a corner radius. Furthermore, it is not limited to rectangular processing.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、工具の移動につき、いちいちデータを
作成する必要はなくなり、加工指令データの作成が極め
て容易になるという効果がある。
According to the present invention, there is no need to create data for each movement of a tool, and the creation of machining command data is extremely easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例の説明図、第2図は本発
明方法により多数の四角形座ぐり部を加工した基板の一
例を示す平面図、第3図は本発明方法が適用される数値
制御基板加工機の一例を示す構成図、第4図は同上加工
機を用いて第2図に示した連続塵ぐり加工を行う場合の
手順の一例を示すフロチャートである。 11・・・四角形、12・・・カンタ、13・・・カッ
タ軌跡、14・・・加工終了位置、X・・・X軸、Y・
・・Y軸、0・・・加工開始位置、H・・・四角形縦寸
法、B・・・四角形横寸法、P・・・切込み量最大値、
D・・・カッタ径、R・・・コーナアール、P′・・・
最終周回への切込み量。
FIG. 1 is an explanatory diagram of one embodiment of the method of the present invention, FIG. 2 is a plan view showing an example of a substrate with a large number of rectangular counterbore portions processed by the method of the present invention, and FIG. 3 is an explanatory diagram of an embodiment of the method of the present invention. FIG. 4 is a flowchart showing an example of the procedure for performing the continuous boring process shown in FIG. 2 using the same processing machine. 11... Rectangle, 12... Canter, 13... Cutter locus, 14... Machining end position, X... X axis, Y...
... Y axis, 0... Machining start position, H... Rectangle vertical dimension, B... Rectangle horizontal dimension, P... Maximum depth of cut,
D...Cutter diameter, R...Corner radius, P'...
Amount of cut to the final lap.

Claims (1)

【特許請求の範囲】[Claims] 1、加工指示データとして入力された加工形状、加工寸
法、加工開始位置、使用工具径の各データに基づいて、
指定された加工領域内における工具の必要周回数、各周
回毎の工具の移動量、及び移動軌跡を求め、その結果に
基づいて、被加工物と工具を相対移動させて加工するこ
とを特徴とする加工方法。
1. Based on the machining shape, machining dimensions, machining start position, and tool diameter input as machining instruction data,
It is characterized by determining the required number of revolutions of the tool within a specified machining area, the amount of movement of the tool for each revolution, and the movement trajectory, and then machining by moving the workpiece and tool relative to each other based on the results. processing method.
JP13613489A 1989-05-31 1989-05-31 Working method Pending JPH033749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13613489A JPH033749A (en) 1989-05-31 1989-05-31 Working method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13613489A JPH033749A (en) 1989-05-31 1989-05-31 Working method

Publications (1)

Publication Number Publication Date
JPH033749A true JPH033749A (en) 1991-01-09

Family

ID=15168103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13613489A Pending JPH033749A (en) 1989-05-31 1989-05-31 Working method

Country Status (1)

Country Link
JP (1) JPH033749A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067064A1 (en) * 2018-09-28 2020-04-02 Jfeスチール株式会社 Long steel pipe for reel method and manufacturing method for same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067064A1 (en) * 2018-09-28 2020-04-02 Jfeスチール株式会社 Long steel pipe for reel method and manufacturing method for same

Similar Documents

Publication Publication Date Title
KR101715195B1 (en) Workpiece machining method, machine tool, tool path-generating device and tool path-generating program
JPS6336524B2 (en)
JP2002011617A (en) Machine tool
JPH11161316A (en) Milling device with nuerical controller, storage medium where program for calculating movement data of cutting blade is recorded, and storage medium where movement data of cutting blade is recorded
JPH033749A (en) Working method
JPH0720920A (en) Method for generating tool track data
JP3202068B2 (en) Method of creating tool movement path for NC machining
EP0365001A2 (en) Method and apparatus for the three-dimensional processing
JPH06312347A (en) Nc machine tool
JPH10124129A (en) Numerical control data producing device, producing method, and recording medium for cutting work machine
JPH10118889A (en) Method for determining cutting condition
JP3248081B2 (en) Automatic program creation device with automatic cutting axis change function
JP7175340B2 (en) Machine tools, information processing devices and information processing programs
CN109270890B (en) Workpiece turning method and turning control system
JP2003295918A (en) Machine tool control device, machine tool control method, and program
JPH09314410A (en) Method for spot facing with numerical control system
JPH05346814A (en) Three-dimensional machining method
KR100246885B1 (en) Numerical controlled machining apparatus and method for edge cut-off
JP3035946B2 (en) Axial feed speed control method in axial feed cutting
JPS62140751A (en) Setting method for machining region of copying milling cutter
JPS6274549A (en) Device for making machining program in machining device
JP2846885B2 (en) NC data creation device
JPH06262484A (en) Feed control device for numerically controlled machine tool
JPS61286905A (en) Automatic converter for coordinate axes
JPH01205954A (en) Automatic determination device for tool route of machine tool