JPS61286905A - Automatic converter for coordinate axes - Google Patents

Automatic converter for coordinate axes

Info

Publication number
JPS61286905A
JPS61286905A JP12924785A JP12924785A JPS61286905A JP S61286905 A JPS61286905 A JP S61286905A JP 12924785 A JP12924785 A JP 12924785A JP 12924785 A JP12924785 A JP 12924785A JP S61286905 A JPS61286905 A JP S61286905A
Authority
JP
Japan
Prior art keywords
axis
motor
gate
working
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12924785A
Other languages
Japanese (ja)
Other versions
JP2559211B2 (en
Inventor
Takeomi Kikuchi
菊地 武臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Seiki Co Ltd
Original Assignee
Hitachi Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiki Co Ltd filed Critical Hitachi Seiki Co Ltd
Priority to JP60129247A priority Critical patent/JP2559211B2/en
Publication of JPS61286905A publication Critical patent/JPS61286905A/en
Application granted granted Critical
Publication of JP2559211B2 publication Critical patent/JP2559211B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To remove misprogramming and to shorten a working time by automatically replacing coordinate axes in accordance with a tool selected in each working surface in a five-surface working machine or the like. CONSTITUTION:The titled device is provided with an NC workingprogram memory 112 for controlling the working of a working machine and an interpolartor 113 coupled with motors M1-M3 for driving respective axes. In addition, an axis selecting circuit 114 for making plural axes correspond to each other by a surface access command accessed from the memory 112 interlocking with the interpolator 113 and a circuit for determining a positive/ negative on the basis of the combination of the surface access command used at the time of surface access and respective axis signals outputted from the circuit 114 are also arranged. Consequently, the coordinate axes can be automatically replaced in accordance with a tool selected in each working surface and misprogramming can be removed. In addition, the working time for programming can be sharply shortened.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は加工機械例えば工作機械の5面加工機における
座標軸自動変換装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to an automatic coordinate axis conversion device in a processing machine, such as a five-sided processing machine of a machine tool.

〈従来の技術〉 従来、5面加工門形マニシングセンタで加工を行う場合
、作業者(以下オペレータという。)は加工面が変るた
びに座標軸を頭の中で切換えて例えば画面上でプログラ
ミング作業を行っている。
<Conventional technology> Conventionally, when machining is performed using a five-sided double-column machining center, a worker (hereinafter referred to as an operator) changes the coordinate axes in his head every time the machining surface changes, and performs programming on the screen, for example. It is carried out.

〈発明が解決しようとする問題点〉 しかしながら、オペレータが前述した如(頭の中で考え
ながらプログラミング作業を行っているため、誤りが生
じ易く、相当の作業時間を要すると共に、プログラミン
グミスが生じ易い、このため工具との衝突による破損事
故につながるという問題があった。
<Problems to be solved by the invention> However, as mentioned above, since the operator performs programming while thinking in his/her head, it is easy for errors to occur, a considerable amount of work time is required, and programming errors are likely to occur. Therefore, there was a problem in that it could lead to damage accidents due to collisions with tools.

本発明の目的は上記事情に鑑み問題を解決するために提
案されたものであって、加工面毎に選択される工具に対
応して座標軸を自動的に置き換えることにより、プログ
ラミングミスの解消と作業時間の短縮化を図った座標軸
自動変換装置を提供するにある。
The purpose of the present invention was proposed in order to solve the problem in view of the above circumstances, and by automatically replacing the coordinate axes in accordance with the tool selected for each machining surface, it is possible to eliminate programming errors and improve workability. An object of the present invention is to provide a coordinate axis automatic conversion device that saves time.

く問題を解消するための手段と作用〉 本発明は加工機械例えば5面加工機における座標軸変換
を手動から自動的に行うように改良したものであって、
その手段は加工機の加工を制御するNC加工プログラム
・メモリと、各軸を駆動せしめるモータに連結された補
間器と、該補間器に連携して前記NC加工プログラム・
メモリから呼び出される面呼び出し指令で複数軸の対応
を図った軸選択回路と、面呼び出しをした時の面呼び出
し指令と軸選択回路からの各軸の信号との組合せで正負
を決定する符号決定回路とから構成された点にある。
Means and Effects for Solving Problems> The present invention is an improvement in which the coordinate axis conversion in a processing machine, for example, a five-sided processing machine, is performed automatically instead of manually.
The means includes an NC machining program memory that controls the machining of the processing machine, an interpolator connected to a motor that drives each axis, and the NC machining program memory that cooperates with the interpolator.
An axis selection circuit that supports multiple axes using a surface call command called from memory, and a sign determination circuit that determines the positive or negative by a combination of the surface call command when a surface is called and the signal for each axis from the axis selection circuit. It is a point composed of.

而して、本発明の装置により加工面毎に選択される工具
に対応して座標軸を自動的に置き換えられる。
Thus, the apparatus of the present invention allows the coordinate axes to be automatically replaced in accordance with the tool selected for each machined surface.

〈実施例〉 以下本発明の一実施態様を図面に基づいて詳細に説明す
る。
<Example> Hereinafter, one embodiment of the present invention will be described in detail based on the drawings.

(1)  まず本発明の装置に使用される5面加工機お
ける座標軸変換の基本的な考え方について説明する。
(1) First, the basic concept of coordinate axis transformation in the five-sided machining machine used in the apparatus of the present invention will be explained.

第1図は5面加工門形マシニングセンタの主軸ヘッド部
を拡大した斜視図である。
FIG. 1 is an enlarged perspective view of the spindle head of a five-sided double-column machining center.

第1図において、門形に形成されたコラム100の前面
にクロスレール101が取付けられ、該クロスレール1
01はZ軸方向に移動される。
In FIG. 1, a cross rail 101 is attached to the front side of a column 100 formed in a portal shape.
01 is moved in the Z-axis direction.

該クロスレール101には主軸ヘッド102がY軸方向
に移動するように取付けられている。ベラ・ド(囲路)
上にはワークWを載置するテーブル103が設けられ、
該テーブル103はX軸方向に移動される。
A spindle head 102 is attached to the cross rail 101 so as to move in the Y-axis direction. Vera do (enclosure)
A table 103 on which a workpiece W is placed is provided above,
The table 103 is moved in the X-axis direction.

主軸ヘッド102の先端部にはインデックスヘッド10
4が取付けられ、5面加工が出来るように工具Tが5本
取付けられる。すなわち第1図に示す如く、インデック
スヘッド104の5面に各工具T90.T91.T92
.T93およびT94が取付けられる。テーブル103
上には、加工すべきワークWが!置され、ワークWの面
を図の如く0面、1面、2面、3面および4面とする。
An index head 10 is located at the tip of the spindle head 102.
4 is attached, and five tools T are attached so that five-sided machining can be performed. That is, as shown in FIG. 1, each tool T90. T91. T92
.. T93 and T94 are installed. table 103
Above is the workpiece W to be processed! The surfaces of the work W are 0, 1, 2, 3 and 4 as shown in the figure.

工具T90でワークWの0面、Te3でワークWの1面
、工具T92でワークWの2面、工具T93でワークW
の3面および工具T94でワークWの4面を加工するも
のと定義づける。
Tool T90 is the 0th side of the workpiece W, Te3 is the 1st side of the workpiece W, tool T92 is the 2nd side of the workpiece W, tool T93 is the workpiece W
It is defined that four surfaces of the work W are to be machined using the three surfaces and the tool T94.

今オペレータがワークWの0面をプログラミングする場
合、ワークを取付けるテーブル水平面に向って直交する
方向をZ軸として、上部を+Z軸とし、下部を−Z軸と
する。作業者側から見てワークに向う左右方向をX軸と
し、右方向を+X軸、左方向を−X軸とする。さらに作
業者側からみてワークに向って前後方向をY軸とし、奥
の方向を+Y方向手前側を−Y軸とする。
When the operator programs the zero surface of the workpiece W, the Z-axis is the direction perpendicular to the horizontal plane of the table on which the workpiece is attached, the upper part is the +Z-axis, and the lower part is the -Z-axis. The left and right direction toward the workpiece as seen from the operator's side is the X axis, the right direction is the +X axis, and the left direction is the -X axis. Further, when viewed from the operator side, the front and back direction toward the workpiece is the Y axis, the back direction is +Y, and the front side is the -Y axis.

このように、ワークWの0面と同様に1面、2面、3面
および4面についてオペレータがワークWの各面に向っ
て直交する方向をZ軸、左右方向をX軸および上下方向
をY軸方向として考え、プログラミングする際各モータ
の軸に変換して行なう必要があった。
In this way, for the 1st, 2nd, 3rd, and 4th surfaces of the workpiece W as well as the 0th surface, the operator points the direction perpendicular to each surface of the workpiece W to the Z-axis, the left-right direction to the X-axis, and the vertical direction to the It was considered as the Y-axis direction, and when programming, it was necessary to convert it to the axis of each motor.

すなわち図に示した如く、各面の各軸を○印で付した方
向に変換しなければならない。このO印で付した変換方
向の1面から4面を0面を基準にして整理すれば、次の
如くとなる。
That is, as shown in the figure, each axis of each surface must be converted to the direction marked with a circle. If planes 1 to 4 in the conversion direction marked with O are arranged with plane 0 as a reference, the result will be as follows.

(M+ 、Mt 1M3はモータ軸を表わす、)(2)
  上記に示した如く、各面の座標軸を自動的に変換さ
せようとする点が本発明の要旨であり、その具体的な構
成について次に説明する。
(M+, Mt 1M3 represents the motor shaft,) (2)
As shown above, the gist of the present invention is to automatically convert the coordinate axes of each surface, and the specific configuration thereof will be described next.

本発明の構成は加工機の加工を制御するNC加工プログ
ラム・メモリと、各軸を駆動せしめるモータに連結され
た補間器と、該補間器に連携して前記NC加工プログラ
ム・メモリから呼び出される面呼び出し指令で複数軸の
対応を図った軸選択回路と、面呼び出しをした時の面呼
び出し指令と軸選択回路からの各軸の信号との組合せで
正負を決定する符号決定回路とからなる。
The configuration of the present invention includes an NC machining program memory that controls machining by a processing machine, an interpolator connected to a motor that drives each axis, and a surface called from the NC machining program memory in cooperation with the interpolator. It consists of an axis selection circuit that handles multiple axes using a call command, and a sign determination circuit that determines the sign of each axis based on a combination of the surface call command when a surface is called and the signal for each axis from the axis selection circuit.

第2図(イ)および(ロ)は本発明の構成を示すブロッ
ク図である。第2図(イ)および(ロ)において、CP
UI 10に画面付キーボード111から入力回路11
1aを経て予め必要な入力データを入力する。また5面
加工機で加工を施すNCデータ・プログラムがNCデー
タ・プログラム・メモリ112に記憶される。5面加工
機を駆動するモータ例えばX軸層モータM、、Y軸周モ
ータM2およびZ軸周モータM3がアンプを介して補間
器113に接続され、さらに該補間器113から軸選択
回路114を経てCPUI 10に接続され、Z軸、Y
軸およびZ軸方向に加工機が移動される。
FIGS. 2(A) and 2(B) are block diagrams showing the configuration of the present invention. In Figure 2 (a) and (b), CP
Input circuit 11 from keyboard with screen 111 to UI 10
1a, necessary input data is input in advance. Further, an NC data program for machining with a five-sided machining machine is stored in the NC data program memory 112. Motors that drive the five-sided machining machine, such as an X-axis layer motor M, a Y-axis circumferential motor M2, and a Z-axis circumferential motor M3, are connected to an interpolator 113 via an amplifier, and an axis selection circuit 114 is connected from the interpolator 113. connected to CPU 10 through Z-axis, Y-axis
The processing machine is moved in the axial and Z-axis directions.

補間器113にはX軸層モータMlの補間器PM、、Y
軸用モー軸間モータ間器PMgおよびZ軸周モータM、
の補間器PM、が内蔵されている。軸選択回路114に
X軸層モータM、の軸選択回路AX、、Y軸用モー軸間
モータ選択回路AXtおよびZ軸周モータM、の軸選択
回路A X 3が夫々各モータに接続される。
The interpolator 113 includes interpolators PM, , Y for the X-axis layer motor Ml.
Axis motor inter-shaft motor unit PMg and Z-axis circumferential motor M,
It has a built-in interpolator PM. To the axis selection circuit 114, an axis selection circuit AX for the X-axis layer motor M, a Y-axis inter-axis motor selection circuit AXt, and an axis selection circuit AX3 for the Z-axis peripheral motor M are connected to each motor. .

5面の各面を呼び出す為の演算回路115があり、該演
算回路115で工具番号TNOから90を引いた値すな
わち0,1.2.3および4を指令するための演算を行
い、各面0.1,2.3および4を指令する。次にX軸
Y軸およびZ軸を選択するための夫々のX軸しジスタ1
16.Y軸しジスタ117およびZ軸しジスタ118か
らアンドゲート119からアンド・ゲート125までの
夫々のアンド・ゲートへ信号を取り込む。
There is an arithmetic circuit 115 for calling each of the five surfaces, and the arithmetic circuit 115 performs arithmetic operations to command the value obtained by subtracting 90 from the tool number TNO, that is, 0, 1, 2, 3, and 4, and Command 0.1, 2.3 and 4. Next, press the respective X-axis register 1 to select the X-axis, Y-axis, and Z-axis.
16. Signals are taken in from the Y-axis register 117 and the Z-axis register 118 to the AND gates 119 to 125, respectively.

アンド・ゲート119はX軸しジスタ116からX信号
を取り込み、それに伴い0面、1面および3面からの指
令信号を取り込んで、X軸層モータM、の軸選択回路A
X、に信号を送る。アンドゲート125はX軸しジスタ
116からのX信号および2面および4面の指令信号を
取り込んで、X軸層モータM、の軸選択回路AX、へ信
号を送る。
The AND gate 119 takes in the X signal from the X-axis register 116, and accordingly takes in the command signals from the 0th, 1st, and 3rd surfaces, and selects the axis selection circuit A of the X-axis layer motor M.
Send a signal to X. The AND gate 125 takes in the X signal from the X-axis register 116 and the second and fourth plane command signals, and sends the signals to the axis selection circuit AX of the X-axis layer motor M.

Y軸しジスタ117からのX信号はアンド・ゲート12
0.アンド・ゲート121およびアンド・ゲート124
に取込まれる。アンド・ゲート120には2面および4
面の指令信号を取り込んでゲートを開きY軸周モータM
2の軸選択回路A X zへ信号を送る。
The X signal from the Y-axis register 117 is connected to the AND gate 12.
0. AND gate 121 and AND gate 124
be taken into account. AND gate 120 has 2 sides and 4 sides.
The Y-axis circumferential motor M receives the surface command signal and opens the gate.
A signal is sent to the axis selection circuit A X z of No. 2.

アンド・ゲート121には0面の指令信号を取り込みY
軸周モータMzの軸選択回路A X tへ信号を送る。
The AND gate 121 receives the command signal of the 0 side and Y
A signal is sent to the axis selection circuit A X t of the shaft circumferential motor Mz.

アンド・ゲート124には1面および3面の指令信号を
取り込みY軸周モータM2の軸選択回路AX、へ信号を
送る。
The AND gate 124 receives command signals for the first and third surfaces and sends signals to the axis selection circuit AX of the Y-axis circumferential motor M2.

Z軸しジスタ118からの2信号はアンド・ゲート12
2およびアンド・ゲート123を開かせる。アンド・ゲ
ート122には1面、2面、3面および4面の指令信号
を取り込みZ軸周モータM3の軸選択回路A X sへ
信号を送る。
The two signals from the Z-axis register 118 are connected to the AND gate 12.
2 and AND gate 123 are opened. The AND gate 122 receives command signals for the 1st, 2nd, 3rd, and 4th surfaces, and sends the signals to the axis selection circuit A.sub.Xs of the Z-axis circumferential motor M3.

アンド・ゲート123には0面の指令信号を取り込みZ
軸周モータM3の軸選択回路A X sへ信号を送る。
The AND gate 123 receives the command signal of the 0 plane and Z
A signal is sent to the axis selection circuit A X s of the axial motor M3.

これらのすべての信号を軸選択回路114へ送ると前述
した表の符号を除いた状態に変換される。さらにアンド
・ゲート119を通過したX軸周モータM1の各面およ
びアンド・ゲート120を通過したY軸周モータM2の
各面の指およびアンド・ゲート127を開かせる。アン
ド・ゲート121を通過したY軸周モータM2の各面お
よびアンド・ゲート122を通過したZ軸層モアンド・
ゲート128を開かさせる。
When all these signals are sent to the axis selection circuit 114, they are converted into a state in which the symbols in the table described above are excluded. Furthermore, fingers on each surface of the X-axis circumferential motor M1 that has passed through the AND gate 119 and each surface of the Y-axis circumferential motor M2 that has passed through the AND gate 120 and the AND gate 127 are opened. Each surface of the Y-axis circumference motor M2 that has passed through the AND gate 121 and the Z-axis circumference motor M2 that has passed through the AND gate 122
The gate 128 is opened.

アンド・ゲート123を通過したZ軸周モータM3の0
面、アンド・ゲート124を通過したY軸周モータM2
の各面およびアンド・ゲート125を通過したX軸周モ
ータM1の各面の指令よびアンド・ゲート130を開か
せる。
0 of Z-axis peripheral motor M3 that passed through AND gate 123
Y-axis circumferential motor M2 that has passed through the AND gate 124
and each surface of the X-axis circumferential motor M1 that has passed through the AND gate 125 and the AND gate 130 is opened.

プラスレジスタ131からの信号がアンド・ゲート12
6.アンド・ゲート128およびアンド・ゲート130
に取り込む。又マイナスレジスタ132からの信号がア
ンド・ゲート127およびアンド・ゲート129に取り
込む。
The signal from the plus register 131 is input to the AND gate 12
6. AND GATE 128 and AND GATE 130
Incorporate into. Also, a signal from minus register 132 is taken into AND gate 127 and AND gate 129.

各面の信号のうち0面、1面および2面からの指令信号
がアンド・ゲート126に取り込むことによって各プラ
スの信号、を補間器PM、へ送る。
The command signals from the 0th, 1st, and 2nd sides of the signals on each side are taken into the AND gate 126, thereby sending each positive signal to the interpolator PM.

0面、1面、2面、3面および4面からの指令信号がア
ンド・ゲート128に取り込むことによって各プラスの
信号を補間器P M zへ送る。さらに0面、2面およ
び3面からの指令信号がアンド・ゲート130に取り込
むことによって各プラスの信号を補間器PMsへ送る。
Command signals from the 0th, 1st, 2nd, 3rd, and 4th planes are taken into the AND gate 128, thereby sending each positive signal to the interpolator P M z. Furthermore, the command signals from the 0th, 2nd, and 3rd surfaces are taken into the AND gate 130, thereby sending each positive signal to the interpolator PMs.

3面および4面からの指令信号がアンド・ゲート127
に取り込むことによって各アイナスの信号をPM、へ送
る。。
Command signals from 3rd and 4th sides are AND gate 127
The signal of each inus is sent to the PM. .

1面および4面の指令信号がアンド・ゲート129に取
り込むことによって各マイナスの信号をP M sへ送
る。
The command signals of the first and fourth planes are taken into the AND gate 129, thereby sending each negative signal to the P M s.

而して各面における座標軸がプラスおよびマイナスの符
号を付して前述した表の如く変換される。
Then, the coordinate axes on each plane are converted with plus and minus signs as shown in the table described above.

(3)  本発明の動作を第3図のフローチャート図に
基づいて説明する0画面付キーボード111から予め座
標軸変換用のデータを入力して本発明の装置における座
標軸を変換し作動を開始せしめると、まず0面において
はYESであればT2Oの工具がM、モータで+X軸1
Mtモータで+Y軸およびM3モータで+2軸が制御さ
れる。0面でNOであれば1面に移り、1面においては
YESであれば工具T91でM、モータでは+X軸、M
tモータでは−Y軸、およびM、モータでは+Z軸に変
換制御される。1面においてNOのときは、2面に移り
、2面においてはYESであれば工具T92でM、モー
タでは+X軸、Mlモータでは+Y軸、Mzモータでは
+Y軸およびMzモータでは+Z軸の座標軸に変換され
制御される。
(3) The operation of the present invention will be explained based on the flowchart of FIG. 3. Data for coordinate axis conversion is entered in advance from the keyboard with screen 111 to convert the coordinate axes in the apparatus of the present invention and start the operation. First, on the 0th plane, if YES, the T2O tool is M, and the motor is +X axis 1.
The Mt motor controls the +Y axis and the M3 motor controls the +2 axis. If it is NO on the 0th side, move to the 1st side, and if it is YES on the 1st side, use the tool T91, M, and the motor +X axis, M.
The t motor is controlled to be converted to the -Y axis and the M motor is controlled to be converted to the +Z axis. If NO on the 1st surface, move to the 2nd surface, and if YES on the 2nd surface, the coordinate axis is M with the tool T92, the +X axis for the motor, the +Y axis for the Ml motor, the +Y axis for the Mz motor, and the +Z axis for the Mz motor. converted and controlled.

2面でNoのときは3面に移り、3面においてはYES
であれば、M+モータでは−X軸1M2モータでは+Y
軸およびM、モータでは+2軸の座標軸に変換制御され
る。3面でNOのときは4面に移り、4面においてYE
SであればM1モータでは−X軸1Mtモータでは−Y
軸およびM。
If no on the 2nd page, move on to the 3rd page, YES on the 3rd page
If so, -X axis for M+ motor and +Y for 1M2 motor
The axis, M, and motor are controlled to be converted into +2 coordinate axes. If NO on the 3rd page, move on to the 4th page, YES on the 4th page.
If S, then -X axis for M1 motor -Y for 1Mt motor
Axis and M.

モータでは+Z軸の座標軸に変換され制御される。In the motor, it is converted to the +Z-axis coordinate axis and controlled.

4面でNoのときはアラームが発せられ、0面から4面
までの1通りの座標軸の変換が終了する。
If No for the 4th plane, an alarm is issued and one coordinate axis conversion from the 0th plane to the 4th plane is completed.

く効 果〉 本発明は加工面毎に選択される工具に対応して座標軸の
変換を自動的に行えるようにしたので、オペレータがプ
ログラミングする際オペレータ自らが頭の中で座標軸を
変換する必要がないから、プログラミングによるミスが
解消される。さらにプログラミングする作業時間が大巾
に短縮され、延いては作業能率の向上につながり非常に
有効である。
Effects> The present invention makes it possible to automatically convert the coordinate axes according to the tool selected for each machining surface, so there is no need for the operator to convert the coordinate axes in his or her head when programming. This eliminates programming errors. Furthermore, the programming work time is greatly shortened, which in turn leads to improved work efficiency, which is very effective.

プログラミングのミスが解消されるので工具との衝突に
よる破損事故は皆無となる。
Since programming errors are eliminated, there are no accidents caused by collisions with tools.

尚、加工機の種類として5面加工機を対象に述べて来た
がこれに限定されず、例えば立形マシニングセンタの主
軸端に立、横軸に設けた割出し可能な主軸に加工工具を
挿着した加工ヘッドで加工を施しても良い。
Although we have described the type of processing machine as a five-sided processing machine, it is not limited to this. For example, a processing tool can be inserted into an indexable main spindle that is installed at the end of the main spindle of a vertical machining center or on the horizontal axis. Processing may be performed using the attached processing head.

さらにロボット等の座標軸変換装置としても適用出来る
Furthermore, it can be applied as a coordinate axis conversion device for robots, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は5面加工門形マシニングセンタの主軸ヘッド部
を拡大した斜視図である。第2図(イ)および(ロ)は
本発明の構成を示すブロック図である。第3図は本発明
の詳細な説明するフローチャート図である。 lOO・・・コラム     100・・・クロスレー
ル102・・・主軸ヘッド   103・・・テーブル
104・・・インデックスヘッド W・・・ワーク      110・・・CPU112
・・・NG加工データ・プログラム・メモリ113・・
・補間器     114・・・軸選択回路115・・
・演算回路
FIG. 1 is an enlarged perspective view of the spindle head of a five-sided double-column machining center. FIGS. 2(A) and 2(B) are block diagrams showing the configuration of the present invention. FIG. 3 is a flowchart diagram illustrating the present invention in detail. lOO... Column 100... Cross rail 102... Spindle head 103... Table 104... Index head W... Work 110... CPU 112
...NG processing data/program memory 113...
・Interpolator 114...Axis selection circuit 115...
・Arithmetic circuit

Claims (1)

【特許請求の範囲】[Claims] ワークと対向する主軸軸線と直交する平面内を夫々の相
対的な移動で加工を施す加工機械において、前記主軸の
先端に該主軸軸線と直交する方向に該方向を平面内で旋
回割出し可能な工具主軸と、該加工機の加工を制御する
NC加工プログラム・メモリと、各軸を駆動せしめるモ
ータに連結された補間器と、該補間器に連携して前記N
C加工プログラム・メモリから呼び出される面呼び出し
指令で複数軸の対応を図った軸選択回路と、面呼び出し
をした時の面呼び出し指令と軸選択回路からの各軸の信
号との組合せで正負を決定する符号決定回路とからなり
、加工面毎に選択される工具に対応して座標軸を自動的
に置き換えることを特徴とする座標軸自動変換装置。
In a processing machine that performs processing by relative movement in a plane perpendicular to a spindle axis facing a workpiece, the tip of the spindle is capable of turning and indexing in a plane in a direction perpendicular to the spindle axis. A tool main axis, an NC machining program memory that controls the machining of the processing machine, an interpolator connected to a motor that drives each axis, and the N
An axis selection circuit that supports multiple axes with a surface call command called from the C machining program memory, and a combination of the surface call command when a surface is called and the signal for each axis from the axis selection circuit determines the positive or negative. 1. An automatic coordinate axis conversion device comprising a code determination circuit for automatically replacing coordinate axes in accordance with a tool selected for each machining surface.
JP60129247A 1985-06-14 1985-06-14 Automatic coordinate axis conversion device Expired - Lifetime JP2559211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60129247A JP2559211B2 (en) 1985-06-14 1985-06-14 Automatic coordinate axis conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60129247A JP2559211B2 (en) 1985-06-14 1985-06-14 Automatic coordinate axis conversion device

Publications (2)

Publication Number Publication Date
JPS61286905A true JPS61286905A (en) 1986-12-17
JP2559211B2 JP2559211B2 (en) 1996-12-04

Family

ID=15004842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60129247A Expired - Lifetime JP2559211B2 (en) 1985-06-14 1985-06-14 Automatic coordinate axis conversion device

Country Status (1)

Country Link
JP (1) JP2559211B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272305A (en) * 1986-05-21 1987-11-26 Mitsubishi Electric Corp Numerical controller
JPH02269541A (en) * 1989-04-11 1990-11-02 Yamazaki Mazak Corp Working control method in five planes working machine
JPH04237307A (en) * 1991-01-22 1992-08-25 Hitachi Seiki Co Ltd Automatic transformation device for coordinate axis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151101A (en) * 1982-03-03 1983-09-08 Nec Corp High frequency window for microwave tube
JPS58165112A (en) * 1982-03-25 1983-09-30 Mitsubishi Electric Corp Numerical control working system
JPS58181107A (en) * 1982-04-15 1983-10-22 Osaka Kiko Co Ltd Automatic programming device of compound work

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151101A (en) * 1982-03-03 1983-09-08 Nec Corp High frequency window for microwave tube
JPS58165112A (en) * 1982-03-25 1983-09-30 Mitsubishi Electric Corp Numerical control working system
JPS58181107A (en) * 1982-04-15 1983-10-22 Osaka Kiko Co Ltd Automatic programming device of compound work

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272305A (en) * 1986-05-21 1987-11-26 Mitsubishi Electric Corp Numerical controller
JPH02269541A (en) * 1989-04-11 1990-11-02 Yamazaki Mazak Corp Working control method in five planes working machine
JPH04237307A (en) * 1991-01-22 1992-08-25 Hitachi Seiki Co Ltd Automatic transformation device for coordinate axis

Also Published As

Publication number Publication date
JP2559211B2 (en) 1996-12-04

Similar Documents

Publication Publication Date Title
US4489377A (en) Method for preventing machine component interference
JPS6257852A (en) Automatic programming device
JPH01217605A (en) Numerical controller for multiaxis/multisystem machine tool
EP0407589B1 (en) Nc instruction system
JPS62163109A (en) Numerical controller
JPS61286905A (en) Automatic converter for coordinate axes
JP4531297B2 (en) 6-axis control NC program generation method and generation apparatus, 6-axis control NC program generation program, and computer-readable recording medium storing the program
JPH01193146A (en) Numerically controlled machine
JP2733714B2 (en) Automatic coordinate axis conversion method for machine tools
JP3049627B2 (en) Combined machine tool
JPH04129645A (en) Simultaneous processing method for numerical control lathe
JP4469488B2 (en) Setting method of tool edge position in machine tool
JPH0360620B2 (en)
JPH05108134A (en) Coordinates converting method for dividing correspondence of main axis
JP2843180B2 (en) Group management control method
JP2024030761A (en) Information processing device and information processing program
JPS6254604A (en) Controlling method for setting of work piece coordinate system
JPS62176733A (en) Machining center with manufacturing unit
JPS60222904A (en) Control method of coordinate system conversion of numerically controlled lathe
JPH03246707A (en) Position correcting system by systems
JPH02180536A (en) Machining center having plural main shafts
JPS60201852A (en) Control method of automatic tool replacing position in machining center
JPH04131909A (en) Setting method for machining coordinate system of numerically controlled combination lathe
JPH05346814A (en) Three-dimensional machining method
Milner et al. Numerical control