JPH0337499B2 - - Google Patents

Info

Publication number
JPH0337499B2
JPH0337499B2 JP57122380A JP12238082A JPH0337499B2 JP H0337499 B2 JPH0337499 B2 JP H0337499B2 JP 57122380 A JP57122380 A JP 57122380A JP 12238082 A JP12238082 A JP 12238082A JP H0337499 B2 JPH0337499 B2 JP H0337499B2
Authority
JP
Japan
Prior art keywords
foam
resin
foaming machine
air
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57122380A
Other languages
Japanese (ja)
Other versions
JPS5912819A (en
Inventor
Mikio Kitahara
Tadashi Ishioka
Muneo Nagaoka
Masaichi Izumida
Yukinari Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP57122380A priority Critical patent/JPS5912819A/en
Publication of JPS5912819A publication Critical patent/JPS5912819A/en
Publication of JPH0337499B2 publication Critical patent/JPH0337499B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7404Mixing devices specially adapted for foamable substances
    • B29B7/7409Mixing devices specially adapted for foamable substances with supply of gas
    • B29B7/7419Mixing devices specially adapted for foamable substances with supply of gas with static or injector mixer elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/235Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids for making foam

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は樹脂高発泡体の製造方法に関する。 一般に、合成樹脂発泡体は断熱材としてすぐれ
た性能を有しており、建築物、冷蔵庫等に広く利
用されており、近年の石油不足による省資源、省
エネルギーの必要性に適合するものとしてさらに
大きな需要が見込まれている。また省資源の意味
から高発泡倍率の発泡体(低密度発泡体)(以下
単に高発泡体という。)に対する要求が強まつて
いる状況にある。 特に、水溶性又は水分散性を有する熱硬化性樹
脂(以下、親水性熱硬化性樹脂という。)は、空
気を発泡体とした発泡方法が可能で、しかもこの
方法では発泡機より吐出後殆んど体積膨張がな
く、品質の管理が容易である。この様に空気を発
泡剤とするため製造コストも安く、作業性も良い
こと等から親水性硬化性樹脂に対する要望は大で
ある。 従来、たとえば尿素樹脂発泡体の製造方法とし
ては発泡機内で界面活性剤を含有する酸性硬化液
よりなる起泡液に空気を吹き込み含泡状態とした
後、これに尿素樹脂初期縮合物を主体とする樹脂
液をスプレーし、その後発泡機より吐出するいわ
ゆるスプレー法が一般的であつた。しかしなが
ら、この場合の不揮発分は、通常高々20重量%ま
でしか上げられず、発泡後、発泡体より水が浸み
出して他の基材、たとえばパネル等を汚染し、又
乾燥に長時間を要する欠点があつた。もし水分減
少のため、不揮発分を増加させると得られた発泡
体に空隙が発生し均一発泡体が得られない問題が
あつた。 そこで水分の浸み出ない不揮発分濃度は少なく
とも30重量%であるので、このような高濃度の原
料を用いる尿素樹脂発泡体について、スプレー法
を用いず、通常メカニカルフロス発泡機と呼ばれ
る混合機に樹脂原料と硬化剤と空気とを混合し、
空気を樹脂中に均一に分散して含泡状態となし、
メカニカルフロス発泡機より吐出せしめて、その
後硬化が進み発泡体を製造する方法が試みられ
た。しかしながら、かかる製造方法によると、発
泡倍率を高くするにつれて、メカニカルフロス発
泡機より吐出された含泡状物が硬化する前に崩壊
する傾向が強くなる。これは発泡倍率が高くなる
につれて含泡状物の膜厚が薄くなるために硬化が
完了する迄発泡状態を保持できないためと考えら
れる。この現象を解決するためには、硬化時間を
短縮する必要がある。しかしながら、メカニカル
フロス発泡機において多量の空気を均一に発泡せ
しめて発泡倍率を高めるためには、メカニカルフ
ロス発泡機内の滞留時間を長くする必要があり、
硬化時間を短縮させると発泡機内での硬化が起り
運転不能となり、高発泡倍率の発泡体が得られな
い。 本発明者は鋭意研究を重ねた結果、発泡体原料
の組成を限定し、混合機として、特にメカニカル
フロス発泡機を使用することにより発泡機内の硬
化を起さず、水分の浸み出しや空隙の発生のない
尿素樹脂高発泡体を製造しうることを見出し、特
許出願を行つた(特願昭56−138604号)。 すなわち、該発明は尿素樹脂初期縮合物を主体
とする粘度500センチポイズ以下の樹脂液100重量
部、およびPH2.5〜1.0の酸性硬化液10重量部以上
からなる不揮発分30重量%以上の樹脂発泡体原料
と空気とをメカニカルフロス発泡機で機械的に混
合泡立たせ処理して気泡を形成させ、ついで得ら
れた含泡状混合物を該発泡機より吐出させた後硬
化せしめることを特徴とする尿素樹脂発泡体の製
造方法に関するものである。 該発明は、樹脂発泡体原料と空気とをメカニカ
ルフロス発泡機で機械的に混合泡立たせ処理して
気泡を形成させ、これと取り出し硬化させるが、
樹脂発泡体原料の一つである樹脂液は、尿素樹脂
初期縮合物を主体とする粘度500センチポイズ以
下のものである。粘度が500センチポイズ超とな
つたとき、空隙の形成が生じ、均一発泡体が得ら
れなくなるおそれがある。本発明に於る尿素樹脂
初期縮合物は尿素とホルムアルデヒドを反応させ
て得られる水溶性ないし水分散性の反応物であ
り、随意により、メラミン、ジシアンジアミド、
グアナミン、ベンゾグアナミン、フエノール等の
化合物、メタノール、エタノール等の低級アルコ
ール、アセトン等のケトン類、アセトアルデヒド
やグリオキザール等のアルデヒド類の少なくとも
一つを共に反応せしめて変性したものも用い得
る。又、尿素樹脂初期縮合物の貯蔵安定性や発泡
機器の洗浄性を改良するためにメタノール、エタ
ノール、エチレングリコール等の添加剤を含んで
もよい。なお市販のものとしては、たとえばユー
ロイド#120、ユーロフオームR−101(いずれも
三井東圧化学(株)製)などが使用しうる。 他の樹脂発泡体原料の一つである酸性硬化液は
PHが2.5〜1.0、好ましくは1.7〜1.2である。1.7超
では発泡体内に空隙の生ずることがあり、2.5超
では、硬化前に泡が崩壊し発泡体が形成されない
おそれがある。また1.0未満では、発泡機内で部
分硬化が起こり、運転不可能となり易く、長時間
運転が必要な場合には特に1.2以上とすることが
望ましい。この酸性硬化液としては、たとえば、
塩酸、硫酸、りん酸、しゆう酸、パラトルエンス
ルホン酸、それらの塩、酸無水物の水溶液などが
あり、樹脂液100重量部に対して通常10重量部以
上、好ましくは20重量部以上を用いる。 また、樹脂液又は/および硬化液中には界面活
性剤を添加して使用することが好ましい。界面活
性剤としては、たとえばラウリル硫酸アンモニウ
ム、高級アルコール硫酸エステルソーダ、アルキ
ルジフエニルエーテルジスルホン酸ソーダ、ドデ
シルベンゼンスルホン酸ソーダ等の陰イオン界面
活性剤を発泡体原料全量に対して0.2〜5重量%、
通常1〜3重量%程度用いると気泡安定化に特に
効果的である。 その他通常使用される添加剤、たとえばポリビ
ニルアルコール、カルボキシメチルセルロース
(CMC)等の気泡安定性や粘度調整剤、ホルムア
ルデヒド捕集効果のある尿素、レゾルシノールな
どを樹脂発泡体原料中に少量含んでもよい。 樹脂発泡体原料は、水分の浸み出しを避けるた
め不揮発分30重量%以上、好ましくは35〜60重量
%とする。60重量%を超えると、発泡体に空隙が
形成されると共に高密度となり経済的にも不利で
ある。 樹脂発泡体原料と空気とを混合し、気泡を形成
させる混合機としては、特にメカニカルフロス発
泡機が好ましい。たとえば第1図に示すように内
壁に多数の突起2を有する円筒容器内を、多数の
羽根(突起)3を有する回転子4が回転し、羽根
3が突起2に接触することなく突起間を回転子4
の回転と共に回転する構造のメカニカルフロス発
泡機、いわゆるピンミキサー、ホバート型バツチ
ミキサー又はオークス(Oakes)型連続ミキサー
(特公昭40−17143号)等を使用することができ
る。 以上先の発明につき説明したが、先の発明を実
施するに当つて、樹脂発泡体原料の注入にあた
り、主剤(樹脂液)、硬化剤、発泡用エアーの各
成分をシヤフト周辺に設けた注入口より注入する
にあたり、シヤフト部、特に硬化剤入口部分での
詰まりが激しく、組成比の変化や、ゲル化物の混
入、発泡倍率の低下、収率の減少などが起り、製
造および品質の不安定が懸念された。これは、樹
脂発泡体原料の注入口部分では各原料間の混合が
ほとんどなされない為、部分的に硬化剤過剰状態
が発生し、部分硬化が起こるためと考えられる。
硬化剤の酸濃度を低下させ硬化速度を遅くするこ
とにより、硬化剤過剰状態が発生しても、部分硬
化を抑え、詰まり現象を減少させることは出来る
が、この場合、含泡状混合物が発泡機より吐出さ
れた後、硬化するまでの間に泡が崩壊し発泡体が
形成されないおそれがある。以上の様なトラブル
を避けるため、より安定した発泡体の製造方法の
改良が強く望まれていた。 本発明者は上記の様な、硬化剤の部分的過剰状
態を防ぎ、均一な発泡体を得るために、樹脂発泡
体原料の注入方法について種々検討を行ない、硬
化剤と空気とを予じめ混合し、その他の樹脂発泡
体原料とを別個の注入口より注入を行うと、ゲル
化物の混入がなく密度等品質の安定した発泡体が
得られると共に、得られた発泡体の気泡の大きさ
が小さくなり断熱性が著しく向上するという予想
外の成果を達成するに至り、本発明を完成したも
のである。 すなわち、本発明は、樹脂発泡体原料と空気と
をメカニカルフロス発泡機で機械的に混合泡立た
せ処理して気泡を形成させ、ついで得られた含泡
状混合物を該発泡機より吐出させた後硬化せしめ
る高発泡体の製造方法において、樹脂発泡体原料
の一つである硬化剤と空気とを予じめ前混合して
供給することを特徴とする高発泡体の製造方法で
ある。 これを図面により説明する。第1図は先の発明
を実施するに当つて使用したメカニカルフロス発
泡機の断面図で、内壁に多数の突起2を有する円
筒容器内を、多数の羽根(突起)3を有する回転
子4が回転し、羽根3が突起2に接触することな
く突起間を回転子4の回転と共に回転する。 従来は、樹脂発泡体原料の各々が注入口A,
B,Cより別々に注入され、羽根3と突起2の間
で機械的に混合泡立させ処理され含泡状態とな
る。この際注入口付近で硬化剤の過剰状態が発生
しトラブルの原因となる。本発明は、これに対
し、硬化剤と空気とを予じめ前混合する事によ
り、硬化剤の部分的過剰状態を緩和し、またメカ
ニカルフロス発泡機内部での混合を助け、均一で
緻密な発泡体を得ることが出来た。前混合の手段
としては、特にビーズ塔、又は、スプレーノズル
チツプによる方法が良い結果を与える。 第2図はビーズ塔による前混合方法を説明する
縦断面図である。第2図に於いてエアーと硬化剤
は各々ノズル6,7よりシエル9内へ導入され、
多孔板11を経てのち充てん層10を通過する際
混合し、このエアーと硬化剤の混合物は多孔板1
1′を経てノズル8より、第1図に示すメカニカ
ルフロス発泡機に導かれる。充てん層10の具体
例としてはガラス粒子、プラスチツク粒子等があ
り、これらの粒子形状は特に限定されるものでは
ない。 又、第3図はスプレーノズルチツプによる方法
を説明する縦断面図であり、ビーズ塔に於ける充
てん層のかわりに、スプレーノズルチツプ12,
12′による高速噴霧流の衝突で置きかえた方法
である。スプレーノズルチツプ形状については、
噴霧流が得られる形状であれば特に限定されるも
のではない。 本発明方法は、樹脂発泡体として代表的な尿素
樹脂発泡体を例として説明したが、これに限定さ
れるものではなく、硬化剤を使用し空気を発泡剤
として使用出来るフエノール樹脂発泡体、ウレタ
ン樹脂発泡体等にも使用しうるものである。 以下実施例をもつて更に具体的に説明する。部
又は%とあるのは断りのない限り重量部又は重量
%をさす。 参考例 実施例及び比較例に使用した尿素樹脂初期縮合
物は次のようにして製造した。尿素230部、36%
ホルマリン620部、グリセリン30部を混合して均
一にした後、溶液のPHを7〜9に調節して90〜
100℃の温度で反応させた。更にPHを3.8〜5.0に
調節して2時間反応を続行した後、尿素99部を加
え溶解させた後中和した。得られた尿素樹脂初期
縮合物を減圧下に濃縮し粘度550センチポイズ、
不揮発分68%の尿素樹脂初期縮合物を得た。 この尿素樹脂初期縮合物100部に対して水35部、
アルキルジフエニルエーテルジスルフオン酸ソー
ダ2部を加えて混合し、粘度50センチポイズの樹
脂液を調整した。 硬化液としてリン酸1.2%、アルキルジフエニ
ルエーテルジスルフオン酸ソーダ1.0%を含むPH
1.6の水溶液を使用した。 比較例 第1図に示した形式の市販のメカニカルフロス
発泡機(東邦機械工業(株)製、東邦TM−302型;
円筒容器の内壁には多数の突起2を有し、また多
数の撹拌羽根3(突起状)を有する回転子4が、
容器内で突起2と近接して回転する構造)中に、
先に調整した樹脂液を注入口Aより、硬化液を注
入口Bより、樹脂液と硬化液との重量比100/38
の流量で注入し、また、圧縮空気を注入口Cより
発泡機中の内圧を3.5〜4.5Kg/cm2に保つ様に連続
的に注入し、発泡機の回転子4を450RPMの回転
数で回転した。発泡機の吐出口5及び図外の注入
用ホースを通じての吐出が安定してから含泡状混
合物を30cm角のダンボール箱中で硬化させた。得
られた発泡体の性状、乾燥後の密度、及び熱伝導
率を第1表に示した。又連続運転による発泡体性
状、密度の変化及び発泡機の詰まり具合等も併せ
て示した。
The present invention relates to a method for producing a highly foamed resin body. In general, synthetic resin foam has excellent performance as a heat insulating material, and is widely used in buildings, refrigerators, etc., and has become even more important as it meets the need for resource and energy conservation due to the recent oil shortage. Demand is expected. In addition, from the perspective of resource conservation, there is an increasing demand for foams with a high expansion ratio (low density foams) (hereinafter simply referred to as high foams). In particular, thermosetting resins that are water-soluble or water-dispersible (hereinafter referred to as hydrophilic thermosetting resins) can be foamed using air as a foam, and in this method, most of the time after discharge from a foaming machine is There is no volume expansion, and quality control is easy. There is a great demand for hydrophilic curable resins because they use air as a blowing agent and are therefore inexpensive to manufacture and have good workability. Conventionally, for example, a method for manufacturing urea resin foam is to blow air into a foaming liquid made of an acidic curing liquid containing a surfactant in a foaming machine to make it foamy, and then to add a urea resin initial condensate as the main ingredient. The so-called spray method, in which a resin liquid is sprayed and then discharged from a foaming machine, has been common. However, the nonvolatile content in this case is usually only increased to 20% by weight, and after foaming, water seeps out of the foam and contaminates other substrates, such as panels, and it takes a long time to dry. There were some important shortcomings. If the nonvolatile content was increased to reduce water content, voids would occur in the resulting foam, making it impossible to obtain a uniform foam. Therefore, since the nonvolatile content concentration at which water does not leach out is at least 30% by weight, urea resin foams using raw materials with such a high concentration are usually produced using a mixing machine called a mechanical floss foaming machine, rather than using a spray method. Mix resin raw materials, curing agent and air,
Air is uniformly dispersed in the resin to create a foamed state.
Attempts have been made to produce a foam by discharging it from a mechanical floss foaming machine and then allowing the foam to harden. However, according to this manufacturing method, as the expansion ratio increases, the foam-containing material discharged from the mechanical floss foaming machine tends to collapse before hardening. This is thought to be because as the expansion ratio increases, the thickness of the foam-containing material becomes thinner, and the foamed state cannot be maintained until curing is completed. In order to solve this phenomenon, it is necessary to shorten the curing time. However, in order to uniformly foam a large amount of air in a mechanical floss foaming machine and increase the foaming ratio, it is necessary to increase the residence time inside the mechanical floss foaming machine.
If the curing time is shortened, curing occurs within the foaming machine, making it impossible to operate, and a foam with a high expansion ratio cannot be obtained. As a result of extensive research, the inventor of the present invention limited the composition of the foam raw material and used a mechanical floss foaming machine as a mixer, thereby preventing hardening inside the foaming machine, preventing water seepage and voids. They discovered that it was possible to produce a highly foamed urea resin without the generation of urea resin, and filed a patent application (Japanese Patent Application No. 138604/1982). That is, the invention is directed to a resin foam with a non-volatile content of 30% by weight or more, consisting of 100 parts by weight of a resin liquid with a viscosity of 500 centipoise or less, which is mainly composed of a urea resin initial condensate, and 10 parts by weight or more of an acidic curing liquid with a pH of 2.5 to 1.0. The urea is characterized in that the foamed mixture is mechanically mixed and foamed using a mechanical floss foaming machine to form air bubbles, and then the resulting foamed mixture is discharged from the foaming machine and then hardened. The present invention relates to a method for manufacturing a resin foam. In the invention, a resin foam raw material and air are mechanically mixed and foamed using a mechanical floss foaming machine to form air bubbles, which are then taken out and hardened.
The resin liquid, which is one of the raw materials for the resin foam, is mainly composed of a urea resin initial condensate and has a viscosity of 500 centipoise or less. When the viscosity exceeds 500 centipoise, voids may be formed and a uniform foam may not be obtained. The urea resin initial condensate in the present invention is a water-soluble or water-dispersible reactant obtained by reacting urea and formaldehyde, and optionally contains melamine, dicyandiamide,
It is also possible to use compounds modified by reacting with at least one of compounds such as guanamine, benzoguanamine, and phenol, lower alcohols such as methanol and ethanol, ketones such as acetone, and aldehydes such as acetaldehyde and glyoxal. Additionally, additives such as methanol, ethanol, ethylene glycol, etc. may be included in order to improve the storage stability of the urea resin initial condensate and the cleanability of foaming equipment. Commercially available products such as Euroid #120 and Euroform R-101 (both manufactured by Mitsui Toatsu Chemical Co., Ltd.) can be used. The acidic curing liquid, which is one of the raw materials for other resin foams, is
PH is 2.5-1.0, preferably 1.7-1.2. If it exceeds 1.7, voids may occur in the foam, and if it exceeds 2.5, the foam may collapse before curing and the foam may not be formed. Further, if it is less than 1.0, partial hardening occurs in the foaming machine and operation becomes impossible, so it is particularly desirable to set it to 1.2 or more when long-term operation is required. Examples of this acidic curing liquid include:
Hydrochloric acid, sulfuric acid, phosphoric acid, oxalic acid, para-toluenesulfonic acid, their salts, aqueous solutions of acid anhydrides, etc. are used, and the amount is usually 10 parts by weight or more, preferably 20 parts by weight or more per 100 parts by weight of the resin liquid. use Further, it is preferable to add a surfactant to the resin liquid and/or the curing liquid. Examples of the surfactant include anionic surfactants such as ammonium lauryl sulfate, sodium higher alcohol sulfate, sodium alkyl diphenyl ether disulfonate, and sodium dodecylbenzenesulfonate in an amount of 0.2 to 5% by weight based on the total amount of foam raw materials;
Usually, when used in an amount of about 1 to 3% by weight, it is particularly effective in stabilizing bubbles. Other commonly used additives, such as foam stability and viscosity modifiers such as polyvinyl alcohol and carboxymethyl cellulose (CMC), urea and resorcinol, which have a formaldehyde-capturing effect, may also be included in small amounts in the resin foam raw material. The resin foam raw material has a nonvolatile content of 30% by weight or more, preferably 35 to 60% by weight, in order to avoid moisture seepage. If it exceeds 60% by weight, voids will be formed in the foam and the foam will have a high density, which is economically disadvantageous. A mechanical floss foaming machine is particularly preferred as a mixer that mixes the resin foam raw material and air to form bubbles. For example, as shown in FIG. 1, a rotor 4 having a large number of blades (protrusions) 3 rotates in a cylindrical container having a large number of protrusions 2 on the inner wall, and the blades 3 move between the protrusions without contacting the protrusions 2. Rotor 4
A mechanical floss foaming machine having a structure that rotates with the rotation of the foaming machine, a so-called pin mixer, a Hobart type batch mixer, an Oakes type continuous mixer (Japanese Patent Publication No. 17143/1973), etc. can be used. The above invention has been explained above, but in carrying out the above invention, when injecting the resin foam raw material, each component of the main resin (resin liquid), curing agent, and foaming air is injected through an injection port provided around the shaft. When injecting the hardener, the shaft part, especially the inlet part of the curing agent, becomes severely clogged, resulting in changes in the composition ratio, contamination of gelled substances, reduction in expansion ratio, and reduction in yield, resulting in unstable manufacturing and quality. There were concerns. This is thought to be because there is almost no mixing between the raw materials at the injection port of the resin foam raw material, so that an excess of curing agent occurs in some parts, resulting in partial curing.
By lowering the acid concentration of the curing agent and slowing down the curing speed, it is possible to suppress partial curing and reduce the clogging phenomenon even if an excessive curing agent occurs, but in this case, the foam-containing mixture will not foam. After the foam is discharged from the machine, the foam may collapse before it hardens, and a foam may not be formed. In order to avoid the above-mentioned troubles, it has been strongly desired to improve the method for producing more stable foams. In order to prevent the above-mentioned partial excess of the curing agent and obtain a uniform foam, the present inventor conducted various studies on the injection method of the resin foam raw material, and preliminarily mixed the curing agent and air. When mixed and injected with other resin foam raw materials through a separate injection port, a foam with stable quality such as density without contamination of gelled substances can be obtained, and the size of the cells in the obtained foam can be reduced. The present invention has been completed by achieving the unexpected results of a significantly improved heat insulating property with a smaller value. That is, the present invention involves mechanically mixing and foaming a resin foam raw material and air using a mechanical floss foaming machine to form air bubbles, and then discharging the resulting foam-containing mixture from the foaming machine. The method for producing a highly foamed material to be cured is characterized in that a curing agent, which is one of the raw materials for the resin foam, and air are mixed in advance and supplied. This will be explained with reference to the drawings. FIG. 1 is a sectional view of the mechanical floss foaming machine used in carrying out the above invention, in which a rotor 4 having a large number of blades (protrusions) 3 moves inside a cylindrical container having a large number of protrusions 2 on the inner wall. The blades 3 rotate between the protrusions together with the rotation of the rotor 4 without contacting the protrusions 2. Conventionally, each of the resin foam raw materials had injection ports A,
They are injected separately from B and C, and are mechanically mixed and foamed between the blades 3 and the protrusions 2 to form a foamed state. At this time, an excess of curing agent occurs near the injection port, causing trouble. In contrast, the present invention alleviates the partial excess state of the curing agent by pre-mixing the curing agent and air, and also helps the mixing inside the mechanical floss foaming machine to create a uniform and dense foam. I was able to obtain a foam. As a means of premixing, in particular methods using bead columns or spray nozzle tips give good results. FIG. 2 is a longitudinal sectional view illustrating a premixing method using a bead tower. In FIG. 2, air and curing agent are introduced into the shell 9 through nozzles 6 and 7, respectively.
The mixture of air and curing agent is mixed when passing through the perforated plate 11 and then the filling layer 10.
1' and is led to a mechanical floss foaming machine shown in FIG. 1 from a nozzle 8. Specific examples of the filling layer 10 include glass particles, plastic particles, etc., and the shapes of these particles are not particularly limited. FIG. 3 is a longitudinal sectional view illustrating a method using a spray nozzle chip, in which a spray nozzle chip 12, instead of a packed layer in a bead tower, is used.
12' is replaced by collision of high-speed spray streams. Regarding the spray nozzle tip shape,
It is not particularly limited as long as it has a shape that allows a spray stream to be obtained. The method of the present invention has been explained using urea resin foam, which is a typical resin foam, as an example, but is not limited to this. It can also be used for resin foams and the like. The present invention will be explained in more detail below with reference to Examples. Parts or percentages refer to parts or percentages by weight unless otherwise specified. Reference Example The urea resin initial condensate used in the Examples and Comparative Examples was produced as follows. 230 parts of urea, 36%
After mixing 620 parts of formalin and 30 parts of glycerin to make it homogeneous, adjust the pH of the solution to 7-9 and bring it to 90-90.
The reaction was carried out at a temperature of 100°C. After further adjusting the pH to 3.8 to 5.0 and continuing the reaction for 2 hours, 99 parts of urea was added and dissolved, followed by neutralization. The obtained urea resin initial condensate was concentrated under reduced pressure to a viscosity of 550 centipoise,
A urea resin initial condensate with a nonvolatile content of 68% was obtained. 35 parts of water per 100 parts of this urea resin initial condensate;
Two parts of sodium alkyl diphenyl ether disulfonate were added and mixed to prepare a resin liquid with a viscosity of 50 centipoise. PH containing 1.2% phosphoric acid and 1.0% sodium alkyl diphenyl ether disulfonate as curing liquid
An aqueous solution of 1.6 was used. Comparative Example A commercially available mechanical floss foaming machine of the type shown in Figure 1 (manufactured by Toho Kikai Kogyo Co., Ltd., Toho TM-302 model;
A rotor 4 has a large number of protrusions 2 on the inner wall of the cylindrical container, and has a large number of stirring blades 3 (protruding).
(a structure that rotates in close proximity to the protrusion 2 in the container),
The resin liquid prepared earlier is poured into the injection port A, and the curing liquid is poured into the injection port B at a weight ratio of resin liquid and curing liquid of 100/38.
In addition, compressed air was continuously injected from the injection port C to maintain the internal pressure in the foaming machine at 3.5 to 4.5Kg/ cm2 , and the rotor 4 of the foaming machine was rotated at a rotation speed of 450 RPM. It rotated. After the discharge through the discharge port 5 of the foaming machine and the injection hose (not shown) became stable, the foam-containing mixture was cured in a 30 cm square cardboard box. Table 1 shows the properties, density after drying, and thermal conductivity of the foam obtained. Also shown are changes in foam properties, density, and degree of clogging of the foaming machine due to continuous operation.

【表】 実施例 1 第2図におけるビーズ塔の混合物出口8を第1
図のメカニカルフロス発泡機の硬化注入口Bに連
結する。この時注入口Cはメクラねじにより塞
ぐ。 第2図における注入口7より硬化液を、注入口
6より圧縮空気をそれぞれ注入し、混合物出口8
より得られる硬化液と空気の混合物と注入口Aよ
り注入された樹脂液とをメカニカルフロス発泡機
内で混合泡立たせ処理し、含泡状混合物を得た。
液流量比及びメカニカルフロス発泡機の運転条件
は比較例と同様に行なつた。結果を第1表に示し
た。 実施例 2 実施例1のビーズ塔を第3図のスプレーノズル
チツプによる方法を変えて同様に行なつた。結果
を第1表に示した。 以上詳述したごとく、本発明は、安価な気体を
用いて樹脂高発泡体を容易に製造する方法であつ
て、省エネルギー、作業性の点からも有利であ
り、断熱材製造上、極めて価値ある発明である。
[Table] Example 1 The mixture outlet 8 of the bead tower in FIG.
Connect to hardening inlet B of the mechanical floss foaming machine shown in the figure. At this time, the injection port C is closed with a blind screw. The curing liquid is injected through the inlet 7 in FIG. 2, compressed air is injected through the inlet 6, and the mixture is injected into the mixture outlet 8.
The resulting mixture of curing liquid and air and the resin liquid injected from injection port A were mixed and foamed in a mechanical floss foaming machine to obtain a foam-containing mixture.
The liquid flow rate ratio and the operating conditions of the mechanical froth foaming machine were the same as in the comparative example. The results are shown in Table 1. Example 2 The bead tower of Example 1 was carried out in the same manner as in Example 1 except that the method using the spray nozzle tip shown in FIG. 3 was changed. The results are shown in Table 1. As described in detail above, the present invention is a method for easily producing a highly foamed resin body using an inexpensive gas, is advantageous in terms of energy saving and workability, and is extremely valuable in the production of heat insulating materials. It is an invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来方法を概略説明するための装置
の断面図である。第2図はビーズ塔、第3図はス
プレーノズルチツプによる方法を説明するための
縦断面図である。 A,B,C……注入口、1……発泡機、2……
突起、3……撹拌羽根又は突起、4……回転子、
5……吐出口、6……空気注入口、7……硬化剤
注入口、8……混合物出口、9……シエル、10
……(ビーズ)充填層、11及び11′……多孔
板、12及び12′……スプレーノズルチツプ。
FIG. 1 is a sectional view of an apparatus for schematically explaining a conventional method. FIG. 2 is a longitudinal sectional view for explaining the method using a bead tower and FIG. 3 is a method using a spray nozzle tip. A, B, C... Inlet, 1... Foaming machine, 2...
Protrusion, 3... Stirring blade or protrusion, 4... Rotor,
5...Discharge port, 6...Air inlet, 7...Curing agent inlet, 8...Mixture outlet, 9...Ciel, 10
... (beads) packed bed, 11 and 11'... perforated plate, 12 and 12'... spray nozzle tip.

Claims (1)

【特許請求の範囲】 1 尿素樹脂初期縮合物を主体とする粘度500セ
ンチポイズ以下の樹脂液100重量部、およびPH2.5
〜1.0の酸性硬化液10重量部以上からなる不揮発
分30重量%以上の樹脂発泡体原料と空気とをメカ
ニカルフロス発泡機で機械的に混合泡立たせ処理
して気泡を形成させ、ついで得られた含泡状混合
物を該発泡機より吐出させた後硬化せしめる高発
泡体の製造方法において、樹脂発泡体原料の一つ
である硬化剤と空気とを予じめ前混合して残りの
樹脂発泡体原料と別個の注入口よりメカニカルフ
ロス発泡機に供給することを特徴とする高発泡体
の製造方法。 2 スプレーノズルチツプを用いて前混合する特
許請求の範囲第1項記載の製造方法。 3 ビーズ塔を用いて前混合する特許請求の範囲
第1項記載の製造方法。
[Scope of Claims] 1. 100 parts by weight of a resin liquid containing a urea resin initial condensate and having a viscosity of 500 centipoise or less, and a pH of 2.5.
A resin foam raw material with a non-volatile content of 30% by weight or more consisting of 10 parts by weight or more of an acidic curing liquid of ~1.0 and air is mechanically mixed and foamed using a mechanical floss foaming machine to form air bubbles. In a method for producing a highly foamed product in which a foam-containing mixture is discharged from the foaming machine and then cured, a curing agent, which is one of the raw materials for the resin foam, and air are premixed in advance to form the remaining resin foam. A method for producing a highly foamed material, characterized in that the material is supplied to a mechanical floss foaming machine through an injection port separate from the raw material. 2. The manufacturing method according to claim 1, wherein pre-mixing is performed using a spray nozzle tip. 3. The manufacturing method according to claim 1, which comprises premixing using a bead tower.
JP57122380A 1982-07-14 1982-07-14 Manufacture of highly foamed product Granted JPS5912819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57122380A JPS5912819A (en) 1982-07-14 1982-07-14 Manufacture of highly foamed product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57122380A JPS5912819A (en) 1982-07-14 1982-07-14 Manufacture of highly foamed product

Publications (2)

Publication Number Publication Date
JPS5912819A JPS5912819A (en) 1984-01-23
JPH0337499B2 true JPH0337499B2 (en) 1991-06-05

Family

ID=14834388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57122380A Granted JPS5912819A (en) 1982-07-14 1982-07-14 Manufacture of highly foamed product

Country Status (1)

Country Link
JP (1) JPS5912819A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106493869B (en) * 2016-12-01 2018-07-10 无锡同心塑料制品有限公司 It is a kind of to prepare foamed plastics material stirring-type mixing apparatus

Also Published As

Publication number Publication date
JPS5912819A (en) 1984-01-23

Similar Documents

Publication Publication Date Title
CN100434471C (en) Production method of nanometer material modified toughened melamine foamed plastic
WO2002081558A1 (en) Process for producing foarmed article and the foamed article
CN104072941A (en) Nano modified phenolic aldehyde foam insulation board and preparation method thereof
WO2012053493A1 (en) Phenol resin foamed plate
CN103711211A (en) Modified melamine formaldehyde resin-based EPS flame retardant thermal insulating board and preparation method thereof
CN106188606A (en) Combined foaming agent, hard polyurethane foam and manufacture method thereof
US4153470A (en) Process for preparing foamed gypsum and constructional elements composed thereof
JPH0337499B2 (en)
US4202945A (en) Phenolic foam materials and method of making same
CN107619574A (en) A kind of water-retaining property melamino-formaldehyde foamed material and preparation method thereof
US3830894A (en) Process for the preparation of filled phenol resin foam materials
CN108863247A (en) A kind of foam water adobe for building and preparation method thereof
US3963650A (en) Process for making improved urea/formaldehyde foams
JPS5840330A (en) Production of urea resin foam
US4092277A (en) Method for producing chemically stable urea-formaldehyde foams
US4299925A (en) Resin foams
CN113214527A (en) Preparation method of high-strength XPS (extruded polystyrene) heat insulation board
JPH0343056B2 (en)
US1777247A (en) Porous organic material and process of producing the same
KR100322320B1 (en) Process for Continuous Production of Flowable, Foamable and Curable Phenolic Resol Resin Mixtures
EP0121524A4 (en) Process for producing foam insulation.
JPS5825093B2 (en) phenol
JPH0337498B2 (en)
CN111391210B (en) Decoration forming device in micropore foaming mould
KR20190030546A (en) A new urethane foam process suitable for producing an article having a relatively high hardness than that of the inside having a lot of voids