JPH0337467B2 - - Google Patents

Info

Publication number
JPH0337467B2
JPH0337467B2 JP5261081A JP5261081A JPH0337467B2 JP H0337467 B2 JPH0337467 B2 JP H0337467B2 JP 5261081 A JP5261081 A JP 5261081A JP 5261081 A JP5261081 A JP 5261081A JP H0337467 B2 JPH0337467 B2 JP H0337467B2
Authority
JP
Japan
Prior art keywords
wire
winding
diameter
cast
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5261081A
Other languages
Japanese (ja)
Other versions
JPS57168722A (en
Inventor
Kozo Nakai
Masashi Ono
Masami Tano
Hidemi Okabe
Hiroshi Hoshitsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5261081A priority Critical patent/JPS57168722A/en
Publication of JPS57168722A publication Critical patent/JPS57168722A/en
Publication of JPH0337467B2 publication Critical patent/JPH0337467B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/133Means for feeding electrodes, e.g. drums, rolls, motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Winding, Rewinding, Material Storage Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、アーク溶接用消耗型電極ワイヤに関
し、特にコイル状に巻取られた溶接ワイヤを巻も
どしつつ送給ローラにて連続的に送給しつつ行な
われる自動溶接において、アーク点の揺動やワイ
ヤ送給速度の変動を少なくし、また半自動溶接に
おいてはワイヤ送給の際のトーチ抵抗感を軽減
し、安定した溶接が行なわれるようにしたもので
ある。 ワイヤを使用して行う溶接作業形態には、走行
台車やロボツトを使用して行なわれる自動溶接
と、人手により行なわれる半自動溶接とがある。
いづれの溶接形態においても、消耗型電極として
の溶接用ワイヤは、コイル状に巻かれた状態から
順次巻もどされつつ、ワイヤ送給用ローラにて、
コンジツトチユーブおよび通電用チツプ孔内を通
り、該チツプ先端から溶接部の所定の位置に送給
される。 この溶接用ワイヤのコイルの巻き方には整列巻
き、あや巻、乱巻き等があり、またコイル巻形状
としては、コイル巻き、リム巻、スプール巻き、
あるいはドラム巻き等がある。 ところで、上述のような各種のコイル巻溶接ワ
イヤは、巻きもどされた状態で巻ぐせが残り、そ
の度合いがワイヤの位置により異なるため、第1
図に示されるように、通電チツプ1から導出され
るワイヤ2の指向方向が変化し、溶接の進行とと
もにワイヤの振れrが変動する。ワイヤの巻ぐせ
の度合いの変化が急なほど、振れrの変動も急激
になり、アーク点が溶接線上の所定の部位から逸
脱することも少なくない。また、巻ぐせの度合い
によりコンジツトチユーブ内のワイヤが微妙にひ
ずんだ状態となるため、ワイヤの送給速度にも径
時変化が生ずる。ワイヤの送給速度の変化は、ア
ーク点の揺動を招き、かつアークの安定性をそこ
なう。更に半自動溶接においては、ワイヤの送給
抵抗の変動に伴なつて、溶接トーチを保持する作
業者の手に「ゴツゴツ」として抵抗感を与え、溶
接作業性を著しく悪くする。 溶接ワイヤの巻ぐせの度合りは、ワイヤの引張
強さやワイヤ送給ローラの圧下力等に依存するの
で、該ローラの圧下力を適当に調節することによ
り巻ぐせの度合いを調整し、ワイヤの振れrを一
定化することも理論的に不可能ではないが、実際
上そのような制御は極めて煩雑な操作を必要と
し、とうてい実用し得る方法とは言えない。 本発明は上記実情に鑑みてなされたものであ
り、コイル状に多層に巻かれたスプール巻き用溶
接用ワイヤの任意のとなりあう2つの線輪のキヤ
スト径、すなわちワイヤをコイル形状の拘束から
解放したときの、フリーの状態における隣り合う
円弧状線輪の直径の差が約10mm以下であり、ワイ
ヤ全長における線輪の最大キヤスト径と最小キヤ
スト径と差が40mm以下であるとともに、少なくと
も最外層はスプールのフランジ径以上のキヤスト
径を有する線輪からなる溶接用ワイヤを提供す
る。 通常のスプール巻ワイヤのキヤスト径は各線輪
によつて異なり、一般的に第2図の曲線イに示さ
れるように、巻きはじめから巻終りへと順次大き
くなる。また、使用に際してコイルがバラけるの
を防ぐために、巻終り付近においてワイヤを押え
ローラ等で加圧し、曲線ロに示すように巻終り部
分のキヤスト径を小さくすることもあるが、スプ
ール巻ワイヤ等においては、そのキヤスト径は通
常、少なくとも最外層はスプールのフランジ径以
上である。このような各線輪のキヤスト径の差異
か大きい程、巻ぐせによる前記弊害が顕著とな
る。従来のワイヤでは、隣接する2つの線輪のキ
ヤスト径の差が、通常約15〜50mm程度にも及ぶた
め溶接の安定性が損われていた。本発明者等の実
験によれば、任意のとなりあう線輪のキヤスト径
の差を約10mm以下に調整することにより、ワイヤ
の振れrの変動やアーク点の揺動はほとんどな
く、送給速度も安定化し、また半自動溶接におけ
る不快な送給抵抗感を著しく緩和できることが確
認された。なお、本発明のワイヤキヤスト径と
は、第3図に示されるように、切取られた線輪1
巻きを平面上を置いたときのフリーの状態におけ
る直径の最大値Dと最小値dの平均値を言うもの
とする。 第4図は、ワイヤ巻替装置の例を示し、同図に
おいて、ワイヤ2はボビン3から矯正器4を経
て、クセ付けローラ5〔同図は3個のローラから
成る3点式クセ付けローラを例を示す〕より巻取
機6に巻取られるようになつている。 第4図において従来の巻取り方法を説明する。
ボビン3から供給されるワイヤは、ワイヤ特性を
向上させる目的で矯正器4により、ワイヤの曲り
調整およびワイヤの平面性(ワイヤ一輪を平面上
におき隣接した一巻きの垂直間隔)の調整が行な
われ、3点式クセ付けローラ5の左右調整ローラ
イ,ロによりコイル巻の、巻き始めのキヤスト調
整が行なわれ、そのまゝの状態でワイヤを所定量
巻取る。 この様に、ワイヤのキヤスト調整は、コイル巻
の巻き始め時のみ行なわれるのが一般的で、巻取
器の巻き重量が増しても、そのまゝの状態で巻取
る為、、クセ付けローラー5の支点Aから巻取機
6のコイル巻の頂点Bを通るワイヤ2と水平面と
のなす入線角(θ)が巻取り量の増加に従い順次
小さくなつていく。 例えば、20Kgスプール巻で、巻き始め時の入線
角が、64.5度の時、整列巻の20Kg巻取後では約
73.5度となり、入線角(θ)は約9度程小さくな
る。この為、巻き始め時のキヤストと巻き終り時
のキヤストが大幅に変化する結果となる。 この事は、コイル巻の巻重量が大重量となる程
この差も大きくなる。 また、整列巻きおいて、隣接する2輪特にコイ
ル巻の第1層目から第2層目、2層目から3層目
と、巻き層数が1層増すコイルの左右端において
は、1.2φ線径のワイヤでは、支点Aから支点B迄
のキヨリが270mm、AとBの高さが130mmの時、第
1層目での入線角は64.3度となり、第2層目に移
る所では、高さHが128.96mm(130−√3×1/2× 1.2)となり、64.47゜となり、0.17度小さくなつて
いる。 この為、特に各層数の隣接する2輪について
は、キヤストの変化を生じている。 この事は、ワイヤの直径が太くなる程、入線角
の小さくなる度合が大きく、キヤストの変化も大
きくなる。よつて隣接する2つの線輪のキヤスト
径の差が15〜50mmにおよんでいる。 かく隣接する2線輪のキヤスト径の差を約10mm
以下とすることにより、ワイヤの送給が円滑に行
なわれ、特にコイルのスプールからアーク点まで
の距離が短い場合でも、アーク点の急激な変動の
ない安定した溶接を行なうことができる。 ところで、各線輪のキヤスト径の差を小さくす
る調整操作がコイル全長にわたつて施こされる
と、コイルの巻はじめから巻終りに到るまでのワ
イヤ送給を安定化することが可能となる。しかる
に前記第2図に示されるように、従来一般の巻取
装置によるコイルのキヤスト径は、巻はじめと巻
終りとで約100〜150mmにも及ぶため、ワイヤの連
続的送給の間に、アーク点変動幅が次第に大きく
なり、ついにはアーク点が溶接線から逸脱するに
到る場合がある。 よつて、この入線角(θ)をコイルの巻はじめ
から巻終りに到るまで一定の値に保つことにより
キヤスト径の変化を小さくすることができ、特に
コイル全長を通じて、最大のキヤスト径を有する
線輪と、最小のキヤスト径を線輪との該キヤスト
径の差が約40mm以下とすることにより上記不都合
を解消し得ることが判明した。第5図は、入線角
(θ)を一定に保つための3点式クセ付けローラ
部の具体例を示す。該クセ付けローラは、巻取機
6の巻重量の増加(巻層数の増加)に伴なうコイ
ル径の増大(実験で示す径から破線で示す径へ増
大)に応じて、各ローラが順次上方に平行移動
(実線で示す位置から破線で示す位置に上昇)す
るように構成されているので、入線角(θ)は巻
はじめから巻終りまで常に一定に保持される。こ
の操作は、クセ付けローラ全体を、巻取機6のト
ラバース機構と電気的に連動させておき、巻取機
のワイヤがトラバースするごとに該ローラ全体を
モータにてコイル巻1層分だけ上昇させるように
すればよい。あるいは、コイル状に巻かれる一層
分のワイヤ長さを求めておき、巻取り長さが一定
量に達するごとに該ローラ全体を上昇させるよう
にしてもよい。また、別方として、クセ付けロー
ラの位置は固定したまゝで、巻取機6の巻き層数
が増加するごとに巻取機を下方に平行移動させる
ように構成することも可能である。 このように入線角(θ)が常に一定に保たれる
条件下に巻取ることにより、ワイヤの巻きはじめ
から巻終りに到る各線輪のキヤスト径の差は約40
mm以下となり、しかもそれと同時に隣接する2線
輪間のキヤスト径差を小さくなるので、アークの
安定性や送給抵抗に著しい改善効果が得られる。 なお、入線角(θ)の値には特別の制限はな
く、通常の巻取り操作の際の一般的な値、例えば
約50〜70゜程度であつてよい。 第1表は、従来のコイル巻溶接用ワイヤと、3
点式クセ付けローラー全体を、巻重量の増加に従
い、順次上方へパルスモーターで一定量上げ、入
線角(θ)を、64.5度なる一定の条件下に巻取る
ことにより、任意のとなりあう2線輪間のキヤス
ト径の差を10mm以下に調整すると共にワイヤ全体
の最大キヤスト径と最小キヤスト径の差を40mm以
下とする調整操作を任せ施こした本発明ワイヤに
ついて、キヤスト径および溶接機チツプ先端から
のワイヤの振れrの連続200本の測定結果の1例
を示す。供試ワイヤは、いづれも線径1.2mm〓、重
量20Kgのスプール巻コイルである。「キヤスト径」
の(a)欄は、任意のとなりあう2線輪のキヤスト径
の差(但し、1コイル内の測定数n=5)、(b)欄
は、巻はじめから巻終りまでのキヤスト径変動幅
〔最大キヤスト径〜最小キヤスト径〕(下段のカツ
コ内数値は、最大キヤスト径と最小キヤスト径の
差)をそれぞれ示し、「ワイヤ振れ、」の「上層」、
「中層」および「下層」欄はそれぞれコイルの
「巻はじめ」、「中間」および「巻終り」における
ワイヤの振れrの変動幅(下段カツコ内の数値は
それの平均値)、「最大幅」は1コイルの巻きはじ
めから巻終りまでにおける、溶接線を中心とする
左右の振れ幅最大値を示す。なお、ワイヤの振れ
の測定は、カーブドトーチを用いてチツプ孔から
ワイヤを導出せしめ、該チツプ先端からの距離(l)
160mmの位置における溶接中心からのズレrの値
(第1図参照)を測定することにより行なつた。
The present invention relates to a consumable electrode wire for arc welding, and in particular, in automatic welding in which a welding wire wound into a coil is unwound and continuously fed by a feed roller, the arc point swings. This reduces fluctuations in wire feeding speed and wire feeding speed, and reduces the feeling of torch resistance during wire feeding in semi-automatic welding, allowing stable welding to be performed. Types of welding operations performed using wire include automatic welding, which is performed using a traveling truck or robot, and semi-automatic welding, which is performed manually.
In either type of welding, the welding wire as a consumable electrode is wound into a coil and then unwound one after another by a wire feeding roller.
It passes through the conduit tube and the current-carrying chip hole, and is fed from the tip of the chip to a predetermined position of the welding part. There are many ways to wind the coil of this welding wire, such as aligned winding, twill winding, random winding, etc., and the coil winding shapes include coil winding, rim winding, spool winding, etc.
Alternatively, there is a drum winding method. By the way, the various coil-wound welding wires described above leave curls in the unwound state, and the degree of curling varies depending on the position of the wire.
As shown in the figure, the orientation direction of the wire 2 led out from the current-carrying tip 1 changes, and the deflection r of the wire changes as welding progresses. The sharper the change in the degree of winding of the wire, the more rapid the variation in runout r, and the arc point often deviates from a predetermined position on the weld line. Furthermore, the wire inside the conduit tube becomes slightly distorted depending on the degree of curl, so that the wire feeding speed also changes over time. Changes in wire feeding speed cause fluctuations in the arc point and impair arc stability. Furthermore, in semi-automatic welding, as the wire feeding resistance fluctuates, the hand of the worker holding the welding torch feels "lumpy" and resistant, which significantly impairs welding workability. The degree of curl in the welding wire depends on the tensile strength of the wire, the rolling force of the wire feed roller, etc., so the degree of curl can be adjusted by appropriately adjusting the rolling force of the roller. Although it is not theoretically impossible to make the runout r constant, in practice such control requires extremely complicated operations and cannot be said to be a practical method at all. The present invention has been made in view of the above-mentioned circumstances, and is aimed at freeing the cast diameter of any two adjacent wire rings of a spool-wound welding wire wound in multiple layers into a coil shape, that is, the wire from the restriction of the coil shape. The difference in diameter between adjacent arcuate wire rings in the free state is approximately 10 mm or less, and the difference between the maximum cast diameter and minimum cast diameter of the wire rings over the entire length of the wire is 40 mm or less, and at least the outermost layer provides a welding wire made of a wire ring having a cast diameter larger than the flange diameter of the spool. The cast diameter of ordinary spool-wound wire varies depending on each wire ring, and generally increases from the beginning of winding to the end of winding, as shown by curve A in FIG. In addition, in order to prevent the coil from coming apart during use, the wire is sometimes pressed with a pressing roller or the like near the end of the winding to reduce the cast diameter at the end of the winding as shown in curve B. In this case, the cast diameter of at least the outermost layer is usually equal to or larger than the flange diameter of the spool. The greater the difference in the cast diameters of the respective wire rings, the more pronounced the above-mentioned disadvantages due to curling become. With conventional wires, the difference in cast diameter between two adjacent wire rings is usually about 15 to 50 mm, which impairs welding stability. According to experiments conducted by the present inventors, by adjusting the difference in the cast diameters of arbitrary adjacent wire rings to about 10 mm or less, there is almost no fluctuation in wire runout r or fluctuation in the arc point, and the feeding speed is It was also confirmed that the unpleasant feeling of feeding resistance in semi-automatic welding can be significantly alleviated. Note that the diameter of the wire cast in the present invention refers to the diameter of the cut wire 1 as shown in FIG.
This refers to the average value of the maximum value D and minimum value d of the diameter in a free state when the winding is placed on a flat surface. FIG. 4 shows an example of a wire rewinding device. In the figure, the wire 2 is passed from the bobbin 3 to the straightener 4 to the curling roller 5 (the figure shows a three-point curling roller consisting of three rollers). (for example)], the winding device 6 is configured to wind the winding machine 6. A conventional winding method will be explained with reference to FIG.
The wire supplied from the bobbin 3 is adjusted by a straightener 4 to adjust the bending of the wire and the flatness of the wire (the vertical distance between adjacent turns when one turn of the wire is placed on a flat surface) in order to improve the wire characteristics. Then, the cast adjustment at the beginning of coil winding is performed by the left and right adjustment rollers and rollers of the three-point curling roller 5, and the wire is wound by a predetermined amount in this state. In this way, wire cast adjustment is generally performed only at the beginning of coil winding, and even if the winding weight of the winder increases, the winding remains as it is, so the curling roller The entrance angle (θ) between the wire 2 passing through the apex B of the coil winding of the winding machine 6 from the fulcrum A of the winding machine 5 and the horizontal plane gradually becomes smaller as the winding amount increases. For example, when winding a 20 kg spool and the entry angle at the beginning of winding is 64.5 degrees, after winding 20 kg of aligned winding, approximately
It becomes 73.5 degrees, and the entrance angle (θ) becomes smaller by about 9 degrees. This results in a significant change in the cast at the beginning of winding and the cast at the end of winding. This difference increases as the weight of the coil winding increases. In addition, when winding in alignment, the number of winding layers is 1.2φ at the left and right ends of the coil where the number of winding layers increases by one layer, especially from the first layer to the second layer and from the second layer to the third layer of the coil winding. For a wire with a wire diameter of 270 mm, when the distance from fulcrum A to fulcrum B is 270 mm, and the height of A and B is 130 mm, the entry angle in the first layer is 64.3 degrees, and when moving to the second layer, The height H is 128.96 mm (130-√3 x 1/2 x 1.2), which is 64.47 degrees, which is 0.17 degrees smaller. For this reason, changes in cast occur, especially for two adjacent wheels of each layer number. This means that as the diameter of the wire becomes thicker, the degree to which the wire entrance angle decreases becomes larger, and the change in cast also becomes larger. Therefore, the difference in cast diameter between two adjacent wire rings ranges from 15 to 50 mm. Thus, the difference in cast diameter between two adjacent wire wheels is approximately 10 mm.
By doing the following, the wire can be fed smoothly, and even if the distance from the coil spool to the arc point is short, stable welding can be performed without sudden fluctuations in the arc point. By the way, if the adjustment operation to reduce the difference in the cast diameter of each wire ring is performed over the entire length of the coil, it becomes possible to stabilize the wire feeding from the beginning of winding to the end of winding of the coil. . However, as shown in FIG. 2, the diameter of the coil cast by a conventional general winding device ranges from about 100 to 150 mm between the beginning and the end of winding. The fluctuation range of the arc point gradually increases, and the arc point may eventually deviate from the welding line. Therefore, by keeping this wire entry angle (θ) at a constant value from the beginning of winding to the end of winding of the coil, it is possible to reduce the change in cast diameter, and in particular, to maintain the maximum cast diameter throughout the entire length of the coil. It has been found that the above-mentioned disadvantages can be overcome by setting the minimum cast diameter difference between the wire and the wire to about 40 mm or less. FIG. 5 shows a specific example of a three-point curling roller section for keeping the line entrance angle (θ) constant. The curling rollers each have a shape corresponding to an increase in the coil diameter (increase from the diameter shown in the experiment to the diameter shown by the broken line) due to an increase in the winding weight of the winder 6 (increase in the number of winding layers). Since it is configured to sequentially move upward in parallel (ascends from the position shown by the solid line to the position shown by the broken line), the wire entry angle (θ) is always kept constant from the beginning of winding to the end of winding. In this operation, the entire curling roller is electrically interlocked with the traverse mechanism of the winder 6, and each time the wire of the winder traverses, the entire roller is raised by one layer of coil winding using a motor. All you have to do is let it happen. Alternatively, the length of the wire for one layer to be wound into a coil may be determined in advance, and the entire roller may be raised every time the coiled length reaches a certain amount. Alternatively, it is also possible to configure the winder 6 to move downward in parallel each time the number of layers wound by the winder 6 increases while the position of the curling roller remains fixed. By winding the wire under conditions where the wire entry angle (θ) is always kept constant, the difference in cast diameter of each wire from the beginning to the end of the wire is approximately 40
mm or less, and at the same time, the difference in cast diameter between two adjacent wire wheels is reduced, resulting in significant improvements in arc stability and feeding resistance. Note that there is no particular limit to the value of the wire entrance angle (θ), and it may be a value commonly used in normal winding operations, for example, about 50 to 70 degrees. Table 1 shows conventional coil-wound welding wire and 3
As the winding weight increases, the entire dot-type curling roller is raised upwards by a certain amount using a pulse motor, and the wire entry angle (θ) is set to 64.5 degrees. Regarding the wire of the present invention, in which the difference in cast diameter between rings was adjusted to 10 mm or less, and the difference between the maximum and minimum cast diameters of the entire wire was adjusted to 40 mm or less, the cast diameter and the tip of the welding machine tip An example of the results of 200 consecutive measurements of wire runout r from . The test wires were all spool-wound coils with a wire diameter of 1.2 mm and a weight of 20 kg. "Cast diameter"
Column (a) shows the difference in cast diameter between two arbitrary adjacent wire rings (however, the number of measurements in one coil is n = 5), and column (b) shows the cast diameter variation range from the beginning of winding to the end of winding. [Maximum cast diameter to minimum cast diameter] (The numbers in the box at the bottom are the difference between the maximum cast diameter and the minimum cast diameter).
The "middle layer" and "lower layer" columns show the fluctuation range of the wire runout r at the "start of winding", "middle", and "end of winding" of the coil (the value in the lower bracket is the average value), and the "maximum width", respectively. represents the maximum value of left and right swing width around the weld line from the beginning of winding to the end of winding of one coil. To measure the wire deflection, use a curved torch to guide the wire out of the tip hole, and measure the distance (l) from the tip of the tip.
This was done by measuring the value of the deviation r from the welding center at a position of 160 mm (see Figure 1).

【表】 第1表に示されるように、従来のワイヤNo.1〜
6と、本発明ワイヤNo.7〜12を比較すると、従来
ワイヤでは、2線輪キヤスト径差は10mmを越え、
また最大キヤスト径と最小キヤスト径の差は、最
も変動値の小さいNo.1ワイヤでも約100mmに及ぶ
のに対し、本発明ワイヤNo.7〜12はいづれも、2
線輪キヤスト径差は10mm以下で、最大キヤスト径
と最小キヤスト径の差も、最も大きいNo.8ですら
約40mm以下である。これをワイヤの振れrで比較
すると、従来のワイヤでは、コイルの下層から上
層に移るにつれて振れrが大きくなり、その振れ
幅は「最大幅」欄に示すように約40mmを越えるの
に対し、本発明ワイヤでは、各層ともほゞ一定の
値を示し、コイル全体の振れ幅は約20mm以下と安
定した状態に維持されることが判る。 また、実際の溶接作業においても、本発明ワイ
ヤを用いることにより、アーク点の変動が減少
し、トーチ抵抗感もほとんどなく、ビード外観も
均一美麗に形成されるなど、溶接作業性および溶
接品質の面でも、従来ワイヤに比し格段にすぐれ
ることが確認されている。
[Table] As shown in Table 1, conventional wire No. 1~
6 and wire Nos. 7 to 12 of the present invention, with the conventional wire, the difference in cast diameter between the two wires exceeds 10 mm,
Furthermore, the difference between the maximum cast diameter and the minimum cast diameter is approximately 100 mm even for No. 1 wire, which has the smallest fluctuation value, whereas wires No. 7 to 12 of the present invention each have a difference of approximately 100 mm.
The difference in cast diameter for the wire wheels is less than 10mm, and the difference between the maximum and minimum cast diameters is less than 40mm, even for No. 8, which is the largest. Comparing this in terms of the wire runout r, with conventional wires, the runout r increases as you move from the lower layer of the coil to the upper layer, and the swing width exceeds about 40 mm as shown in the "Maximum Width" column. It can be seen that in the wire of the present invention, each layer exhibits a substantially constant value, and the amplitude of the entire coil remains stable at approximately 20 mm or less. In addition, in actual welding work, by using the wire of the present invention, fluctuations in the arc point are reduced, there is almost no sense of torch resistance, and the bead appearance is uniform and beautiful, resulting in improved welding workability and welding quality. It has also been confirmed that it is significantly superior to conventional wire in terms of both aspects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はワイヤの振れの説明図、第2図はコイ
ル巻ワイヤのキヤスト径の変化を示すグラフ、第
3図はコイル巻ワイヤの線輪を示す説明図、第4
図はワイヤ巻取装置を例示する説明図、第5図は
コイル入線角(θ)を調整するためのクセ付けロ
ーラの説明図である。 図面中の主な符号は次のとおりである。1……
通電チツプ、2……溶接用ワイヤ、4……矯正
機、5……クセ付けローラ、6……巻取機。
Fig. 1 is an explanatory diagram of the runout of the wire, Fig. 2 is a graph showing changes in the cast diameter of the coil-wound wire, Fig. 3 is an explanatory diagram showing the wire ring of the coil-wound wire, and Fig. 4
The figure is an explanatory diagram illustrating a wire winding device, and FIG. 5 is an explanatory diagram of a curling roller for adjusting the coil entrance angle (θ). The main symbols in the drawings are as follows. 1...
energizing chip, 2... welding wire, 4... straightening machine, 5... curling roller, 6... winding machine.

Claims (1)

【特許請求の範囲】[Claims] 1 コイル状に多層に巻かれたスプール巻き溶接
用ワイヤであつて、任意のとなりあう2つの線輪
のキヤスト径の差が10mm以下であり、ワイヤ全長
における線輪の最大キヤスト径と最小キヤスト径
の差が40mm以下であるとともに、少なくとも最外
層はスプールのフランジ径以上のキヤスト径を有
する線輪からなることを特徴とする溶接用ワイ
ヤ。
1 Spool-wound welding wire wound in multiple layers into a coil, where the difference in cast diameter between any two adjacent wire rings is 10 mm or less, and the maximum cast diameter and minimum cast diameter of the wire rings over the entire length of the wire. A welding wire characterized in that the difference between the two is 40 mm or less, and at least the outermost layer is made of a wire ring having a cast diameter equal to or larger than the flange diameter of the spool.
JP5261081A 1981-04-07 1981-04-07 Welding wire Granted JPS57168722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5261081A JPS57168722A (en) 1981-04-07 1981-04-07 Welding wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5261081A JPS57168722A (en) 1981-04-07 1981-04-07 Welding wire

Publications (2)

Publication Number Publication Date
JPS57168722A JPS57168722A (en) 1982-10-18
JPH0337467B2 true JPH0337467B2 (en) 1991-06-05

Family

ID=12919560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5261081A Granted JPS57168722A (en) 1981-04-07 1981-04-07 Welding wire

Country Status (1)

Country Link
JP (1) JPS57168722A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542239B2 (en) * 2000-07-06 2010-09-08 日本精線株式会社 Stainless steel wire for gas-encapsulated arc welding
JP4846823B2 (en) * 2009-04-23 2011-12-28 株式会社酉島製作所 pump

Also Published As

Publication number Publication date
JPS57168722A (en) 1982-10-18

Similar Documents

Publication Publication Date Title
EP1266717B1 (en) "S" shaped cast in weld wire
KR20100097061A (en) Method and apparatus for rewinding welding wire
US4918958A (en) Device for bending conical wires
JPH0337467B2 (en)
GB2254393A (en) Reeling systems for undersea pipe
JPH03264113A (en) Method for correcting strain and for rocking bend manipulating stand
US4261191A (en) Method and apparatus for winding metal wires around a reel structure
GB2137239A (en) Coiling systems
JPH0117793B2 (en)
JPH0117794B2 (en)
US3845913A (en) Method and apparatus for winding wire
JPS63147781A (en) Pack wire for welding
JPS591512B2 (en) Flux-cored wire for welding
JPH05261539A (en) Wire for welding
US4747557A (en) Apparatus for inserting and feeding flattened metal wire into and from containers
JP2000343272A (en) Wire for welding
JPS60206571A (en) Feeding method of wire
JPS6127879Y2 (en)
JP3198892B2 (en) Coiled thin metal tube and method of manufacturing the same
US20070175877A1 (en) Weld wire with large cast, method of making same, and loaded spool article of manufacture
JPH09110292A (en) Winder of thin pipe
JPH10137843A (en) Manufacture of resistance welded tube, and its equipment
JP4359163B2 (en) Wire rod feeder for wire rod processing machine
JPS59150669A (en) Straightening method for welding wire
JPH01148138A (en) Pattern marker for fishing rods