JPH033703A - Machining control method for multiple shaft numerically controlled lathe - Google Patents

Machining control method for multiple shaft numerically controlled lathe

Info

Publication number
JPH033703A
JPH033703A JP13583889A JP13583889A JPH033703A JP H033703 A JPH033703 A JP H033703A JP 13583889 A JP13583889 A JP 13583889A JP 13583889 A JP13583889 A JP 13583889A JP H033703 A JPH033703 A JP H033703A
Authority
JP
Japan
Prior art keywords
axis
numerically controlled
work
shafts
controlled lathe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13583889A
Other languages
Japanese (ja)
Inventor
Kenji Katsura
桂 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP13583889A priority Critical patent/JPH033703A/en
Publication of JPH033703A publication Critical patent/JPH033703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turning (AREA)

Abstract

PURPOSE:To prevent a work from vibrating simply by operating main shaft moving shafts completely synchronously each other at the time of machining a work. CONSTITUTION:Both ends of a work 3 is supported by two main shafts 1, 2 and the work 3 is machined by an edge tool held by an edge tool table 4. At this time, same accelerating and decelerating property is given to the drive motors of the respective main shafts of the main shafts 1, 2 and the performance command for one of the main shaft moving shafts is to be the performance command for the other as it is. Both of the main shaft driving shafts are thereby operated synchronously to prevent the work 3 from vibrating during machining.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 木発明は、主軸を複数台有し、かつ主軸移動形の、数値
制御される旋盤(多軸数値制御旋盤)の加工制御方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a processing control method for a numerically controlled lathe (multi-spindle numerically controlled lathe) having a plurality of spindles and moving the spindle.

〔従来の技術〕[Conventional technology]

多l1qb数値制御旋盤による旋削加圧において、ワー
クが長尺、細物の場合、ワークの先端か振れて、加重精
度か悪くなる。
When turning and applying pressure using a numerically controlled lathe, if the workpiece is long or thin, the tip of the workpiece will swing and the loading accuracy will deteriorate.

そこて、従来は、専用の振れ防止機構を設りて、振れを
防J1−シ加工粘度を上げるようにしている(特開昭6
l−4637)。
Therefore, in the past, a special vibration prevention mechanism was installed to increase the viscosity of the J1-shape process to prevent vibration (Japanese Unexamined Patent Publication No. 6
l-4637).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の方法は、加りの進行に際し、ワークの径
に対するその全長を考Jjff、 b、振れ防止機構を
移動、位置決めする必要があるため、加Iプログラムか
複雑になるという欠点があった。
The conventional method described above has the disadvantage that the cutting program becomes complicated because it is necessary to consider the total length of the workpiece in relation to its diameter as the cutting progresses, and to move and position the run-out prevention mechanism. .

本発明の目的は、比較的簡単にワークの振れを防止し、
加−「精度かトげられる多軸数値制御旋盤の加工制御方
法を提供することである。
The purpose of the present invention is to relatively easily prevent workpiece shake,
Another object of the present invention is to provide a processing control method for a multi-axis numerically controlled lathe that improves accuracy.

(課題を解決するだめの1段) 木発明の多軸数値制御旋盤の加工制御方法は、ワークの
両端を2つの主軸て支持し、これら1−IIIlllの
各主軸移動軸の駆動モータに同じ加減速時P(を持たせ
、一方の主軸移動軸への動作指令をそのまま他方の主軸
移動軸の動作指令とすることにより、両l−輔移動軸の
動作を同期させるものてある。
(One step to solving the problem) The processing control method of the multi-axis numerically controlled lathe invented by Wooden supports both ends of the workpiece with two spindles, and applies the same amount of force to the drive motor of each of these 1-IIIll spindle movement axes. At the time of deceleration, P() is provided, and the operation command for one main shaft moving axis is used as the operating command for the other main shaft moving axis, thereby synchronizing the operations of both l-axis moving axes.

〔作用〕[Effect]

ワークの両端を2つの主軸で支持し、両主軸移動軸を同
期運転させるので、ワークの振れを簡単なプログラムで
防止することができる。
Both ends of the workpiece are supported by two main shafts, and both main shaft movement axes are operated synchronously, so workpiece wobbling can be prevented with a simple program.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示す多軸数値制御旋盤の要
部を示す構成図、第2図はそのブロック図である。
FIG. 1 is a configuration diagram showing the main parts of a multi-axis numerically controlled lathe showing an embodiment of the present invention, and FIG. 2 is a block diagram thereof.

ワーク3は両端が主軸1と背面主軸2により支持され、
主軸移動軸(Z軸)と背面主軸移動軸(B軸)により、
主軸1と背面主軸2とともに矢印方向に移動するように
なっている。一方、刃物台4は矢印(X輔)方向にのみ
移動する。
The workpiece 3 is supported at both ends by the main spindle 1 and the back main spindle 2,
The main spindle movement axis (Z-axis) and the back main spindle movement axis (B-axis) allow
It moves in the direction of the arrow together with the main shaft 1 and the back main shaft 2. On the other hand, the tool rest 4 moves only in the direction of the arrow (X).

第2図のブロック図は、Z輔とB軸のサーボ機構を示し
ている。モータ11,21はそれぞれZ軸、B軸の駆動
モータであり、全く同じ加減速特性を持っている。パル
スジェネレータ12、サーボt” ラーi’ブ13、D
/A変換器14、軸CPU15はモータ11のサーボ機
構、パルスジェネレータ22、サーボドライブ23、D
/A変換器24、軸CPU25はモータ21のサーボ機
構を構成している。メインCPU19がらのコマンドが
セットされるFGCPU18には、Z軸しジスタ16、
B軸しジスタ26の他にメインCPU19から指令を解
読し、同期送りの指令(0167)であれば、Z軸に指
令された指令をそのままコピーしてB軸しジスタ26に
もセットする(もちろんZ軸しジスタ16にもセットす
る)デコーダ17(ソフトウェア)が設けられている。
The block diagram in FIG. 2 shows the servo mechanisms for the Z and B axes. The motors 11 and 21 are Z-axis and B-axis drive motors, respectively, and have exactly the same acceleration/deceleration characteristics. Pulse generator 12, servo t''r i' 13, D
/A converter 14, axis CPU 15, servo mechanism of motor 11, pulse generator 22, servo drive 23, D
The /A converter 24 and the axis CPU 25 constitute a servo mechanism for the motor 21. The FGCPU 18 to which commands from the main CPU 19 are set includes Z-axis registers 16,
In addition to the B-axis register 26, decode the command from the main CPU 19, and if it is a synchronous feed command (0167), copy the command given to the Z-axis as is and set it in the B-axis register 26 (of course A decoder 17 (software) for setting the Z axis and also setting the register 16 is provided.

例えば、加ニブログラムのrG167Z100、i」と
いう指令にて同期送りを行なう場合、メインCPU19
は具体的にはZ軸の前ブロックの位置が250.の点に
いたとすると、Z 50.→z i o o、の移動量
を内部演算して、BIIiIIIの移動としても扱う。
For example, when performing synchronous feeding with the command ``rG167Z100,i'' of the Canadian program, the main CPU 19
Specifically, the position of the front block on the Z axis is 250. If you are at the point Z 50. The movement amount of →z i o o is calculated internally and treated as the movement of BIIIiIII.

そしてデコーダ17はZ軸の移動と全く同じ動きをB軸
が行なう必要があることをコードrG167」から判断
し、このZ軸指令がら、Z軸単位時間当りに移動する量
までB軸しジスタ26にセットする。即ち、単位時間当
りの移動量のところでZ軸移動をコピーしてB軸とX軸
の完全同期を実現する。
Then, the decoder 17 determines from the code rG167 that the B-axis needs to perform exactly the same movement as the Z-axis movement, and based on this Z-axis command, moves the B-axis to the amount that the Z-axis moves per unit time. Set to . That is, by copying the Z-axis movement at the amount of movement per unit time, complete synchronization between the B-axis and the X-axis is achieved.

なお、主軸1と背面主軸2も理論上は同期させる必要が
あるが、実際には同期させず、背面主軸2の方がパワー
が弱いので主軸1にひきずられている(追従されている
)。
The main spindle 1 and the back main spindle 2 should also be synchronized in theory, but in reality they are not synchronized, and the back main spindle 2 is dragged (followed) by the main spindle 1 because its power is weaker.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ワークの両端を主軸で支
持し、加工を行なうとき、主軸移動軸を完全に同期をと
って動作させることにより、特別な機構を設けることな
く、ワークの振れを防止でき、加工精度を上げられる効
果がある。
As explained above, the present invention supports both ends of the workpiece with the spindle and operates the spindle moving axes in perfect synchronization during machining, thereby reducing the run-out of the workpiece without the need for a special mechanism. This has the effect of preventing this and increasing machining accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す多軸数値制御旋盤の要
部を示す構成図、第2図はそのブロック図である。 1・・・主軸、     2・・・背面主軸、3・・・
ワーク、     4・・・刃物台、1・・・B軸モー
タ、  21・・・Z輔モータ、3.23・・・サーボ
ドライブ、 4.24・・・D/A変換器、 5.25・・・軸CPU。 6・・・Z軸しジスタ、26・・・B軸しジスタ、7・
・・デコーダ、   18・・・FGCPU。 9・・・メインCPU。
FIG. 1 is a configuration diagram showing the main parts of a multi-axis numerically controlled lathe showing an embodiment of the present invention, and FIG. 2 is a block diagram thereof. 1... Main spindle, 2... Back main spindle, 3...
Workpiece, 4... Turret, 1... B-axis motor, 21... Z-axis motor, 3.23... Servo drive, 4.24... D/A converter, 5.25. ...Axis CPU. 6... Z-axis jista, 26... B-axis jista, 7.
...Decoder, 18...FGCPU. 9...Main CPU.

Claims (1)

【特許請求の範囲】 1、主軸を複数有し、かつ主軸移動形の、数値制御され
る多軸数値制御旋盤において、 ワークの両端を2つの主軸で支持し、 これら主軸の各主軸移動軸の駆動モータに同じ加減速特
性を持たせ、 一方の主軸移動軸への動作指令をそのまま他方の主軸移
動軸の動作指令とすることにより、両主軸移動軸の動作
を同期させる、多軸数値制御旋盤の加工制御方法。
[Claims] 1. In a numerically controlled multi-axis numerically controlled lathe that has a plurality of spindles and is of a movable spindle type, both ends of the workpiece are supported by two spindles, and each spindle movement axis of these spindles is A multi-axis numerically controlled lathe that synchronizes the movement of both spindles by giving the same acceleration/deceleration characteristics to the drive motor and using the movement command for one spindle as the movement command for the other spindle. Processing control method.
JP13583889A 1989-05-31 1989-05-31 Machining control method for multiple shaft numerically controlled lathe Pending JPH033703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13583889A JPH033703A (en) 1989-05-31 1989-05-31 Machining control method for multiple shaft numerically controlled lathe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13583889A JPH033703A (en) 1989-05-31 1989-05-31 Machining control method for multiple shaft numerically controlled lathe

Publications (1)

Publication Number Publication Date
JPH033703A true JPH033703A (en) 1991-01-09

Family

ID=15160945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13583889A Pending JPH033703A (en) 1989-05-31 1989-05-31 Machining control method for multiple shaft numerically controlled lathe

Country Status (1)

Country Link
JP (1) JPH033703A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831410A (en) * 1981-08-19 1983-02-24 Toshiba Mach Co Ltd Symmetrical numerical controlling system for machine tool
JPS63272402A (en) * 1987-04-28 1988-11-09 Yamazaki Mazak Corp Driving structure of headstock on combination machining machine tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831410A (en) * 1981-08-19 1983-02-24 Toshiba Mach Co Ltd Symmetrical numerical controlling system for machine tool
JPS63272402A (en) * 1987-04-28 1988-11-09 Yamazaki Mazak Corp Driving structure of headstock on combination machining machine tool

Similar Documents

Publication Publication Date Title
JPH01252340A (en) Machining control device employing force sensor
JPS62237504A (en) Numerical controller
JPS63181005A (en) Parallel processing method for numerical controller
JPH01205901A (en) Working control on compound working machine tool
JPH10124127A (en) Thread cutting device using nc lathe, and method therefor
JPH01246045A (en) Setting control of machining coordinate system in machine tool
WO1989006066A1 (en) Method of speed control for servomotor
JP3316003B2 (en) Numerically controlled automatic lathe and machining method with numerically controlled automatic lathe
JP3670227B2 (en) Machine tool and control method thereof
KR880000271B1 (en) Numerical control method and apparatus
JP4116640B2 (en) Numerical control device with multi-system control function
JPH01193146A (en) Numerically controlled machine
JP3572113B2 (en) Control method of NC machine tool
JPH033703A (en) Machining control method for multiple shaft numerically controlled lathe
JP3405797B2 (en) Laser output control system
JP2002273601A (en) Multispindle machine tool
JPH04129645A (en) Simultaneous processing method for numerical control lathe
JPH05274021A (en) Machining system
JP2779797B2 (en) Numerical control unit
JPH06155103A (en) Machining controlling method for two opposed spindle lathe
JPH05261602A (en) Gear rolling unit for numerically controlleed lathe
JP2007094646A (en) Numerical control device
JPH07290316A (en) Device and method for machining gear
JPH0371205A (en) Numerical controller
JPH04100113A (en) Synchronous control system