JPH0336970Y2 - - Google Patents

Info

Publication number
JPH0336970Y2
JPH0336970Y2 JP1982175326U JP17532682U JPH0336970Y2 JP H0336970 Y2 JPH0336970 Y2 JP H0336970Y2 JP 1982175326 U JP1982175326 U JP 1982175326U JP 17532682 U JP17532682 U JP 17532682U JP H0336970 Y2 JPH0336970 Y2 JP H0336970Y2
Authority
JP
Japan
Prior art keywords
optical fiber
coating layer
layer
buffer layer
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982175326U
Other languages
Japanese (ja)
Other versions
JPS5979802U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17532682U priority Critical patent/JPS5979802U/en
Publication of JPS5979802U publication Critical patent/JPS5979802U/en
Application granted granted Critical
Publication of JPH0336970Y2 publication Critical patent/JPH0336970Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は光フアイバ心線と称されている被覆光
フアイバの改良に関する。 既知の通り、紡糸後の光フアイバには数次にわ
たる被覆が施されて実用に供されており、このう
ち、光フアイバ心線と称されている被覆段階のも
のは、1次被覆層(プライマリコート)、緩衝層
(バツフアコート)、2次被覆層の三層が順次形成
されている。 上記における1次被覆層は光フアイバの外周に
直接密着してこれの強度劣化を防止するとともに
クラツドモードの除去効果をも発揮し、緩衝層は
外力による不均一な側圧を緩和して不均一な側圧
による伝送損失増を防止し、さらに2次被覆層は
補強効果を発揮する。 ところで、緩衝層を備えた3層被覆構造の光フ
アイバ心線とこれのない2層被覆構造の光フアイ
バ心線とを比較した場合、もちろん3層被覆の方
が側圧対処効果の点で格段優れており、それ故、
3層被覆型の光フアイバ心線が主流となつている
が、従来例では1次被覆層、緩衝層を比較的軟ら
かい材質のもので構成し、これらをほぼ同程度の
硬さとしていたため、耐側圧特性が低く、ヒート
サイクルを含めた温度特性も悪いということが判
明し、これについての改善が希求されている。 なお、ここでいう温度特性は、光フアイバの突
き出し現象に大きく関与しており、例えば低温下
における被覆光フアイバの使用時、あるいは長期
的にみて低温と高温とが繰り返す条件下(ヒート
サイクル)での被覆光フアイバの使用時、光フア
イバ(ガラス)と被覆層(プラスチツク)との線
膨張係数差により光フアイバが被覆層の端部から
突出するといつた現象が起き、さらにこの現象の
ため光フアイバにはマイクロベンド(伝送損失増
の原因)が発生し、はなはだしいときは接続箇所
などにおいて光フアイバの破断が起きる。 本考案は上記の問題点に鑑み、被覆光フアイバ
の層構成を改良したもので以下その構成を図示の
実施例により説明する。 第1図において、1は石英系の光フアイバ、2
は1次被覆層、3は緩衝層、4は2次被覆層であ
る。 上記における1次被覆層2および緩衝層3はい
ずれも同系の材質であるのがよく、これらの具体
的なものとしては、シリコーンゴム(シリコーン
樹脂)など、熱硬化性樹脂が採用され、緩衝層3
の硬さは1次被覆層2の2倍以上となつている。 一方、2次被覆層4は既知の熱可塑性樹脂から
なり、これの具体的なものとしてはナイロン、ポ
リエチレンなどがあげられる。 本考案では光フアイバ1の外周における被覆構
成を上記各層2,3,4による3層とし、1次被
覆層2と緩衝層3との相対関係では緩衝層3の硬
さ(後述のJIS−K6301に準拠したシヨアA硬さ
計による測定値)を1次被覆層2の2倍以上とし
た。 こうした被覆光フアイバの場合、所定の各層
2,3,4が備えられていることにより、既述の
強度劣化防止効果、クラツドモード除去効果、側
圧緩和効果、補強効果が単に得られるだけでな
く、側圧緩和による耐側圧特性が格段に向上し、
突き出し現象も阻止できるのであり、以下この点
につき説明する。 緩衝材を介して外力の影響を緩和する場合、一
般的には硬いものよりも軟らかいもの、すなわち
クツシヨン効果のあるものが有効のようにみえる
が、光フアイバ1のような極細物の場合はこれの
外周に設けられる緩衝層3の層厚が200μm程度と
かなり小さいものに限定されてしまい、したがつ
て層の薄さ、軟らかさが問題となり、外力による
側圧を緩和する効果が乏しくなる。 本考案では緩衝層3に関してこれを軟らかくす
るのでなく、逆に硬くしているから、光フアイバ
1が不均一な側圧を受けてマイクロベンドを起こ
そうとしても、所定の硬度を有する上記緩衝層3
がこれを阻止、特にその硬さを1次被覆層2の2
倍以上としたから、後述の実験結果が示すような
高い伝送特性を保持する。 また、2次被覆層4が緩衝層3を把持すること
を考察した場合、緩衝層3が軟らかいとこれに対
する2次被覆層4の把持力(Grip Force)が充
分に発揮されず、それ故両層3,4相互に長手方
向の積層ずれが生じ、前述した光フアイバ1の突
き出し現象が起きる。 本考案では緩衝層3が硬く、2次被覆層4はそ
の硬さに依存して同層3をしつかり把持するから
突き出し現象が満足に阻止できることになる。 つぎに具体的な実験結果を実施例とその比較例
1,2とにより説明する。 本考案の実施例とその比較例1,2の被覆構成
はそれぞれ表1のごとき3層とし、これらを石英
系とした外径125μmの光フアイバ外周に形成し
た。 なお、表1中の硬度は、JIS−K6301に準拠し
たシヨアA硬さ計による測定値を示している。 この硬度測定手段は、この種の技術分野で慣用
されており、その概要は、以下に述べる通りであ
る。 JIS−C2123に、電気用シリコーンコンパウン
ドの試験方法が規定されており、これの引用規格
として、JIS−K6301の加硫ゴム物理試験方法が
あげられているが、かかるJIS−K6301による硬
さ試験には、A形とC形とがある。 このうち、C形硬さ試験機は、A形による硬さ
が約70以上の試料に用いるのに適し、その測定値
が30以上90未満の試料に用いるのが望ましいとさ
れているから、測定値が30未満の試料には、A形
硬さ試験機が用いられる。 JIS−K6301のA形、C形は、それぞれシヨア
ーのA、Cに近似しており、市販されている硬さ
試験機、例えば、シヨアA硬さ計の場合、JIS−
K6301のA形に準拠した測定値を表示するように
構成されている。 したがつて、市販のシヨアA硬さ計を介して測
定した被側定物(1次被覆層、緩衝層など)の硬
さは、JIS−K6301のA形に規定するものとほぼ
同等の値になる。 表1において、ヤング率は20℃における値を示
している。 また、表1の被覆構成を有する各例の被覆光フ
アイバ(光フアイバ心線)は、これらを第2図の
ごときケーブル化してその特性を検じた。 第2図において、A、A、A……は光フアイバ
心線、Bは中心の抗張力体、Cはポリプロピレン
ヤーンによる緩衝材層、Dは押巻層、Eはラツプ
シースである。
The present invention relates to improvements in coated optical fibers, also known as optical fiber cores. As is known, after spinning, optical fibers are coated in several layers for practical use.Of these, the coating stage called optical fiber core is coated with a primary coating layer (primary coating layer). Three layers are sequentially formed: a buffer layer (coat), a buffer layer (buffer coat), and a secondary coating layer. The primary coating layer mentioned above directly adheres to the outer periphery of the optical fiber to prevent deterioration of its strength and also has the effect of removing cladding modes, while the buffer layer relieves uneven lateral pressure caused by external force and reduces uneven lateral pressure. In addition, the secondary coating layer exhibits a reinforcing effect. By the way, when comparing an optical fiber with a three-layer coating structure with a buffer layer and an optical fiber with a two-layer coating structure without it, the three-layer coating is, of course, much better in terms of the effect of dealing with lateral pressure. and therefore,
Three-layer coated optical fibers have become mainstream, but in conventional examples, the primary coat layer and buffer layer were made of relatively soft materials, and they were made to have approximately the same hardness, resulting in poor durability. It has been found that the lateral pressure characteristics are low and the temperature characteristics including heat cycles are also poor, and improvements in this regard are desired. The temperature characteristics mentioned here are greatly involved in the protrusion phenomenon of optical fibers. For example, when using coated optical fibers at low temperatures, or under conditions where low and high temperatures are repeated over a long period of time (heat cycle). When a coated optical fiber is used, a phenomenon occurs in which the optical fiber protrudes from the end of the coating layer due to the difference in linear expansion coefficient between the optical fiber (glass) and the coating layer (plastic). microbends (which cause increased transmission loss) occur, and when severe enough, optical fibers can break at splicing points. In view of the above-mentioned problems, the present invention improves the layer structure of the coated optical fiber, and the structure will be explained below with reference to the illustrated embodiments. In Fig. 1, 1 is a quartz-based optical fiber;
is a primary coating layer, 3 is a buffer layer, and 4 is a secondary coating layer. Both the primary coating layer 2 and the buffer layer 3 in the above are preferably made of the same type of material. Specifically, thermosetting resin such as silicone rubber (silicone resin) is used, and the buffer layer 3
The hardness of the primary coating layer 2 is more than twice that of the primary coating layer 2. On the other hand, the secondary coating layer 4 is made of a known thermoplastic resin, and specific examples thereof include nylon and polyethylene. In the present invention, the coating structure on the outer periphery of the optical fiber 1 is three layers consisting of the above-mentioned layers 2, 3, and 4. (measured using a Shore A hardness tester according to 2007) was at least twice that of the primary coating layer 2. In the case of such a coated optical fiber, by being provided with each of the predetermined layers 2, 3, and 4, it is possible to not only obtain the above-mentioned strength deterioration prevention effect, cladding mode removal effect, lateral pressure mitigation effect, and reinforcing effect, but also the lateral pressure The lateral pressure resistance characteristics due to relaxation are significantly improved,
The protrusion phenomenon can also be prevented, and this point will be explained below. When mitigating the effects of external force through a cushioning material, it seems generally more effective to use a soft material than a hard material, that is, a material with a cushioning effect, but in the case of ultra-thin materials such as the optical fiber 1, this is not the case. The thickness of the buffer layer 3 provided on the outer periphery of the buffer layer 3 is limited to a fairly small thickness of about 200 μm, and therefore, the thinness and softness of the layer become a problem, and the effect of relieving lateral pressure due to external force becomes poor. In the present invention, the buffer layer 3 is made hard rather than soft, so even if the optical fiber 1 receives uneven lateral pressure and attempts to cause microbending, the buffer layer 3 having a predetermined hardness
prevents this, especially the hardness of the primary coating layer 2.
Since it is more than twice as large, it maintains high transmission characteristics as shown in the experimental results described below. Furthermore, when considering that the secondary coating layer 4 grips the buffer layer 3, if the buffer layer 3 is soft, the grip force of the secondary coating layer 4 against it is not sufficiently exerted. Lamination misalignment occurs between the layers 3 and 4 in the longitudinal direction, and the above-mentioned protrusion phenomenon of the optical fiber 1 occurs. In the present invention, the buffer layer 3 is hard, and the secondary coating layer 4 firmly grips the same layer 3 depending on its hardness, so that the protrusion phenomenon can be satisfactorily prevented. Next, specific experimental results will be explained using Examples and Comparative Examples 1 and 2. The coating structure of the embodiment of the present invention and its comparative examples 1 and 2 was three layers as shown in Table 1, and these were formed on the outer periphery of a quartz-based optical fiber having an outer diameter of 125 μm. In addition, the hardness in Table 1 shows the measured value by the Shore A hardness meter based on JIS-K6301. This hardness measuring means is commonly used in this type of technical field, and its outline is as follows. JIS-C2123 stipulates testing methods for electrical silicone compounds, and JIS-K6301 vulcanized rubber physical test method is cited as a reference standard. There are A type and C type. Among these, the C-type hardness tester is suitable for use with samples with A-type hardness of about 70 or more, and it is recommended to use it with samples whose measured value is 30 or more and less than 90. For samples with values less than 30, an A-type hardness tester is used. Types A and C of JIS-K6301 are similar to Shore's A and C, respectively, and in the case of a commercially available hardness tester, such as the Shore A hardness meter, JIS-K6301 is similar to Shore's A and C.
It is configured to display measured values compliant with K6301 type A. Therefore, the hardness of the fixed object (primary coating layer, buffer layer, etc.) measured using a commercially available Shore A hardness meter is approximately the same as that specified for Type A of JIS-K6301. become. In Table 1, Young's modulus shows the value at 20°C. Further, each coated optical fiber (optical fiber core wire) having the coating structure shown in Table 1 was made into a cable as shown in FIG. 2, and its characteristics were examined. In FIG. 2, A, A, A, . . . are optical fiber cores, B is the central tensile strength member, C is a cushioning layer made of polypropylene yarn, D is a rolled layer, and E is a lap sheath.

【表】 上記表1の層構成を有する被覆光フアイバ(光
フアイバ心線A、A、A……)を用いてこれらを
ケーブル化した後、側圧などに起因したこれらの
伝送特性につき、比屈折率差△をパラメータにし
て測定したところ、第3図イ,ロ,ハのごとき結
果が出た。 第3図で明らかなように、本考案の実施例に係
る同図イのものは△の変化にかかわらず伝送損失
の増加を示していないが、比較例1、2のものは
同図ロ,ハのごとく△の変化によつて伝送損失の
増加を来している。 つぎに低温下における光フアイバの突き出し歪
み量、ヒートサイクルにおける光フアイバの突き
出し歪み量を測定し、その結果を表2、表3に示
した。 なお、両表2、3における突き出し歪み量は、
次式により求めた。 突き出し歪み量=△l/l0 l0=1000mm:サンプル長 △l:両端の突き出し量(mm)
[Table] After making a cable using coated optical fibers (optical fiber core wires A, A, A...) having the layer structure shown in Table 1 above, the relative refraction is determined based on the transmission characteristics caused by lateral pressure etc. When measurements were made using the rate difference △ as a parameter, the results shown in Figure 3 A, B, and C were obtained. As is clear from FIG. 3, the example in FIG. 3 according to the embodiment of the present invention does not show an increase in transmission loss regardless of the change in Δ, while the comparative examples 1 and 2 show no increase in transmission loss in the example shown in FIG. As shown in c, a change in Δ causes an increase in transmission loss. Next, the amount of ejection strain of the optical fiber at low temperatures and the amount of ejection strain of the optical fiber during heat cycles were measured, and the results are shown in Tables 2 and 3. In addition, the amount of ejection distortion in both Tables 2 and 3 is
It was calculated using the following formula. Amount of protrusion distortion = △l/l 0 l 0 = 1000mm: Sample length △l: Amount of protrusion at both ends (mm)

【表】 【table】

【表】 低温下における結果を示した表2において、本
考案の実施例に係るものは、−50℃の低温域へ降
温させたとき、はじめて微小な歪み量を示した
が、それ以外は殆ど突き出しのない状態を示し、
総合的にみて優良であるといえる。 それに対し、比較例1、2によるものは、0℃
への温度域に移行する時点からかなりの歪み量を
示し、問題のあることが窺える。 一方、ヒートサイクルの結果も、表3のごとく
本考案の実施例には突き出しの問題がないのに対
し、比較例1、2ではいずれも歪み量の値が大き
くなつている。 つぎに緩衝層と2次被覆層との関係をロードセ
ルにより測定し、その際の皮剥力、被覆引抜抵抗
を第4図、第5図に示した。 なお、これらの図には、その測定状況を簡略に
併示した。 第4図、第5図において、Fはロードセル、G
はノーニツク、Hはダイス、Tは引張力、Aは前
述した光フアイバ心線、A′は2次被覆除去状態
の当該心線である。 さらに第4図の皮剥時および第5図の被覆引抜
時における引張力Tはそれぞれ100mm/minとし
た。 これら両図から読みとれる結果で明らかなよう
に、本考案の実施例では大きな皮剥力を要し、被
覆引抜抵抗値もかなり大きくなつているが、比較
例1、2のものはそれらの値がいずれも小さい。 この結果からすると、本考案の場合は緩衝層3
に対する2次被覆層4の把持力がかなり大きく、
それ故、耐側圧特性、突き出し現象防止効果が確
保できたといえる。 以上説明した通り、本考案は光フアイバの外周
に1次被覆層、緩衝層、2次被覆層が設けられて
いる被覆光フアイバにおいて、緩衝層の硬さ
(JIS−K6301に準拠したシヨアA硬さ計による測
定値)が1次被覆層の2倍以上であることを特徴
としているから、この種の被覆光フアイバにおけ
る耐側圧特性が格段に向上し、突き出し現象も満
足に防止できる。
[Table] In Table 2 showing the results at low temperatures, the sample according to the embodiment of the present invention showed a small amount of distortion for the first time when the temperature was lowered to a low temperature range of -50℃, but other than that, there was almost no distortion. Indicates a state with no protrusion,
Overall, it can be said to be excellent. On the other hand, those according to Comparative Examples 1 and 2 were 0°C
It shows a considerable amount of distortion from the point of transition to the temperature range of , indicating that there is a problem. On the other hand, as shown in Table 3, the results of the heat cycle show that the example of the present invention has no protrusion problem, whereas the value of the amount of distortion is large in both Comparative Examples 1 and 2. Next, the relationship between the buffer layer and the secondary coating layer was measured using a load cell, and the peeling force and coating pull-out resistance at that time are shown in FIGS. 4 and 5. Note that these figures also briefly show the measurement situation. In Figures 4 and 5, F is a load cell, G
is the normal optical fiber, H is the die, T is the tensile force, A is the aforementioned optical fiber, and A' is the core with the secondary coating removed. Further, the tensile force T at the time of peeling in FIG. 4 and at the time of pulling out the coating in FIG. 5 was 100 mm/min, respectively. As is clear from the results that can be seen from these two figures, the example of the present invention requires a large peeling force and the coating pull-out resistance value is also considerably large, whereas those of Comparative Examples 1 and 2 have these values. All are small. Based on this result, in the case of the present invention, the buffer layer 3
The gripping force of the secondary coating layer 4 against the
Therefore, it can be said that the lateral pressure resistance property and the effect of preventing the protrusion phenomenon were ensured. As explained above, the present invention is a coated optical fiber in which a primary coating layer, a buffer layer, and a secondary coating layer are provided on the outer periphery of the optical fiber. Since the coated optical fiber of this type has a characteristic in that the lateral pressure resistance (measured value with a fiber meter) is more than twice that of the primary coating layer, the lateral pressure resistance of this type of coated optical fiber is significantly improved, and the protrusion phenomenon can be satisfactorily prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案被覆光フアイバの1実施例を示
した断面図、第2図は該被覆光フアイバを用いた
光ケーブルの断面図、第3図イ,ロ,ハは本考案
の実施例とその比較例との伝送特性を示した図、
第4図、第5図は同上における皮剥特性および被
覆引抜特性を示した図である。 1……光フアイバ、2……1次被覆層、3……
緩衝層、4……2次被覆層。
Fig. 1 is a cross-sectional view showing one embodiment of the coated optical fiber of the present invention, Fig. 2 is a cross-sectional view of an optical cable using the coated optical fiber, and Fig. 3 A, B, and C are cross-sectional views showing an embodiment of the coated optical fiber of the present invention. A diagram showing the transmission characteristics with the comparative example,
FIGS. 4 and 5 are diagrams showing the peeling characteristics and coating pull-out characteristics of the same as above. 1... Optical fiber, 2... Primary coating layer, 3...
Buffer layer, 4... Secondary coating layer.

Claims (1)

【実用新案登録請求の範囲】 (1) 光フアイバの外周に1次被覆層、緩衝層、2
次被覆層が設けられている被覆光フアイバにお
いて、緩衝層の硬さ(JIS−K6301に準拠した
シヨアA硬さ計による測定値)が、1次被覆層
の2倍以上である被覆光フアイバ。 (2) 1次被覆層、緩衝層が同系の材質からなる実
用新案登録請求の範囲第1項記載の被覆光フア
イバ。 (3) 1次被覆層、緩衝層がシリコーン樹脂からな
る実用新案登録請求の範囲第1項または第2項
記載の被覆光フアイバ。
[Claims for Utility Model Registration] (1) A primary coating layer, a buffer layer, 2
A coated optical fiber provided with a secondary coating layer, in which the hardness of the buffer layer (as measured by a Shore A hardness meter in accordance with JIS-K6301) is at least twice as hard as that of the primary coating layer. (2) The coated optical fiber according to claim 1, in which the primary coating layer and the buffer layer are made of similar materials. (3) The coated optical fiber according to claim 1 or 2, wherein the primary coating layer and the buffer layer are made of silicone resin.
JP17532682U 1982-11-19 1982-11-19 coated optical fiber Granted JPS5979802U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17532682U JPS5979802U (en) 1982-11-19 1982-11-19 coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17532682U JPS5979802U (en) 1982-11-19 1982-11-19 coated optical fiber

Publications (2)

Publication Number Publication Date
JPS5979802U JPS5979802U (en) 1984-05-30
JPH0336970Y2 true JPH0336970Y2 (en) 1991-08-06

Family

ID=30381469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17532682U Granted JPS5979802U (en) 1982-11-19 1982-11-19 coated optical fiber

Country Status (1)

Country Link
JP (1) JPS5979802U (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145245A (en) * 1974-05-13 1975-11-21
JPS57177102A (en) * 1981-04-02 1982-10-30 Pirelli Cavi Spa Optical fiber for electric cable

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219766Y2 (en) * 1981-02-24 1990-05-31

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145245A (en) * 1974-05-13 1975-11-21
JPS57177102A (en) * 1981-04-02 1982-10-30 Pirelli Cavi Spa Optical fiber for electric cable

Also Published As

Publication number Publication date
JPS5979802U (en) 1984-05-30

Similar Documents

Publication Publication Date Title
US4763983A (en) Optical transmission cable with messenger
US6714713B2 (en) Optical fiber having a low-shrink buffer layer and methods of manufacturing the same
US6389204B1 (en) Fiber optic cables with strength members and methods of making the same
US6167180A (en) Cable having at least one layer of flexible strength members with adhesive and non-adhesive yarns for coupling an outer protective jacket and a buffer tube containing optical fibers
JP3329364B2 (en) Small core ribbon cable with slot
JP4291767B2 (en) Improved fiber optic cable
WO2007019335A2 (en) Mechanically strippable upcoated optical fiber
WO2007141983A1 (en) Optical fiber core and method of evaluation thereof
JP5027318B2 (en) Optical fiber core
JPH0336970Y2 (en)
WO2003083517A2 (en) Buffered optical fiber ribbon
JPWO2020054753A1 (en) Optical fiber core wire and optical fiber cable
JP3941753B2 (en) Optical fiber cable and manufacturing method thereof
JP3730103B2 (en) Fiber optic cable
JPH095587A (en) Optical fiber
JP2000284155A (en) Optical fiber
JPH1123919A (en) Coated optical fiber and its manufacture
JPS646483Y2 (en)
JP4927684B2 (en) Optical fiber strands, optical fiber tape cores and optical cables suitable for small diameter multi-core cables
JP3117456B2 (en) Small diameter optical fiber
JPS6299711A (en) Covered optical fiber core
JPS6273214A (en) Optical fiber strand coated with resin curable by uv rays
JP2819660B2 (en) Optical fiber
JPH10307240A (en) Optical fiber core
JPH0144660B2 (en)