JPH0219766Y2 - - Google Patents

Info

Publication number
JPH0219766Y2
JPH0219766Y2 JP2403081U JP2403081U JPH0219766Y2 JP H0219766 Y2 JPH0219766 Y2 JP H0219766Y2 JP 2403081 U JP2403081 U JP 2403081U JP 2403081 U JP2403081 U JP 2403081U JP H0219766 Y2 JPH0219766 Y2 JP H0219766Y2
Authority
JP
Japan
Prior art keywords
optical fiber
silicone rubber
rubber
elastic modulus
modified silicone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2403081U
Other languages
Japanese (ja)
Other versions
JPS57139904U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2403081U priority Critical patent/JPH0219766Y2/ja
Publication of JPS57139904U publication Critical patent/JPS57139904U/ja
Application granted granted Critical
Publication of JPH0219766Y2 publication Critical patent/JPH0219766Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

【考案の詳細な説明】 本考案は光フアイバの周囲に被覆層を設けた光
フアイバ心線に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cored optical fiber in which a coating layer is provided around the optical fiber.

第1図は従来の光フアイバ心線の断面図であつ
て、1は光フアイバ、2は変性シリコンゴム、3
はシリコンゴム、4はプラスチツクである。
FIG. 1 is a cross-sectional view of a conventional optical fiber core wire, in which 1 is an optical fiber, 2 is a modified silicone rubber, and 3 is a sectional view of a conventional optical fiber core wire.
is silicone rubber, and 4 is plastic.

従来の光フアイバ心線は第1図に示すように構
成されており、光フアイバ1の破断強度の劣化を
防ぐため、その周囲にまず変性シリコンゴム2が
被覆され、また同時にシリコンゴム3も被覆さ
れ、一たんボビンに巻き取られる。その後、ナイ
ロン、ポリエチレン等のプラスチツク4が被覆さ
れる。変性シリコンゴム2およびシリコンゴム3
は緩衝層としての機能を有している。
A conventional optical fiber core wire is constructed as shown in Fig. 1, and in order to prevent deterioration of the breaking strength of the optical fiber 1, the periphery of the optical fiber 1 is first coated with a modified silicone rubber 2, and at the same time, a silicone rubber 3 is also coated. It is then wound onto a bobbin. Thereafter, a plastic 4 such as nylon or polyethylene is coated. Modified silicone rubber 2 and silicone rubber 3
has a function as a buffer layer.

この構造で変性シリコンゴム2およびシリコン
ゴム3を使用してている理由は、変性シリコンゴ
ム2がシリコンゴム3より割高になるため、およ
び一工程で変性シリコンゴム2の層を厚くするこ
とが不可能のためである。
The reason why modified silicone rubber 2 and silicone rubber 3 are used in this structure is because modified silicone rubber 2 is more expensive than silicone rubber 3, and because it is impossible to thicken the layer of modified silicone rubber 2 in one process. Because it is possible.

なお変性シリコンゴム2とシリコンゴム3との
弾性係数はほぼ同等であり、変性シリコンゴム2
の屈折率はシリコンゴム3の屈折率より大きい。
The elastic modulus of modified silicone rubber 2 and silicone rubber 3 is almost the same, and modified silicone rubber 2
The refractive index of the silicone rubber 3 is larger than that of the silicone rubber 3.

このような光フアイバ心線が高い水圧下におか
れた場合、内層の変性シリコンゴム2およびシリ
コンゴム3より、外層のプラスチツク4の弾性係
数の方が大きく、またシリコンゴム3とプラスチ
ツク4との密着性が悪く、界面に多くの空隙が存
在するので、プラスチツク4が殼としての機能を
有する水圧までは、光フアイバ1の光損失増を防
止できるが、その水圧以上になると、プラスチツ
ク4が座屈し、大幅な光損失増を招くという欠点
がある。
When such an optical fiber core is placed under high water pressure, the elastic modulus of the outer layer plastic 4 is larger than that of the inner layer modified silicone rubber 2 and silicone rubber 3, and the Since the adhesion is poor and there are many voids at the interface, an increase in the optical loss of the optical fiber 1 can be prevented until the water pressure reaches the point where the plastic 4 functions as a shell, but once the water pressure exceeds that water pressure, the plastic 4 will sit This has the drawback of causing a significant increase in optical loss.

また光フアイバ心線が切断したとき、その切断
面に水圧が印加されると、プラスチツク4とシリ
コンゴム3との間隙を通つて水走りが生じ、光フ
アイバ1の特性を劣化させるという欠点もあつ
た。
Another drawback is that when the optical fiber is cut and water pressure is applied to the cut surface, water runs through the gap between the plastic 4 and the silicone rubber 3, degrading the characteristics of the optical fiber 1. Ta.

本考案はこれらの欠点を除去するため、光フア
イバの周囲に順次、弾性係数が小となるような被
覆層を多層設けたものである。以下図面により本
考案を詳細に説明する。
In order to eliminate these drawbacks, the present invention provides a plurality of coating layers having successively smaller elastic modulus around the optical fiber. The present invention will be explained in detail below with reference to the drawings.

第2図は本考案の一実施例の断面図であつて、
5はゴム弾性体、その他の符号は第1図と同一の
ものは同一の符号で示してある。
FIG. 2 is a sectional view of an embodiment of the present invention,
Reference numeral 5 denotes a rubber elastic body, and other symbols that are the same as those in FIG. 1 are designated by the same symbols.

この構造では第1図に示すプラスチツク4の代
替に、シリコンゴム3の弾性係数に対して、同等
以下の弾性係数を有するゴム弾性体5を設けてい
る。
In this structure, instead of the plastic 4 shown in FIG. 1, a rubber elastic body 5 having an elastic modulus equal to or lower than that of the silicone rubber 3 is provided.

〓このような光フアイバ心線が、ある静水圧下に
おかれた場合、前述したように変性シリコンゴム
2およびシリコンゴム3の弾性係数がほとんど同
一で、ゴム弾性体5の弾性係数がシリコンゴム3
の弾性係数より小さいので、ゴム弾性体5は殼と
しての機能、すなわちある圧力までは内層のシリ
コンゴム3に圧力を伝搬させないという機能を有
さない。〓 したがつて、静水圧に見合つた均一の圧力が常
に光フアイバ1に作用することになり、このよう
な均一に加わる外圧力に対しては、光フアイバの
損失増は起こりえない。なおシリコンゴム3とゴ
ム弾性体5との間に空隙が存在しないように作製
することが可能であるが、仮に若干の空隙が残存
したとしても、ゴム弾性体5の弾性係数が小さい
ので、静水圧下で光フアイバ1に作用する不均一
な応力の絶対値は非常に小さく、光フアイバ1に
光損失増を与えるまでには至らない。
When such an optical fiber core wire is placed under a certain hydrostatic pressure, as mentioned above, the elastic modulus of the modified silicone rubber 2 and the silicone rubber 3 are almost the same, and the elastic modulus of the rubber elastic body 5 is the same as that of the silicone rubber. 3
, the rubber elastic body 5 does not have the function of a shell, that is, the function of not allowing pressure to propagate to the inner layer silicone rubber 3 up to a certain pressure. Therefore, a uniform pressure commensurate with the hydrostatic pressure will always act on the optical fiber 1, and no increase in loss in the optical fiber will occur against such uniformly applied external pressure. Note that it is possible to manufacture the silicone rubber 3 and the rubber elastic body 5 so that no voids exist between them, but even if some voids remain, the elastic modulus of the rubber elastic body 5 is small, so it is not possible to create a static The absolute value of the non-uniform stress acting on the optical fiber 1 under water pressure is very small, and does not cause any increase in optical loss to the optical fiber 1.

第3図は本考案の他の実施例の断面図である。
この構造では、変性シリコンゴム2の外層に、こ
の変性シリコンゴム2より弾性係数の小さいゴム
弾性体5を設けている。このような光フアイバ心
線は、本質的に第2図に示した光フアイバ心線と
同様な構造とみなせるので、静水圧下でも光損失
増のないすぐれた特性を有する。
FIG. 3 is a sectional view of another embodiment of the present invention.
In this structure, a rubber elastic body 5 having a smaller elastic modulus than the modified silicone rubber 2 is provided on the outer layer of the modified silicone rubber 2. Since such a cored optical fiber can be considered to have essentially the same structure as the cored optical fiber shown in FIG. 2, it has excellent characteristics without increased optical loss even under hydrostatic pressure.

なお前記実施例では光フアイバ1の周囲に3層
もしくは2層の被覆層を有する構造を例示してい
るが、光フアイバ1より外層に向つて順次、弾性
係数が小さくなるように、4層以上の被覆層を設
けても、同様な効果が得られる。またゴム弾性体
5は弾性を有する部材であれば、ゴム材に限定し
なくてもよいことは言うまでもない。
In addition, in the above embodiment, a structure having three or two coating layers around the optical fiber 1 is exemplified, but four or more coating layers may be used so that the elastic modulus decreases sequentially from the optical fiber 1 toward the outer layer. A similar effect can be obtained by providing a coating layer of. Further, it goes without saying that the rubber elastic body 5 is not limited to a rubber material as long as it is a member having elasticity.

以上説明したように、前述の構造の光フアイバ
心線は外層に向つて順次、弾性係数の小さい被覆
層を有しているので、静水圧下での光損失増が起
こらない。したがつて海底光ケーブルに本考案の
光フアイバ心線を採用すれば、著しく信頼性を向
上させることができる。
As explained above, since the optical fiber core wire having the above-described structure has coating layers having a smaller elastic modulus in order toward the outer layer, no increase in optical loss occurs under hydrostatic pressure. Therefore, if the optical fiber core of the present invention is employed in a submarine optical cable, reliability can be significantly improved.

また静水圧下では、原理的に内層ほど半径方向
応力が大きくなるので、自封作用により、本心線
を構成する部材間の気密性が向上し、海底光ケー
ブルに採用することができる。
Furthermore, under hydrostatic pressure, the radial stress is theoretically greater in the inner layer, so the self-sealing effect improves the airtightness between the members constituting the main wire, allowing it to be used in submarine optical cables.

さらに本考案の光フアイバ心線を複数本集合し
た光フアイバユニツトを、必要個数撚り合わせて
光ケーブルを構成すれば、光フアイバ心線相互お
よびケーブル心と外被間との摩擦力を大幅に増大
させることができるので、耐クリープ性能が飛躍
的に向上する。
Furthermore, if an optical cable is constructed by twisting together the required number of optical fiber units made up of a plurality of optical fiber cores of the present invention, the frictional force between the optical fiber cores and between the cable core and the jacket can be greatly increased. As a result, creep resistance performance is dramatically improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光フアイバ心線の断面図、第2
図は本考案による光フアイバ心線の一実施例の断
面図、第3図は本考案による光フアイバ心線の他
の実施例の断面図である。 1……光フアイバ、2……変性シリコンゴム、
3……シリコンゴム、4……プラスチツク、5…
…ゴム弾性体。
Figure 1 is a cross-sectional view of a conventional optical fiber, Figure 2 is a cross-sectional view of a conventional optical fiber core wire.
The figure is a sectional view of one embodiment of the optical fiber core according to the present invention, and FIG. 3 is a sectional view of another embodiment of the optical fiber core according to the present invention. 1... Optical fiber, 2... Modified silicone rubber,
3...Silicone rubber, 4...Plastic, 5...
...Rubber elastic body.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 光フアイバの周囲に、外層に向つて弾性係数が
順次小さくなるように、複数のゴム弾性体からな
る被覆層を設けたことを特徴とする光フアイバ心
線。
An optical fiber core wire characterized in that a coating layer made of a plurality of rubber elastic bodies is provided around the optical fiber so that the elastic modulus becomes gradually smaller toward the outer layer.
JP2403081U 1981-02-24 1981-02-24 Expired JPH0219766Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2403081U JPH0219766Y2 (en) 1981-02-24 1981-02-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2403081U JPH0219766Y2 (en) 1981-02-24 1981-02-24

Publications (2)

Publication Number Publication Date
JPS57139904U JPS57139904U (en) 1982-09-01
JPH0219766Y2 true JPH0219766Y2 (en) 1990-05-31

Family

ID=29821764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2403081U Expired JPH0219766Y2 (en) 1981-02-24 1981-02-24

Country Status (1)

Country Link
JP (1) JPH0219766Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979802U (en) * 1982-11-19 1984-05-30 古河電気工業株式会社 coated optical fiber

Also Published As

Publication number Publication date
JPS57139904U (en) 1982-09-01

Similar Documents

Publication Publication Date Title
JPS6045212A (en) Optical fiber cable
JPH0219766Y2 (en)
JPS6148681B2 (en)
JP3953564B2 (en) Pneumatic fiber optic unit
JPS5836881B2 (en) optical cable
JPS5946607A (en) Optical cable unit
JPS6134482Y2 (en)
JPS59208507A (en) Multiple optical fiber core of heat resisting property
JPH023524Y2 (en)
JP3989084B2 (en) Optical curl cable
JPH0128485Y2 (en)
JPH0882726A (en) Optical fiber and coated optical fiber
JPS6180116A (en) Spacer for optical fiber
JPH0112341Y2 (en)
JPH0229617Y2 (en)
JPH0412484Y2 (en)
JPS646483Y2 (en)
JPS6323691Y2 (en)
JPS6028611A (en) Optical fiber core provided with tension wire and optical fiber cable using said core
JPS601601B2 (en) Manufacturing method of fiber unit for optical submarine cable
JPS6385511A (en) Optical fiber cable
JPS604163Y2 (en) optical transmission line
JPS6365121B2 (en)
JPS6235046Y2 (en)
JP2000249881A (en) Structure of optical fiber cable