JPS6028611A - Optical fiber core provided with tension wire and optical fiber cable using said core - Google Patents
Optical fiber core provided with tension wire and optical fiber cable using said coreInfo
- Publication number
- JPS6028611A JPS6028611A JP58137263A JP13726383A JPS6028611A JP S6028611 A JPS6028611 A JP S6028611A JP 58137263 A JP58137263 A JP 58137263A JP 13726383 A JP13726383 A JP 13726383A JP S6028611 A JPS6028611 A JP S6028611A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- tensile strength
- optical fiber
- strand
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 42
- 239000000835 fiber Substances 0.000 claims abstract description 39
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 12
- 229920005989 resin Polymers 0.000 claims abstract description 7
- 239000011347 resin Substances 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 8
- 239000010687 lubricating oil Substances 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims 3
- 238000000576 coating method Methods 0.000 claims 3
- 101100264174 Mus musculus Xiap gene Proteins 0.000 claims 1
- 239000011247 coating layer Substances 0.000 abstract description 18
- 239000010410 layer Substances 0.000 abstract description 17
- 239000004677 Nylon Substances 0.000 abstract description 12
- 229920001778 nylon Polymers 0.000 abstract description 12
- 229910000831 Steel Inorganic materials 0.000 abstract description 3
- 239000010959 steel Substances 0.000 abstract description 3
- 238000001125 extrusion Methods 0.000 abstract description 2
- 229920002050 silicone resin Polymers 0.000 abstract description 2
- 230000008878 coupling Effects 0.000 abstract 1
- 238000010168 coupling process Methods 0.000 abstract 1
- 238000005859 coupling reaction Methods 0.000 abstract 1
- 239000003822 epoxy resin Substances 0.000 abstract 1
- 229920000647 polyepoxide Polymers 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 3
- 239000011152 fibreglass Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4415—Cables for special applications
- G02B6/4416—Heterogeneous cables
- G02B6/4422—Heterogeneous cables of the overhead type
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の技術分野)
本発明は、抗張力線付の光フアイバ心線とこの心線を用
いて成る光フアイバケーブルとに関する。DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to an optical fiber core wire with a tensile strength wire and an optical fiber cable using the core wire.
(発明の技術的背景とその問題点)
従来、ナイロンや7ツ累系の熱可塑性樹脂を2次被覆し
た構造の光フアイバ心線が知られているが、この光フア
イバ心線は破断点が5Kf程度の引張強度全有している
だけである。従って、外方に抗するためにその引張強度
全向上させることが望葦れる。(Technical background of the invention and its problems) Conventionally, optical fiber cores having a structure in which nylon or a heptad-based thermoplastic resin is secondarily coated are known, but these optical fiber cores have a break point. It only has a total tensile strength of about 5Kf. Therefore, it is desirable to increase the total tensile strength to resist outward forces.
1だ、この種の光フアイバ心線においては、被覆層を形
成している熱可塑性樹脂が温度変化により線膨張係数を
大きく変動させることから、被覆層が温度変化で伸縮し
てしまう。そして、特に低温で被覆層が収縮すると、フ
ァイバ素線が座屈すル+7)−’?’、7了イハ心線に
急激なマイクロベント損失をもたらす。例えば、ナイロ
ン12は、第1図に示すように、−20u以下及び80
℃以上でそれぞれ線膨張係数が大きく変動し、このため
、ナイロン金被覆材とする光フアイバ心線は、第2図に
示すように、−20℃以下に温度が変化すると、急激に
マイクロペンド損失が増大する。1. In this type of optical fiber core wire, the thermoplastic resin forming the coating layer has a coefficient of linear expansion that fluctuates greatly due to temperature changes, so the coating layer expands and contracts due to temperature changes. When the coating layer contracts, especially at low temperatures, the fiber strands buckle. ', 7-Year Iha brings rapid micro-bent loss to the core wire. For example, as shown in FIG.
The coefficient of linear expansion varies greatly at temperatures above ℃, and for this reason, as shown in Figure 2, optical fiber cores coated with nylon and gold rapidly suffer micropend loss when the temperature changes below -20℃. increases.
次に、従来、抗張力体の周面に介在(紐)を介して複数
の熱可塑性樹脂から成る被覆層を有する光フアイバ心線
が撚り合わされて配設される構造の光ファイバケーブル
が知られている。そして、この種のケーブルにおいては
、通常、介在がガラス糸入り高密度ポリエチレンから形
成され、約2チの熱収縮を起こす上に介在と被i材とに
線膨張係数の差があるため、温度変化によりファイバ素
線にマイクロベンドが生じ、光損失が増大してしまう。Next, conventionally, optical fiber cables are known which have a structure in which optical fiber core wires having coating layers made of a plurality of thermoplastic resins are twisted and arranged around the circumferential surface of a tensile strength member via intervening (strings). There is. In this type of cable, the interposer is usually made of high-density polyethylene containing glass threads, which causes thermal contraction of about 2 inches, and there is a difference in linear expansion coefficient between the interposer and the material, so temperature changes This causes microbends in the fiber strands, increasing optical loss.
。.
また、この種のケーブルでは、光フアイバ心線周面に両
側から介在が接触するだけでなく抗張力体及び外被が直
接若しくは緩衝層を介してそれぞれ接触するので、ケー
ブルに外力が付与された場合ファイバ素線忙大きな側圧
が加わってしまう。In addition, in this type of cable, not only the intervening parts contact the peripheral surface of the optical fiber from both sides, but also the tensile strength body and the outer sheath, either directly or through a buffer layer, so that when an external force is applied to the cable, A large lateral pressure is applied to the fiber strands.
そこで、介在の外径を光フアイバ心線の外径よりも大き
くしてこれら介在のみが心線に接触する構造にし、これ
によりファイバ素線に側圧が直接加わることを防止して
いるが、介在外径を大きくするとそれに伴なってケーブ
ル外径も大きくなってしまうという他の欠点が免れない
。Therefore, the outer diameter of the interposers is made larger than the outer diameter of the optical fiber core wire, so that only these interposers come into contact with the core wire, thereby preventing lateral pressure from being applied directly to the fiber strands. Another disadvantage of increasing the outer diameter is that the outer diameter of the cable also increases accordingly.
(発明の目的)
本発明の第1の目的は、引張強度が大きく、かつ÷イク
ロベンド損失が少ない抗張力線付光ファイバ心線を提供
することにある。(Objective of the Invention) A first object of the present invention is to provide a coated optical fiber having high tensile strength and low microbending loss.
そして、本発明の第2の目的は、マイクロペンド損失が
少なく、かつ外径を大きくすることなく光ファイバ心線
に加わる側圧を小さくした光ファイバケーブル金提供す
ることにある。A second object of the present invention is to provide an optical fiber cable with low micropend loss and with reduced lateral pressure applied to the optical fiber without increasing the outer diameter.
(発明の概要)
本発明は、ファイバ素線に沿って抗張力線を配し、それ
ぞれに同一材質の熱可塑性相側全被覆すると共にこれら
を同一樹脂から成る連結部にて結合することによジ抗張
力線付光7了イバ心線を構成し、又この抗張力線付光フ
ァイバ心線を複数本用いて光フアイバケーブルを構成し
たことを特徴とする。(Summary of the Invention) The present invention provides a tensile strength wire by arranging tensile strength wires along the fiber strands, fully covering the thermoplastic phase side of each fiber with the same material, and connecting them with a connecting portion made of the same resin. The present invention is characterized in that an optical fiber core with tensile strength wires is constructed, and a plurality of these optical fiber cores with tensile strength wires are used to construct an optical fiber cable.
(発明の実施例) 以下、本発明の実施例を図面全参照して説明する。(Example of the invention) Embodiments of the present invention will be described below with reference to all the drawings.
本発明に係る抗張力線付光ファイバ心線1は、第3図に
示すように、ファイバ素線2全備える。As shown in FIG. 3, the optical fiber coated wire 1 with tensile strength wires according to the present invention includes all fiber strands 2.
この7アイハ素線2にはエポキシ等が一次被覆6さ九、
その上にシリコン樹脂の緩衝層4が設仕られ、緩衝層全
会んで0.40■以下の線径に形成されている。このよ
うなファイバ素線2上には熱可塑性樹脂であるナイロン
が被覆されて2次被覆層5が設けられている。被覆層5
扛フアイバ素線2との間に空、隙6を確保し、かつ0.
9 mの外径を形成するように押出成形されている。This 7-layer wire 2 is coated with epoxy or the like, and
A buffer layer 4 of silicone resin is provided thereon, and the entire buffer layer is formed to have a wire diameter of 0.40 square centimeters or less. A secondary coating layer 5 is provided on the fiber wire 2 by covering it with nylon, which is a thermoplastic resin. Covering layer 5
An air gap 6 is secured between the fiber wire 2 and the 0.
It is extruded to form an outer diameter of 9 m.
ファイバ素線2に沿って抗張力線7が配されている。こ
の抗張力線7は鋼線から成り、0.4−以上の外径を有
している。抗張力線7上には、上述したと同一材質のナ
イロンが外径が0.9 mになるように被覆8されてい
る。そして、これら抗張力線7とファイバ素線2と鉱、
やはり同一材質のナイロンから成る連結部9にて相互に
結合されている。A tensile strength wire 7 is arranged along the fiber strand 2. This tensile strength wire 7 is made of steel wire and has an outer diameter of 0.4- or more. The tensile strength wire 7 is coated with nylon, which is the same material as described above, and has an outer diameter of 0.9 m. Then, these tensile strength wire 7, fiber wire 2 and ore,
They are connected to each other by a connecting portion 9 made of the same material, nylon.
このように、7アイパ素線2と抗張力線7とを平行に配
設して相互に結合すると、光フアイバ心線1の引張強度
は抗張力a7によシ増大し、例えば0.4〜0.8霞径
の鋼線の引張強度が20〜70〜であることから、約2
0〜70Kfになる。従って、グラスファイバ強化プラ
スチック(FRP)光フアイバ心線の引張強度50〜9
0Kfに接近した値となる。また、ファイバ素線2と抗
張力線7と全同一材質のナイロンで被覆し、かつ結合す
ると、温度変化によって被覆層5及び8を形成している
ナイロンの線膨張係数が変化しても抗張力線7により被
覆層5の低温収縮音おさえることができ、従ってマイク
ロベンド損失の増大を有効に防止することができる。In this way, when the 7-aiper wire 2 and the tensile strength wire 7 are arranged in parallel and bonded to each other, the tensile strength of the optical fiber core wire 1 increases by the tensile strength a7, for example, by 0.4 to 0. Since the tensile strength of a steel wire with a diameter of 8 haze is 20 to 70, approximately 2
It becomes 0-70Kf. Therefore, the tensile strength of fiberglass reinforced plastic (FRP) optical fiber core wire is 50 to 9.
The value is close to 0Kf. Furthermore, when the fiber wire 2 and the tensile strength wire 7 are coated with the same material of nylon and bonded together, even if the linear expansion coefficient of the nylon forming the coating layers 5 and 8 changes due to temperature changes, the tensile strength wire 7 This makes it possible to suppress the low-temperature shrinkage noise of the coating layer 5, and thus effectively prevent an increase in microbend loss.
ところで、抗張力線7の線径は7了イパ素線2の線径よ
りも若干大きくなっている。従って、光フアイバ心線1
に側圧が加わってもその側圧の殆んどが抗張力線7に集
中する。この結果、ファイバ素線2への側圧の影響が著
しく減少する。また、上述したように、ファイバ素線2
と被覆層5との間に空隙6を形成すると、更にファイバ
素線2への側圧の影響?減らすことができる。By the way, the wire diameter of the tensile strength wire 7 is slightly larger than the wire diameter of the IPA element wire 2. Therefore, the optical fiber core 1
Even if lateral pressure is applied to , most of the lateral pressure is concentrated on the tensile strength line 7. As a result, the influence of lateral pressure on the fiber strand 2 is significantly reduced. Moreover, as mentioned above, the fiber wire 2
If a gap 6 is formed between the fiber strand 2 and the coating layer 5, the influence of lateral pressure on the fiber strand 2 will be further increased. can be reduced.
上記実施例において、ファイバ素線2と被罹層5との間
にm性油會注入し、かつファイバ素線2を例えば1%の
弛みで被覆層5内に配設するようにしてもよい。このよ
うにすると、光フッイノく心線2が屈曲した場合ファイ
バ素線2上のシリコン層4と被覆層5との間で生じる摩
擦力が滑性油により小さくなり、又フッイノく素線2の
伸び保証率が1チの弛みとそれ自体の伸び率約6.6チ
との和になジ、総計1.6%となる。従って、7了イノ
(素線2(光フアイバ心線1)の引張強度が実質的に増
大したと同一になる。In the above embodiment, a m-type oil may be injected between the fiber strand 2 and the affected layer 5, and the fiber strand 2 may be disposed within the coating layer 5 with a slack of, for example, 1%. . In this way, when the optical fiber core 2 is bent, the frictional force generated between the silicon layer 4 and the coating layer 5 on the fiber strand 2 is reduced by the lubricating oil, and the The guaranteed elongation rate is the sum of the slack of 1 inch and its own elongation rate of about 6.6 inches, for a total of 1.6%. Therefore, it is equivalent to the tensile strength of the strand 2 (optical fiber core 1) being substantially increased.
本発明の抗張力線付光フッイノ(心線1の応用例として
架空地線への組み込みが考えられる。即ち、例えば、架
空地線としては、第4図に示すように、軟アルミチュー
ブ10周面に複数の亜鉛めっき鋼線11が配され、更に
その上にアルミセグメント12が設けられている構造の
ものが知られているが、このような架空地線においては
、軟アルミチューブ10内に本発明の引張強度の大きい
光フアイバ心線1を配設する。従来はこのような架空地
線にFRP光ファイバ心線を配設していたが、このFR
P光ファイバ心線では内部温度が常時150℃になって
いることから、伝送特性が低下してしまう。これに対し
て不発明のフッイノ(心線はこの程度の温度では特性が
殆んど変化しない。As an application example of the optical fiber with tensile strength wire (core wire 1) of the present invention, it is possible to incorporate it into an overhead ground wire.That is, for example, as an overhead ground wire, as shown in FIG. A structure is known in which a plurality of galvanized steel wires 11 are arranged on the wire and aluminum segments 12 are further provided on the wire. The optical fiber core wire 1 of the invention with high tensile strength is arranged. Conventionally, an FRP optical fiber core wire was arranged on such an overhead ground wire, but this FR
Since the internal temperature of the P optical fiber is always 150° C., the transmission characteristics deteriorate. On the other hand, the characteristics of the uninvented core wire hardly change at this temperature.
第5図には本発明に係る光〕了イノ(ケーブル16が示
されている。この九)了イノ(グープル16は、中心に
抗張力体14力1己設されている。この抗張力体14の
周面には緩衝層15力;設けられている。この緩@l倦
15は、軟り1の熱百工塑性オ苅月旨、例えばポリエチ
レンや;トリj算イヒビニル(pVc)、又は熱硬化性
樹脂、例えばシ1ノコーンやデソライトから形成されて
いる。そして、この緩衝層150局面には、糖3図に示
す本イ色明に係る抗張力線伺光7ブイバ心線1が複数本
舶9合iノぜ11.て配設されており、その上し亡は他
の緩衝j慢16tn−して外被17が押出被覆されてい
る。りI被17は熱可塑性樹脂から形成されてV・る。FIG. 5 shows an optical cable 16 according to the present invention.The optical cable 16 is provided with a tensile strength member 14 in the center. A buffer layer 15 is provided on the circumferential surface. The buffer layer 150 is made of a flexible resin such as cylinocone or desolite.Then, on this buffer layer 150, there are a plurality of tensile strength lines 7 and buoy bar core wires 1 according to the color shown in the figure 3. The outer cover 17 is extrusion coated with another buffer 16tn-.The outer cover 17 is made of thermoplastic resin and・Ru.
このように、抗張力体14の周面VC′a数の抗張力線
付光フブイ/(心線10己設すると、抗張力線7及びそ
の被覆層8が介在(紐)f¥用を行う力;、この介在と
しての被覆層8とフッイノく素線2の被α層5とは同一
材料のナイロン力1ら形成されているので、両者の紛膨
張係数社全く同一である。また、ファイバ素線2上の被
覆層5の低温1区縮は抗張力線7によってもおさえるこ
とができるので、7アイバ素線2の座屈が殆んど生じる
ことがない。In this way, the tensile strength wire 7 and its coating layer 8 exert the intervening (cord) f\ force when the tensile strength wire 10 of the tensile strength wire 10 is installed on the peripheral surface VC'a of the tensile strength body 14; Since the coating layer 8 as an intervening layer and the alpha layer 5 of the fiber strand 2 are made of the same material, nylon 1, their powder expansion coefficients are exactly the same. Since the low-temperature contraction of the upper coating layer 5 can also be suppressed by the tensile strength wire 7, buckling of the 7-Ibar strand 2 hardly occurs.
この結果、低温下であってもこのケーブル16の心線1
においてマイクロベンド損失が増加することがない。As a result, even at low temperatures, the core wire 1 of this cable 16
There is no increase in microbend loss.
そして、抗張力線70線径がフッイノく素線2のそれよ
りも若干大きく、かつフッイノ(素線2と被覆層5との
間に空隙6が形成されているので、ケーブル1.!tl
lp布設時等においては抗張力線7に側圧が集中し、従
って、フッイノ(素線2は殆んど側圧の影響を受けるこ
とがない。また、被覆層8の外径を大きくする必要がな
いので、ケーブル16外径が増加することもない。Since the wire diameter of the tensile strength wire 70 is slightly larger than that of the wire 2 and the gap 6 is formed between the wire 2 and the coating layer 5, the cable 1.!tl
During LP installation, lateral pressure concentrates on the tensile strength wire 7, and therefore, the strands 2 are hardly affected by lateral pressure.Also, there is no need to increase the outer diameter of the coating layer 8. , the outer diameter of the cable 16 does not increase.
(発明の効果)
本発明によれば、ファイバ素線に沿って抗張力線を配し
、それぞれに同一材質の熱可塑性樹脂を被覆すると共に
これらを前記同一樹脂から成る連結部にて結合したこと
で、光フッイノ(心線の引張強度が増大し、又被覆層の
低温収縮を有効におさえてファイバ素線の座MHr防止
することができる。(Effects of the Invention) According to the present invention, tensile strength wires are arranged along the fiber strands, each coated with a thermoplastic resin of the same material, and connected by a connecting portion made of the same resin. , optical fiber (the tensile strength of the core wire is increased, and low-temperature shrinkage of the coating layer can be effectively suppressed to prevent the fiber strand from sitting MHr).
また、ファイバ素線よりも若干外径の大きな抗張力綴金
用い、更には7アイバ素線と被覆層間に空隙を設けたり
滑性油を注入してファイバ素線に弛み全付与することで
、抗張力線に側圧全集中させてファイバ素線への側圧の
影響を最小限におさえることができる。従って、破断及
びマイクロベンド損失の小さい光ファイバ心線と外径を
大きくせずにマイクロペンド損失金小さくした伝送特性
の安定している光ファイバケーブル金提供することがで
きる。In addition, by using a tensile strength joint with a slightly larger outer diameter than the fiber strand, and by creating a gap between the 7-aiba strand and the coating layer and injecting lubricating oil to completely give the fiber strand some slack, we are able to increase the tensile strength. By concentrating all the lateral pressure on the wire, the influence of lateral pressure on the fiber wire can be minimized. Therefore, it is possible to provide an optical fiber core with low breakage and microbend loss, and an optical fiber cable with stable transmission characteristics and low microbend loss without increasing the outer diameter.
第1図はナイロンの温度変化に対する線膨張係数変化を
示す特性図、第2図は同温度変化に対するマイクロベン
ド損失を示す特性図、第3図は本発明に係る抗張力線付
光ファイバ心線の断面図、第4図は第3図の元ファイバ
心線の応用例に係る架空地線の断面図、第5図は本発明
に係る光フアイバケーブルの断面図である。
1・・・・・・・・・・・・・・・・・・・・・・・・
・・・抗張力線付光ファイバ心線2・・・・・・・・・
・・・・・・・・・・・・・・・・・・ファイバ素線5
.8・・・・・・・・・・・・・・・・・・被0層6・
・・・・・・−・・・・・・・・・・・・・・−・・・
・空隙7・・・・・・・・・・・・・・・・・・・・・
・・・抗張力線9・・・・・・・・・・・・・・・・・
・・・・・・・・・・連結部14・・・・・・・・・・
−・・・・・・・・・・・・・・・・抗張力体15.1
6・・・・・・・・・・・・緩衝層17・・−・・・・
・・・・・・・・・・・・・・・・・・・外被第3B
第5図
/3Fig. 1 is a characteristic diagram showing the linear expansion coefficient change with respect to temperature change of nylon, Fig. 2 is a characteristic diagram showing the microbend loss with respect to the same temperature change, and Fig. 3 is a characteristic diagram showing the optical fiber core wire with tensile strength wire according to the present invention. 4 is a sectional view of an overhead ground wire according to an application example of the original fiber core shown in FIG. 3, and FIG. 5 is a sectional view of an optical fiber cable according to the present invention. 1・・・・・・・・・・・・・・・・・・・・・・・・
...Optical fiber core wire with tensile strength wire 2...
・・・・・・・・・・・・・・・・・・Fiber wire 5
.. 8・・・・・・・・・・・・・・・0 layer 6・
・・・・・・-・・・・・・・・・・・・・・・・・・
・Void 7・・・・・・・・・・・・・・・・・・
・・・Tensile strength line 9・・・・・・・・・・・・・・・・・・
・・・・・・・・・Connection part 14・・・・・・・・・・
−・・・・・・・・・・・・・・・Tensile strength body 15.1
6...Buffer layer 17...
・・・・・・・・・・・・・・・・・・Outer cover No. 3B Figure 5/3
Claims (1)
抗張力線とが、それぞれ同一材質の熱可塑性樹脂にて被
覆され、かつ該熱可塑性樹脂から成る連結部にて結合さ
れていること全特徴とする抗張力線付光ファイバ心線。 2、前記抗張力線の線径は前記ファイバ素線のそれより
若干大きいことを特徴とする特許請求の範囲第1項に記
載の抗張力線付光ファイバ6綜。 6、前記ファイバ素線と前記被覆樹脂との間に空隙が設
けられていること全特徴とする特許請求の範囲第2項に
記載の抗張力線付光ファイバ心線。 4、前記ファイバ素線と前記被覆樹脂との間に滑性油が
注入され、かつ前記ファイバ素線が前記被覆樹脂内で弛
みを付与されていることを特徴とする特許請求の範囲第
1項に記載の抗張力線付光7アイパ心線。 5、抗張力体の局面に複数の抗張力線付光ファイバ心線
が撚り合わされている光フアイバグープルであって、前
記各抗張力線付光ファイバ心線は、ファイバ素線と該フ
ァイバ素線に沿って配され、該ファイバ素線よりも外径
が若干大きい抗張力線とが、それぞれ同一材質の熱可塑
性樹脂にて被覆され、がっ該熱可塑性樹脂から成る゛連
結部にて結合されていることを特徴とする光フアイバケ
ーブル。[Scope of Claims] 1. A fiber wire and a tensile strength wire disposed along the fiber wire are each coated with thermoplastic resin of the same material, and at a connecting portion made of the thermoplastic resin. Optical fiber core wire with tensile strength wires that are all characterized by being bonded together. 2. The optical fiber 6 with a tensile strength wire according to claim 1, wherein the wire diameter of the tensile strength wire is slightly larger than that of the fiber strand. 6. The coated optical fiber with tensile strength wire according to claim 2, characterized in that a gap is provided between the fiber strand and the coating resin. 4. A lubricating oil is injected between the fiber strand and the coating resin, and the fiber strand is given slack within the coating resin. Hikari 7 AIPA core wire with tensile strength wire described in . 5. An optical fiber group in which a plurality of coated optical fibers with tensile strength wires are twisted together on the surface of a tensile strength body, wherein each of the coated optical fibers with tensile strength wires includes a fiber strand and a fiber strand arranged along the fiber strand. and a tensile strength wire having an outer diameter slightly larger than that of the fiber strand, each coated with the same thermoplastic resin and connected at a connecting portion made of the thermoplastic resin. optical fiber cable.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58137263A JPS6028611A (en) | 1983-07-27 | 1983-07-27 | Optical fiber core provided with tension wire and optical fiber cable using said core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58137263A JPS6028611A (en) | 1983-07-27 | 1983-07-27 | Optical fiber core provided with tension wire and optical fiber cable using said core |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6028611A true JPS6028611A (en) | 1985-02-13 |
Family
ID=15194574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58137263A Pending JPS6028611A (en) | 1983-07-27 | 1983-07-27 | Optical fiber core provided with tension wire and optical fiber cable using said core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6028611A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63268944A (en) * | 1987-04-27 | 1988-11-07 | Taiho Kogyo Co Ltd | Temperature detection device for internal combustion engine |
EP0874262A2 (en) * | 1997-04-24 | 1998-10-28 | Alcatel | Optical cable and method of manufacturing an optical cable |
-
1983
- 1983-07-27 JP JP58137263A patent/JPS6028611A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63268944A (en) * | 1987-04-27 | 1988-11-07 | Taiho Kogyo Co Ltd | Temperature detection device for internal combustion engine |
EP0874262A2 (en) * | 1997-04-24 | 1998-10-28 | Alcatel | Optical cable and method of manufacturing an optical cable |
EP0874262A3 (en) * | 1997-04-24 | 1999-11-17 | Alcatel | Optical cable and method of manufacturing an optical cable |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6259844B1 (en) | Strengthened fiber optic cable | |
KR960013801B1 (en) | Optical cable having non-metallic sheath system | |
US4534618A (en) | Optical communication cable | |
JPS622412A (en) | Optical fiber compound aerial wire | |
US4787702A (en) | Fiber optic cable and method of making the same | |
US6067394A (en) | Structures of optical fiber cables self-reinforced against compression | |
US4840453A (en) | Composite overhead stranded conductor | |
US5098177A (en) | Optical fiber cable | |
US4469401A (en) | Optical fiber unit for optical submarine cables | |
JPS6028611A (en) | Optical fiber core provided with tension wire and optical fiber cable using said core | |
JP3022710B2 (en) | Thin optical fiber unit for optical composite ground wire and method of manufacturing the same | |
JPS6247008A (en) | Optical fiber unit | |
JPH0343603B2 (en) | ||
JPS60156025A (en) | Optical fiber cable | |
JPS6213648B2 (en) | ||
JPH0440178Y2 (en) | ||
JP2556655Y2 (en) | Optical fiber cable for optical composite ground wire | |
JPH0412484Y2 (en) | ||
JPH0990181A (en) | Optical fiber cable | |
JPS6323690Y2 (en) | ||
JPS5862602A (en) | Optical cable of light composite overhead ground wire | |
JPS63131108A (en) | Optical star coupler | |
JPH0990180A (en) | Optical fiber cable | |
JPH0660808U (en) | Layered fiber optic cable | |
JPH0765640A (en) | Small diameter type optical fiber unit for optical composite overhead/underground cable |