JPH0336939A - Radial rotor structure - Google Patents

Radial rotor structure

Info

Publication number
JPH0336939A
JPH0336939A JP1165457A JP16545789A JPH0336939A JP H0336939 A JPH0336939 A JP H0336939A JP 1165457 A JP1165457 A JP 1165457A JP 16545789 A JP16545789 A JP 16545789A JP H0336939 A JPH0336939 A JP H0336939A
Authority
JP
Japan
Prior art keywords
magnet
rotor
permeance
inner circumferential
circumferential side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1165457A
Other languages
Japanese (ja)
Inventor
Hiroyuki Uchida
裕之 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP1165457A priority Critical patent/JPH0336939A/en
Publication of JPH0336939A publication Critical patent/JPH0336939A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To magnetize a magnet perfectly by arranging a wedge type magnet having inner circumferential thickness thinner than the outer circumferential thickness at the inner circumferential side of a rotor. CONSTITUTION:Rotor core 12 held by magnets 14 holds the longitudinal opposite ends of rotor 10 by means of end boards. A shaft 20 is inserted into the end boards and secured thereto. The magnet 14 has wedge type cross section. Consequently, the magnet 14 has low outer circumferential permeance and high inner circumferential permeance. When the magnet is shaped to provide identical permeance at the inner and outer circumferences, the magnet can be magnetized uniformly. By such arrangement, demagnetization resistance is improved resulting in the improvement of torque.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は同期式モータにおいて、ロータコアがマグネッ
トに挾持されたタイプの、所謂、ラジアルタイプのロー
タ構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a so-called radial type rotor structure in a synchronous motor, in which the rotor core is held between magnets.

〔従来の技術〕[Conventional technology]

一般に、同期式モータのラジアルタイプのロータでは、
マグネットは直方体のブロック状に焼結成形されている
。このマグネットの着磁を各単体マグネット毎に行うと
、ロータへの組み込みの際にその磁力のために作業性が
著しく悪くなる。従って、通常はロータへの組み込み後
に専用の着磁器によって一斉に行われる。
Generally, in the radial type rotor of a synchronous motor,
The magnet is sintered into a rectangular block shape. If the magnets are magnetized individually, the workability will be significantly degraded due to the magnetic force when assembling the magnets into the rotor. Therefore, the magnetization is normally carried out all at once using a dedicated magnetizer after assembly into the rotor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

着磁器による着磁はロータの外周側から行われるが、そ
の場合、磁路はロータの外周に近い程短く、内周側に到
る程長い。また磁束はロータコアを通過した後マグネッ
トを通るが、マグネ7トの形状が直方体形状であるため
ロータコアはその横断面が必然的に扇形(或いは、台形
)を威し、その狭い内周部を通過すると磁束密度が高く
なり、その分、透磁率が小さくなる。即ち、青磁磁束の
うちマグネットのロータ内周部分を通る磁束は、ロータ
コアを通過する際の磁路の長さと、ロータコア内周部の
狭さとに起因したパーミアンスの低さによって外周部分
を通過する磁束の磁束密度よりもその磁束密度が小さく
なる。このためマグネットの内周部分の着磁が完全に行
われないことが生じ得るという問題がある。このため着
磁器のアンペア・ターンを大きくすることが考えられる
が、これを大きくしても実際にはマグネットの内周部分
への寄与がほとんどなく、その効果が薄いことも判明し
ている。
Magnetization by a magnetizer is performed from the outer periphery of the rotor, but in this case, the magnetic path is shorter as it approaches the outer periphery of the rotor, and longer as it approaches the inner periphery. In addition, the magnetic flux passes through the magnets after passing through the rotor core, but since the shape of the magnet is a rectangular parallelepiped, the rotor core inevitably has a fan-shaped (or trapezoidal) cross section, and the magnetic flux passes through the narrow inner circumference of the rotor core. Then, the magnetic flux density increases, and the magnetic permeability decreases accordingly. In other words, out of the celadon magnetic flux, the magnetic flux that passes through the inner circumference of the magnet's rotor is smaller than the magnetic flux that passes through the outer circumference due to the length of the magnetic path when passing through the rotor core and the low permeance caused by the narrowness of the inner circumference of the rotor core. The magnetic flux density becomes smaller than the magnetic flux density of . Therefore, there is a problem in that the inner peripheral portion of the magnet may not be completely magnetized. For this reason, it may be possible to increase the ampere-turn of the magnetizer, but it has been found that even if this is increased, it actually makes almost no contribution to the inner peripheral portion of the magnet, and its effect is weak.

依って本発明は斯かる課題の解決を図るべく、マグネッ
トの着磁を完全に行うことの可能なラジアルタイプのロ
ータ構造の提供を目的とする。
Therefore, in order to solve this problem, the present invention aims to provide a radial type rotor structure in which the magnets can be completely magnetized.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的に鑑みて本発明は、ロータコアがマグネットに
挾持されたラジアルタイプのロータであって、前記マグ
ネットが前記ロータの内周側における該マグネットの内
周方向の厚さが外周側における厚さよりも薄いくさび形
状の断面を有することを特徴とする同期モータのラジア
ルタイプのロータ構造を提供する。
In view of the above object, the present invention provides a radial type rotor in which a rotor core is held between magnets, wherein the thickness of the magnet in the inner circumferential direction on the inner circumferential side of the rotor is greater than the thickness on the outer circumferential side. A radial type rotor structure for a synchronous motor is provided, which is characterized by having a thin wedge-shaped cross section.

〔作 用〕[For production]

マグネットの透磁率は非常に小さく、内周側の厚さを外
周側よりも薄く設定することにより、夫々の場所を通過
する磁束に対するパーミアンスを変える。即ち、マグネ
ットの横断面をくさび形に形成することにより、該マグ
ネットのみを考慮した場合の外周側のパーミアンスを小
さく、内周側のパーミアンスを大きくすることができる
。ロータコアはマグネットの形状変更の影響で幾分その
形状が変化するが、外周側、内周側の各磁路の長さは基
本的に変化なく、従ってロータコアのみを考慮した場合
の外周側と内周側の各パーミアンスは夫々穴と小の関係
のままである。即ち、ロータコアとマグネットの両方を
考慮したパーミアンスは、外周側と内周側とが同じ値に
なるように作用し、着磁性能は場所により変化せず、全
体を均一に完全着磁させ得る。
The magnetic permeability of the magnet is very small, and by setting the inner circumferential side thinner than the outer circumferential side, the permeance to the magnetic flux passing through each location is changed. That is, by forming the cross section of the magnet into a wedge shape, it is possible to reduce the permeance on the outer circumferential side and increase the permeance on the inner circumferential side when considering only the magnet. Although the shape of the rotor core changes somewhat due to the change in the shape of the magnet, the length of each magnetic path on the outer and inner circumferential sides basically remains unchanged, so when only the rotor core is considered, the outer and inner magnetic paths Each permeance on the circumferential side remains in the same relationship as a hole and a small hole, respectively. That is, the permeance that takes into account both the rotor core and the magnet acts so that the outer circumferential side and the inner circumferential side have the same value, so that the magnetization performance does not change depending on the location, and the whole can be uniformly and completely magnetized.

〔実施例〕〔Example〕

以下本発明を添付図面に示す実施例に基づいて更に詳細
に説明する。第1図と第2図を参照すると、マグネット
14に挾持されたロータコア12はロータ10の長手方
向の両端を端板18によって挾持されている。その締結
方法は、ロッド16を貫通挿入することによって行うも
のである。また端板18にはシャフト20が挿入、締結
されている。
The present invention will be described in more detail below based on embodiments shown in the accompanying drawings. Referring to FIGS. 1 and 2, the rotor core 12 held between the magnets 14 is held between end plates 18 at both ends of the rotor 10 in the longitudinal direction. The fastening method is performed by penetrating and inserting the rod 16. Further, a shaft 20 is inserted into and fastened to the end plate 18.

マグネット14の横断面形状は、従来においては破線1
4′で示す様に長方形であり、マグネット14が直方体
に構成されていた。然しながら、該直方体のマグネット
14’では既述の欠点があるため、第1図に実線で示す
様にマグネッ)14の横断面形状がくさび形(或いは台
形と表現することもできる。)となる様に形成する。即
ち、マグネット14の内周側における辺14bは外周側
の辺14aの長さよりも短く形成している。ロータ10
の外周近くを通過する磁路Laと内周近くを通過する磁
路Lbとを比較すると、前者ではロータコア12を通過
する部分の長さは後者のそれと比較すると短く、またマ
グネット14を通過する部分の長さは磁路Laでは磁路
Lbと比較すると長い。ロータコア12を通過する磁路
Laと磁路Lbとのその部分の長さは図示の如く相当差
がある。着磁器によるマグネッ)14の着磁に際し、発
生させる着磁磁界は一般に相当大きく、この様な大きな
磁界の下では磁路の長さが長い程パーミアンスが相当に
小さくなる。
Conventionally, the cross-sectional shape of the magnet 14 is as shown by broken line 1.
As shown by 4', it is rectangular, and the magnet 14 is formed into a rectangular parallelepiped. However, since the rectangular parallelepiped magnet 14' has the aforementioned drawbacks, the cross-sectional shape of the magnet 14 is wedge-shaped (or can also be expressed as a trapezoid), as shown by the solid line in FIG. to form. That is, the length of the side 14b on the inner circumferential side of the magnet 14 is shorter than the length of the side 14a on the outer circumferential side. Rotor 10
Comparing the magnetic path La that passes near the outer periphery of the magnetic path Lb and the magnetic path Lb that passes near the inner periphery of The length of magnetic path La is longer than that of magnetic path Lb. As shown in the figure, there is a considerable difference in length between the magnetic path La and the magnetic path Lb that pass through the rotor core 12. When the magnet 14 is magnetized by a magnetizer, the generated magnetizing magnetic field is generally quite large, and under such a large magnetic field, the longer the length of the magnetic path, the considerably smaller the permeance becomes.

従って、磁路LaとLbに対するロータコア12の存在
によるパーミアンスは、磁路Lbの方が磁路Laよりも
相当に小さい。一方、各磁路LaLbに対するマグネッ
ト14の存在によるパーミアンスは、マグネット材料の
透磁率がロータコアのそれと比較して相当に小さいため
、各磁路L a 。
Therefore, the permeance due to the presence of the rotor core 12 for the magnetic paths La and Lb is considerably smaller for the magnetic path Lb than for the magnetic path La. On the other hand, the permeance due to the presence of the magnet 14 for each magnetic path LaLb is small because the magnetic permeability of the magnet material is considerably smaller than that of the rotor core.

Lbのマグネット14の通過長さが僅かに相違するだけ
で相当に異なり、磁路Lbの方が磁路Laよりも相当に
大きい。以上より、各磁路La、Lbのパーミアンスは
、マグネット14の辺14aと14’bとの比率、並び
にマグネット材料、ロータ1ア12の材料の透磁率等に
依存するが、従来の様な長方形断面のマグネットを使用
したロータと異なり、ロータコア12とマグネット14
の両部材を考慮した場合に差が相当に低減する。この効
果は、第1図の破線による従来形状のマグネット14′
 と本発明に係る実線のマグネット14とを比較すれば
わかる様に、マグネット材料の使用量を変更することな
く達成することができる。また、ロータ10の内周側の
辺14bを外周側の辺14aよりも短かく設定したマグ
ネッ[4を使用すると、その分だけロータコア12の内
周部が拡がる。そのため大きな着磁磁界を作用させた際
に低減するロータコア材料の透磁率の低減が小さく、結
果として磁路Lbに対するパーミアンスは従来の場合と
比較して大きくなる。このことも前述した両磁路L a
とLbとのパーミアンスの均一化に寄与する。
A slight difference in the length of passage of the magnet 14 in Lb makes a considerable difference, and the magnetic path Lb is considerably larger than the magnetic path La. From the above, the permeance of each magnetic path La, Lb depends on the ratio of the sides 14a and 14'b of the magnet 14, the magnetic permeability of the magnet material and the material of the rotor 1a 12, etc. Unlike rotors that use cross-sectional magnets, the rotor core 12 and magnets 14
The difference is considerably reduced when considering both members. This effect is achieved by the magnet 14' of the conventional shape indicated by the broken line in FIG.
As can be seen by comparing the solid line magnet 14 according to the present invention, this can be achieved without changing the amount of magnet material used. Furthermore, if a magnet [4] is used in which the inner circumferential side 14b of the rotor 10 is set shorter than the outer circumferential side 14a, the inner circumferential portion of the rotor core 12 will expand by that amount. Therefore, the reduction in the magnetic permeability of the rotor core material when a large magnetizing magnetic field is applied is small, and as a result, the permeance with respect to the magnetic path Lb becomes larger than in the conventional case. This also applies to both magnetic paths L a
This contributes to making the permeance uniform between Lb and Lb.

本発明に係るロータ構造の効果を数量的に示すため、従
来のタイプのものと解析による比較を行った。第3図に
示すマグネット14は第i図に示すくさび角度θが約1
5度の場合であり、参照番号30と32とは、夫々、着
磁コア、着磁巻線を示す。第4図の参照番号12′ は
従来形状のマグネット14′を使用した場合の従来の扇
形(或いは台形とも表現できるであろう〉のロータコア
を示す。また、両図のラインは磁路を示している。両者
共に、80000アンペア・ターンの通電を行った場合
、図示の場所PA、 PB、 PA’ 、 Pa’にお
ける磁束密度の解析値は、夫々、1.62.1.42.
1.76、1.07・×104ガウスである。即ち、第
3図の本発明に係るロータ構造の場合は第4図に示す従
来のロータ構造の場合と比較してマグネッ)14のロー
タ外周側PAにおいては約30%増加し、内周側PBに
おいては約10%減少しており、その結果マグネッ)1
4の外周側PAと内周側PBでは磁束密度の相違は10
%余りにすぎなくなっている。
In order to quantitatively demonstrate the effects of the rotor structure according to the present invention, an analytical comparison was made with that of a conventional type. The magnet 14 shown in FIG. 3 has a wedge angle θ of approximately 1 as shown in FIG.
This is the case of 5 degrees, and reference numbers 30 and 32 indicate a magnetized core and a magnetized winding, respectively. Reference numeral 12' in Fig. 4 indicates a conventional sector-shaped (or trapezoidal) rotor core when a conventionally shaped magnet 14' is used.The lines in both figures indicate the magnetic path. When a current of 80,000 ampere turns is applied to both of them, the analytical values of the magnetic flux density at the locations PA, PB, PA', and Pa' shown in the figure are 1.62.1.42.
1.76, 1.07·×104 Gauss. That is, in the case of the rotor structure according to the present invention shown in FIG. 3, compared to the case of the conventional rotor structure shown in FIG. has decreased by about 10%, resulting in a decrease in magnet
The difference in magnetic flux density between the outer circumferential side PA and the inner circumferential side PB of 4 is 10
% is no longer too much.

更に、第4図に示す従来構造のロータにおいて、アンペ
ア・ターン数を60000とした場合の場所PA’とP
B’における磁束密度は、夫々、1.47゜1.05.
 XIO’がウスであるが、このことから、マグネット
14′の形状を変えないで単に着磁器の着磁磁場のみを
大きく (60000から80000へのアンペア・タ
ーン数に対応する比率である)しても、場所FB’の磁
束密度はほとんど改善されないことが理解され得るであ
ろう。
Furthermore, in the rotor of the conventional structure shown in Fig. 4, when the number of ampere turns is 60,000, the locations PA' and P are
The magnetic flux densities at B' are 1.47° and 1.05°, respectively.
XIO' is small, but from this, we simply increase the magnetizing magnetic field of the magnetizer without changing the shape of the magnet 14' (the ratio corresponds to the number of ampere turns from 60,000 to 80,000). It can also be seen that the magnetic flux density at location FB' is hardly improved.

以上の説明においては、マグネットの着磁にのみ注目し
たが、一般に、着磁が完全に行われたマグネットは減磁
され難いという効果もある。特に、ネオジ鉄系のマグネ
ットやサマリウム・コバルト系のマグネット等、希土類
のマグネットにおいてはこの効果が大きい。
In the above explanation, only the magnetization of the magnet was focused, but in general, a magnet that is completely magnetized has the effect that it is difficult to be demagnetized. This effect is particularly great for rare earth magnets such as neodymium iron magnets and samarium/cobalt magnets.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかな様に本発明によれば、横断面が
くさび形、或いは台形のマグネットを使用したロータ構
造においては、外周側と内周側との磁路に対するパーミ
アンスの差が小さくなるのでマグネットの着磁が十分に
行えると共に、着磁が十分に行われた結果として、耐減
磁性が向上し、また、出力トルクの向上も得られる。
As is clear from the above description, according to the present invention, in a rotor structure using a magnet with a wedge-shaped or trapezoidal cross section, the difference in permeance with respect to the magnetic path between the outer circumferential side and the inner circumferential side is small. The magnet can be sufficiently magnetized, and as a result of sufficient magnetization, demagnetization resistance is improved and output torque is also improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るロータの部分横断面図であって、
第2図の矢視線I−Iによる断面図、第2図は本発明に
係るロータの縦断面図、第3図は本発明に係るロータの
マグネットの着磁における磁路を表示した解析結果図、
第4図は従来のロータのマグネットを着磁する際の磁路
を表示した解析結果図。 10・・・ロータ、12・・・ロータコア、14・・・
マグネット、  20・・・シャフト。
FIG. 1 is a partial cross-sectional view of a rotor according to the present invention,
2 is a cross-sectional view taken along arrow line II in FIG. 2, FIG. 2 is a vertical cross-sectional view of the rotor according to the present invention, and FIG. 3 is an analysis result diagram showing the magnetic path during magnetization of the rotor magnet according to the present invention. ,
FIG. 4 is an analysis result diagram showing the magnetic path when magnetizing a conventional rotor magnet. 10... Rotor, 12... Rotor core, 14...
Magnet, 20...shaft.

Claims (1)

【特許請求の範囲】[Claims] 1、ロータコアがマグネットに挾持されたラジアルタイ
プのロータであって、前記マグネットが前記ロータの内
周側における該マグネットの円周方向の厚さが外周側に
おける厚さよりも薄いくさび形状の断面を有することを
特徴とする同期モータのラジアルタイプのロータ構造。
1. A radial type rotor in which the rotor core is held between magnets, and the magnet has a wedge-shaped cross section in which the circumferential thickness of the magnet on the inner circumferential side of the rotor is thinner than the thickness on the outer circumferential side. A radial type rotor structure of a synchronous motor.
JP1165457A 1989-06-29 1989-06-29 Radial rotor structure Pending JPH0336939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1165457A JPH0336939A (en) 1989-06-29 1989-06-29 Radial rotor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1165457A JPH0336939A (en) 1989-06-29 1989-06-29 Radial rotor structure

Publications (1)

Publication Number Publication Date
JPH0336939A true JPH0336939A (en) 1991-02-18

Family

ID=15812782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1165457A Pending JPH0336939A (en) 1989-06-29 1989-06-29 Radial rotor structure

Country Status (1)

Country Link
JP (1) JPH0336939A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08275476A (en) * 1995-03-30 1996-10-18 Hitachi Ltd Outer-pole type permanent-magnet rotary electric equipment and motor vehicle using outer-pole type permanent-magnet rotary electric equipment
EP1100175A2 (en) * 1999-11-10 2001-05-16 Isuzu Motors Limited Rotor of rotating machine
JP2011041421A (en) * 2009-08-17 2011-02-24 Fuji Electric Holdings Co Ltd Electromagnetic unit
CN102916510A (en) * 2011-08-02 2013-02-06 株式会社安川电机 Rotary motor
CN102916511A (en) * 2011-08-03 2013-02-06 株式会社安川电机 Rotating electrical machine
CN103107665A (en) * 2011-11-11 2013-05-15 德昌电机(深圳)有限公司 Permanent magnet motor and electric tool and mower utilizing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151858A (en) * 1982-03-04 1983-09-09 Fanuc Ltd Synchronous motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151858A (en) * 1982-03-04 1983-09-09 Fanuc Ltd Synchronous motor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08275476A (en) * 1995-03-30 1996-10-18 Hitachi Ltd Outer-pole type permanent-magnet rotary electric equipment and motor vehicle using outer-pole type permanent-magnet rotary electric equipment
EP1100175A2 (en) * 1999-11-10 2001-05-16 Isuzu Motors Limited Rotor of rotating machine
EP1100175A3 (en) * 1999-11-10 2001-06-27 Isuzu Motors Limited Rotor of rotating machine
US6429566B1 (en) 1999-11-10 2002-08-06 Isuzu Motors Limited Rotor of rotating machine
JP2011041421A (en) * 2009-08-17 2011-02-24 Fuji Electric Holdings Co Ltd Electromagnetic unit
CN102916510A (en) * 2011-08-02 2013-02-06 株式会社安川电机 Rotary motor
JP2013034325A (en) * 2011-08-02 2013-02-14 Yaskawa Electric Corp Rotary electric machine
CN102916511A (en) * 2011-08-03 2013-02-06 株式会社安川电机 Rotating electrical machine
JP2013034344A (en) * 2011-08-03 2013-02-14 Yaskawa Electric Corp Rotary electric machine
CN103107665A (en) * 2011-11-11 2013-05-15 德昌电机(深圳)有限公司 Permanent magnet motor and electric tool and mower utilizing the same
US20130119790A1 (en) * 2011-11-11 2013-05-16 Johnson Electric S.A. Electric motor

Similar Documents

Publication Publication Date Title
US5548172A (en) Permanent magnet line start motor having magnets outside the starting cage
US4406958A (en) Stepping motors with disc magnet
EP0680131A2 (en) Permanent magnet type rotating machine
US9906083B2 (en) Rotors with segmented magnet configurations and related dynamoelectric machines and compressors
JP2017070170A (en) Permanent magnet type rotor and permanent magnet type rotary electric machine
DE112016006316T5 (en) Magnetization method, rotor, motor and scroll compressor
IE43265B1 (en) Rare earth permanent magnet rotor for dynamo electric machines and method of manufacturing same
JP4075226B2 (en) Permanent magnet rotor permanent magnet
JP3818205B2 (en) Permanent magnet rotor of inner rotor type rotating electrical machine
JPH0336939A (en) Radial rotor structure
JPH0833246A (en) Rotor for permanent magnet synchronous electric rotating machine
JP3607137B2 (en) Permanent magnet embedded rotor
JPS5989560A (en) Permanent magnet field type dc machine
JPS60219947A (en) Permanent magnet type synchronous motor
JPS6149901B2 (en)
CN101017999B (en) Self magnetizing motor
JP3664271B2 (en) Multipolar magnetizing yoke
JPH01129741A (en) Magnet for rotor
JPS5927508A (en) Magnetization method
JPS6288246A (en) Electromagnet for deflection of charged particle beam
JP2851731B2 (en) Radial type rotor of synchronous motor
JPH03195343A (en) Magnetizer for step motor
JPS6241583Y2 (en)
US20230246529A1 (en) Consequent pole-type interior permanent magnet synchronous motor
JPS6237423Y2 (en)