JPH033629A - Rotating device - Google Patents

Rotating device

Info

Publication number
JPH033629A
JPH033629A JP13640289A JP13640289A JPH033629A JP H033629 A JPH033629 A JP H033629A JP 13640289 A JP13640289 A JP 13640289A JP 13640289 A JP13640289 A JP 13640289A JP H033629 A JPH033629 A JP H033629A
Authority
JP
Japan
Prior art keywords
bearing
rotor
stator
motor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13640289A
Other languages
Japanese (ja)
Other versions
JP3056495B2 (en
Inventor
Teruo Maruyama
照雄 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1136402A priority Critical patent/JP3056495B2/en
Publication of JPH033629A publication Critical patent/JPH033629A/en
Application granted granted Critical
Publication of JP3056495B2 publication Critical patent/JP3056495B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To easily fabricate a product with reduced eddy current and preventing the locking by thermal expansion with a bearing clearance enlarged by rotatably supporting a bearing interposed between a rotor and a stator by supersonic gaseous bearing. CONSTITUTION:A stator 7 having a stator coil 7a is fixed to the inside circumference of a motor casing 1. Plural air supply channels 11 are diametrically provided in the center of the stator 7, with which high pressure air is supplied from an air supply plug 14. A rotor 6 fixed to a shaft 3 forms a recessed gas passage 9 in the center, and with both ends 8 narrowed, supersonic gaseous bearing 15 is formed. The shaft 3 of the rotor 6 is inserted into a hole 1a on both sides of the casing 1. On the other hand, a ball bearing 5 is provided to prevent thrust. After a motor was started, both ends of the rotor 6 are rotatably supported non-contactingly with supersonic air flow. A high speed device can thereby be assembled easily in which eddy current is reduced with the clearance of bearing enlarged and the occurrence of the locking by thermal expansion is prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はモータ等の回転装置に関する。[Detailed description of the invention] Industrial applications The present invention relates to a rotating device such as a motor.

従来の技術 高速回転駆動用のモータのコンパクト化を図るために、
本出願人は先にロータとステータの間に静圧気体軸受を
形成したものを提案している。第5図により説明すると
、モータケース51の軸心位置を回転軸52が貫通し、
この回転軸52の外周に磁石から成るロータ53が嵌着
固定され、このロータ53の外周に微小隙間をあけて対
向するようにモータケース51内周にステータ54が嵌
合固定されている。このステータ54の内周面とロータ
53の外周面は平滑に形成され、かつ両端から適当な位
置に一対の円周溝55が形成されるとともに、これら円
周溝55に対して絞り通路56を介して高圧気体を供給
する気体供給通路57が形成され、ロータ53外周面と
ステータ54内周面の間の微小隙間に静圧気体軸受58
が形成されている。
Conventional technology In order to make the motor for high-speed rotation drive more compact,
The present applicant has previously proposed a system in which a static pressure gas bearing is formed between the rotor and the stator. To explain with reference to FIG. 5, the rotating shaft 52 passes through the axial center position of the motor case 51,
A rotor 53 made of a magnet is fitted and fixed on the outer periphery of the rotating shaft 52, and a stator 54 is fitted and fixed on the inner periphery of the motor case 51 so as to face the outer periphery of the rotor 53 with a small gap therebetween. The inner circumferential surface of the stator 54 and the outer circumferential surface of the rotor 53 are formed smoothly, and a pair of circumferential grooves 55 are formed at appropriate positions from both ends, and a throttle passage 56 is formed in the circumferential grooves 55. A gas supply passage 57 is formed to supply high-pressure gas through the rotor 53, and a static pressure gas bearing 58 is formed in a minute gap between the outer peripheral surface of the rotor 53 and the inner peripheral surface of the stator 54.
is formed.

以上の構成において、ロータ53及び回転軸52はロー
タ53の外周の静圧気体軸受58にて支持されて高精度
の回転が確保され、かつその静圧気体軸受58はロータ
53の外周に位置して軸受半径が大きいため、量産可能
な10〜20μm程度の軸受隙間を形成しても十分な剛
性と負荷能力を持ち、さらに一対の円周溝55.55間
の広い面積が高い圧力に維持されるので大きな負荷能力
が確保される。
In the above configuration, the rotor 53 and the rotating shaft 52 are supported by the static pressure gas bearing 58 on the outer periphery of the rotor 53 to ensure high precision rotation, and the static pressure gas bearing 58 is located on the outer periphery of the rotor 53. Since the bearing radius is large, it has sufficient rigidity and load capacity even if a bearing gap of about 10 to 20 μm is formed, which is suitable for mass production, and the wide area between the pair of circumferential grooves 55 and 55 can be maintained at high pressure. This ensures a large load capacity.

一方、高速で高精度の軸受の一種として電磁石を用いて
軸心位置を能動的に制御する制御式磁気軸受が知られて
いる。この制御式磁気軸受は、非接触でかつ潤滑剤を使
用しなくてよいので、低トルク、低騒音で高速回転に適
し、また高真空中でも使用可能で潤滑剤による汚染もな
く、かつ制御により高剛性の軸受を得ることができる等
の特長を備えており、高速回転に適するとともに高剛性
であるという特長を生かして、例えばミリングマシン等
の加工機のスピンドルの軸受に適用することが提案され
ている。
On the other hand, a controlled magnetic bearing is known as a type of high-speed, high-precision bearing that uses electromagnets to actively control the shaft center position. This controlled magnetic bearing is non-contact and does not require the use of lubricant, so it is suitable for high-speed rotation with low torque and low noise. It can also be used in high vacuum, is free from contamination with lubricant, and has high speed control. It has features such as being able to obtain a rigid bearing, and it has been proposed to be applied to spindle bearings in processing machines such as milling machines, making use of its characteristics of being suitable for high-speed rotation and having high rigidity. There is.

このミリングマシンにおけるスピンドル駆動装置の概略
構成を説明する。第6図において、61はスピンドルで
、その一端部にエンドミル62が嵌着される。スピンド
ル61はその両端部近傍が磁気軸受63a、63bにて
回転自在に支持されるとともに、中間部に配設されたモ
ータ64にて駆動可能に構成されている。また、スピン
ドル61の一端側に位置する磁気軸受63aとモータ6
4の間にはスラスト[気軸受65が配設されている。6
6a、66bは、スピンドル61の両端部に配設された
径方向の位置を検出するセンサ、67はスピンドル61
の他端に設けられた軸心方向の位置を検出するセンサで
ある。68a、68bは磁気軸受63a、63b、65
が有効に動作しない異常時や、起動・停止時等の軸受作
用が不安定な状態のときにスピンドル61を支持するこ
ろがり軸受である。
The schematic configuration of the spindle drive device in this milling machine will be explained. In FIG. 6, 61 is a spindle, and an end mill 62 is fitted into one end of the spindle. The spindle 61 is rotatably supported near both ends by magnetic bearings 63a and 63b, and is configured to be driven by a motor 64 disposed in the middle. Further, a magnetic bearing 63a located at one end of the spindle 61 and a motor 6
A thrust bearing 65 is disposed between the two. 6
6a and 66b are sensors arranged at both ends of the spindle 61 to detect the radial position; 67 is the spindle 61;
This is a sensor provided at the other end to detect the position in the axial direction. 68a, 68b are magnetic bearings 63a, 63b, 65
This is a rolling bearing that supports the spindle 61 in abnormal situations where the spindle 61 does not operate effectively or when the bearing action is unstable such as when starting or stopping.

以上の構成において、センサ66a、66b及び67に
てスピンドル61の径方向及び軸心方向の位置を検出し
、その偏心量に応じて磁気軸受63a、63b、65を
制御することによってスピンドル61を高精度に所定位
置に保持することができ、このスピンドル61をモータ
64にて回転駆動することによってエンドミル62によ
り高精度の加工を行うことができる。
In the above configuration, the spindle 61 is raised by detecting the radial and axial positions of the spindle 61 using the sensors 66a, 66b, and 67, and controlling the magnetic bearings 63a, 63b, and 65 according to the amount of eccentricity. It can be held in a predetermined position with precision, and by rotating the spindle 61 with the motor 64, highly accurate machining can be performed with the end mill 62.

発明が解決しようとする課題 ところが、上記第5図の構成のモータにおいては、高速
で回転するロータ53がうず電流損失によって発熱し、
その熱膨張によるロータ53の変形量が軸受隙間に比し
て極めて大きく、変形量の許容値を越えてしまうという
問題がある。例えば、直径30m5+のロータ53が3
0゛C温度上昇すると、膨張量はIOμm程度となる。
Problem to be Solved by the Invention However, in the motor configured as shown in FIG. 5, the rotor 53 rotating at high speed generates heat due to eddy current loss.
There is a problem in that the amount of deformation of the rotor 53 due to the thermal expansion is extremely large compared to the bearing clearance, and exceeds the allowable amount of deformation. For example, the rotor 53 with a diameter of 30m5+ is
When the temperature increases by 0°C, the amount of expansion becomes approximately IO μm.

また、うず電流損失は回転数の2乗に比例して増加し、
高速化を図るとロータ53の発熱は益々大きくなるため
、ロータ53の冷却が必須の条件となる。ところが、静
圧軸受の軸受隙間が10μm程度であると、気体の粘性
抵抗により大量の冷却気体をロータ53とステータとの
間に流すのは困難であり、従ってロータ53の発熱を抑
えるのは困難である。
In addition, eddy current loss increases in proportion to the square of the rotation speed,
As the speed increases, the heat generated by the rotor 53 increases, so cooling the rotor 53 becomes an essential condition. However, if the bearing gap of the hydrostatic bearing is about 10 μm, it is difficult to flow a large amount of cooling gas between the rotor 53 and the stator due to the viscous resistance of the gas, and therefore it is difficult to suppress the heat generation of the rotor 53. It is.

さらに、高速の加工機等に適用したときは必ずしも軸受
周辺がクリーンな環境に保たれるとは限らず、ゴミ、鯖
等が軸受隙間に入り込むとロックされてしまう恐れもあ
る。
Furthermore, when applied to high-speed processing machines, etc., the environment around the bearing is not necessarily kept clean, and there is a risk that the bearing may become locked if dirt, mackerel, etc. enter the bearing gap.

又、上記第6図の磁気軸受を用いたスピンドルの駆動装
置では、軸受隙間を大きくとれるため、上記問題点は解
消されるが、2つのラジアル軸受63a、、63bとス
ラスト軸受65にそれぞれセンサ66a、66b、67
やコントローラを必要とするため、コスト高になるとい
う問題があり、さらに上記各軸受66a、66b、67
の配置スペースが必要であり、装置がコストアップかつ
大型化するという問題もある。
In addition, in the spindle driving device using magnetic bearings shown in FIG. 6, the above problem is solved because the bearing gap can be made large, but the two radial bearings 63a, 63b and the thrust bearing 65 are each equipped with a sensor 66a. , 66b, 67
Since the bearings 66a, 66b, 67 are required, there is a problem of high cost.
This requires a large amount of installation space, which increases the cost and size of the device.

尚、高速回転用の気体軸受として超音速気体流を用いた
三重らの考案による超音速気体軸受が、例えば「潤滑」
第33巻、第5号、P345〜349 (1988年)
等において開示されている。
In addition, the supersonic gas bearing devised by Mie et al., which uses supersonic gas flow as a gas bearing for high-speed rotation, is useful for example in ``lubrication''.
Volume 33, No. 5, P345-349 (1988)
It is disclosed in et al.

しかしモータのコンパクト化を図るため、上記のような
問題点の解決に適用することは想定されていない。
However, in order to make the motor more compact, it is not envisaged that it will be applied to solve the above problems.

本発明は上記従来の問題点に鑑み、高速回転可能でかつ
コンパクトな構成の回転装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional problems, it is an object of the present invention to provide a rotating device that is capable of high speed rotation and has a compact configuration.

課題を解決するための手段 本発明は、上記目的を達成するために、ロータをステー
タとロータの間に介装した超音速気体軸受にて回転自在
に支持したことを特徴とする。
Means for Solving the Problems In order to achieve the above object, the present invention is characterized in that the rotor is rotatably supported by a supersonic gas bearing interposed between the stator and the rotor.

作   用 本発明によると、粘性の小さい気体を軸受流体としてい
るので摩擦が小さく高速回転に対応することができ、か
つ慣性力を利用した超音速気体軸受を用いているため軸
受出口端の圧力を周囲圧力と無関係に大きくでき、その
ため軸受隙間を太きくしても十分な剛性と負荷能力が得
られる。その結果、ステータやロータに十分な軸受隙間
を形成することによって熱膨張があってもロックされる
恐れがなく、しかも軸受隙間が大きいため、大流量の気
体を流すことによって十分に冷却でき、冷却効果が大き
いことによって、うず電流損失による発熱が大きくても
熱膨張を小さくでき、高速化を図ることができる。
Function According to the present invention, since a gas with low viscosity is used as the bearing fluid, friction is low and it is possible to cope with high speed rotation, and since a supersonic gas bearing that utilizes inertia force is used, the pressure at the bearing outlet end can be reduced. It can be increased regardless of the ambient pressure, so sufficient rigidity and load capacity can be obtained even if the bearing gap is widened. As a result, by creating a sufficient bearing gap in the stator and rotor, there is no risk of locking even if there is thermal expansion, and since the bearing gap is large, sufficient cooling can be achieved by flowing a large amount of gas, allowing cooling. Due to the large effect, even if heat generation due to eddy current loss is large, thermal expansion can be reduced, and high speeds can be achieved.

従って、高速回転モータのステータとロータ間に超音速
気体軸受を設けることが可能であり、その結果モータの
両側に軸受が不要となって回転装置全体のコンパクト化
を図ることができ、固有振動数も大きくとれ、危険速度
通過時のロックの恐れもない、又、軸受隙間が大きくて
良いので、ステータ及びロータの加工精度が高くなくて
も良く、かつ気体供給の管理も通常の静圧軸受に比して
も精緻でな(でも良く、コストダウンを図ることができ
る等の効果が得られる。
Therefore, it is possible to provide a supersonic gas bearing between the stator and rotor of a high-speed rotating motor, which eliminates the need for bearings on both sides of the motor, making the entire rotating device more compact and reducing the natural frequency. There is no risk of locking when passing critical speeds, and since the bearing clearance is large, the machining accuracy of the stator and rotor does not need to be high, and gas supply management is similar to that of ordinary hydrostatic bearings. Although it is not as sophisticated as the previous model, it is possible to achieve effects such as cost reduction.

実施例 以下、本発明の一実施例を第1図及び第2図に基づいて
説明する。
EXAMPLE Hereinafter, an example of the present invention will be described based on FIGS. 1 and 2.

第1図において、lはモータケースで、内部にステータ
とロータを配置する空間2を有し、かつその軸心位置を
回転軸3が貫通している。モータケースlの一端壁1a
に形成された軸受穴4に、回転軸3に外嵌固定されたス
ラスト軸受5が嵌着されている。前記空間2内において
、回転軸3の外周にサマリウムコバルト磁石を備えたロ
ータ6が固定されるとともに、このロータ6の外周に対
向して微小な軸受隙間をあけてステータコイル7aを装
着したステータ7が配置され、モータケース1の内周に
嵌合固定されている。
In FIG. 1, reference numeral 1 denotes a motor case, which has a space 2 in which a stator and a rotor are placed, and a rotating shaft 3 passing through the axial center of the space 2. One end wall 1a of motor case l
A thrust bearing 5 externally fitted and fixed to the rotating shaft 3 is fitted into a bearing hole 4 formed in the bearing hole 4 . In the space 2, a rotor 6 equipped with a samarium cobalt magnet is fixed to the outer periphery of the rotating shaft 3, and a stator 7 is mounted with a stator coil 7a facing the outer periphery of the rotor 6 with a small bearing gap. is arranged and is fitted and fixed to the inner circumference of the motor case 1.

ロータ6の外周面は、中央部の径が小さく両端部に向か
って漸次径が大きくなるように加工された非円筒加工面
8に形成され、このロータ6の外周面とステータ7の円
筒状の内周面との間に、中央部で流路断面積が大きく両
端部で最も流路断面積の小さい筒状の気体流路9が形成
されている。
The outer circumferential surface of the rotor 6 is formed into a non-cylindrical surface 8 machined so that the diameter is small at the center and gradually increases toward both ends. A cylindrical gas passage 9 having a large passage cross-sectional area at the center and the smallest passage cross-sectional area at both ends is formed between the inner peripheral surface and the inner peripheral surface.

ステータ7の内周面の中央部には、環状溝10が形成さ
れるとともにこの環状溝10に開口するように、ステー
タ7を径方向に貫通する複数の給気通路11が形成され
ている。さらにモータケース1の内周面の給気通路11
に対向する位置に環状通路12が形成され、モータケー
スlを貫通する通孔13、この通孔13に螺合された給
気プラグ14を介して図示しない気体供給源に接続され
ている。この気体供給源は、気体流路9の両端の出口端
における流速が音速以上となるように気体を供給する能
力を有しており、気体流路9にて超音速気体軸受15が
構成される。
An annular groove 10 is formed in the center of the inner circumferential surface of the stator 7, and a plurality of air supply passages 11 are formed that penetrate the stator 7 in the radial direction so as to open into the annular groove 10. Furthermore, the air supply passage 11 on the inner peripheral surface of the motor case 1
An annular passage 12 is formed at a position facing the motor case 1, and is connected to a gas supply source (not shown) via a through hole 13 passing through the motor case l and an air supply plug 14 screwed into the through hole 13. This gas supply source has the ability to supply gas such that the flow velocity at the outlet ends of both ends of the gas flow path 9 is higher than the speed of sound, and the supersonic gas bearing 15 is configured in the gas flow path 9. .

なお、第1図では特徴が見易いように極端に図示してい
るが、ロータ6とステータ7の間の軸受隙間は0.1+
++mオーダーであり、中央部の隙間の最大部でも0.
2〜0.4ms+程度である。
Although the features are illustrated in an extreme manner in FIG. 1 for easy viewing, the bearing clearance between the rotor 6 and stator 7 is 0.1+
It is on the order of ++m, and even at the maximum gap in the center it is 0.
It is approximately 2 to 0.4 ms+.

以上の構成において、ステータコイル7aに電流を流し
て駆動すると、ロータ6及び回転軸3はロータ6外周の
超音速気体軸受15にて非接触でそのラジアル荷重が支
持される。その際、超音速気体軸受15を用いて気体流
路9の出口端での気体流速を音速又は超音速としている
ため、第2図に実線で示すように、気体流路9の出口端
での圧力は周囲の圧力(通常、大気圧)との間で不連続
を生ずることができ、通常の静圧気体軸受においては破
線で示すように周囲の圧力と連続するのに比して斜線で
示した面積分だけ大きい負荷容量が得られる。また、超
音速気体軸受15は気体の慣性力を利用しているので、
粘性力を利用した従来の静圧気体軸受に比して大きな隙
間を設けても大きな剛性を確保することができる。この
ように軸受隙間を大きくできることによって、加工精度
が高くなくても高精度の回転を長期にわたって維持でき
、また気体流路9に・大量の気体が流れるため、ロータ
6においてうず電流損失による発熱が生じても効果的に
冷却でき、熱膨張を低減でき、高速モータを実現するこ
とができる。
In the above configuration, when the stator coil 7a is driven by flowing current, the radial load of the rotor 6 and rotating shaft 3 is supported by the supersonic gas bearing 15 on the outer periphery of the rotor 6 in a non-contact manner. At this time, since the gas flow velocity at the outlet end of the gas flow path 9 is made sonic or supersonic using the supersonic gas bearing 15, as shown by the solid line in FIG. The pressure can be discontinuous with the surrounding pressure (usually atmospheric pressure), which is shown as a diagonal line, compared to being continuous with the surrounding pressure as shown with a dashed line in normal hydrostatic gas bearings. A larger load capacity can be obtained by the area. In addition, since the supersonic gas bearing 15 utilizes the inertial force of gas,
Compared to conventional hydrostatic gas bearings that utilize viscous force, it is possible to ensure greater rigidity even with a larger gap. By increasing the bearing gap in this way, high-precision rotation can be maintained for a long period of time even if the machining accuracy is not high, and since a large amount of gas flows through the gas flow path 9, heat generation due to eddy current loss in the rotor 6 is reduced. Even if this occurs, it can be effectively cooled, thermal expansion can be reduced, and a high-speed motor can be realized.

一方、回転軸3に作用するスラスト荷重は適宜構成のス
ラスト軸受5にて支持される。なお、このスラスト軸受
にも同様の超音速気体軸受を適用してもよい。
On the other hand, the thrust load acting on the rotating shaft 3 is supported by a thrust bearing 5 having an appropriately configured structure. Note that a similar supersonic gas bearing may also be applied to this thrust bearing.

次に、ロータ6の具体構成例を第3図により説明する。Next, a specific example of the structure of the rotor 6 will be explained with reference to FIG.

複数の積層鉄心21がクランプビン22で固定されると
ともに、この積層鉄心21の外周に永久磁石23が外嵌
固定され、かつその外周にステンレスパイプ24が外嵌
固定されている。このロータ6は、積層鉄心21を複数
のクランプビン22で固定した後、永久磁石23とステ
ンレスバイブ24を焼きばめし、さらにクランプビン2
2をかしめて製造される。ステンレスバイブ24は、1
〜1.51程度の厚さのステンレス鋼板を円筒状に成形
して溶接してパイプ状にしたものである。このステンレ
スバイブ24と永久磁石23と積層鉄心21からなるロ
ータ6が回転軸3に焼きばめにて固定される。その後、
ステンレスバイブ24の外周面に、ステータ7の内周面
との間で超音速気体軸受15の気体流路9を形成する非
円筒加工面8が加工される。
A plurality of laminated cores 21 are fixed with clamp bins 22, and a permanent magnet 23 is externally fitted and fixed to the outer periphery of the laminated iron core 21, and a stainless steel pipe 24 is externally fitted and fixed to the outer periphery. This rotor 6 is constructed by fixing a laminated iron core 21 with a plurality of clamp bins 22, then shrink-fitting a permanent magnet 23 and a stainless steel vibrator 24, and then
Manufactured by caulking 2. Stainless steel vibe 24 is 1
It is made by forming a stainless steel plate with a thickness of about 1.5 mm into a cylindrical shape and welding it into a pipe shape. A rotor 6 made up of the stainless steel vibe 24, permanent magnets 23, and laminated iron core 21 is fixed to the rotating shaft 3 by shrink fitting. after that,
A non-cylindrical machined surface 8 that forms a gas flow path 9 of the supersonic gas bearing 15 between the outer circumferential surface of the stainless steel vibrator 24 and the inner circumferential surface of the stator 7 is machined.

尚、第3図の例では、気体供給源に連通する通孔13は
モータの後端に向かって延びている。
In the example shown in FIG. 3, the through hole 13 communicating with the gas supply source extends toward the rear end of the motor.

上記実施例では、気体通路9をロータ6外周の非円筒加
工面8とステータ7内周の円筒面とて形成した例を示し
たが、逆にステータ7内周面を非円筒加工面とし、ロー
タ6外周面を円筒面としてもよく、両方とも非円筒加工
面としてもよいことは言うまでもない。
In the above embodiment, an example was shown in which the gas passage 9 was formed as a non-cylindrical machined surface 8 on the outer periphery of the rotor 6 and a cylindrical surface on the inner periphery of the stator 7, but conversely, the inner circumferential surface of the stator 7 was formed as a non-cylindrical machined surface, It goes without saying that the outer peripheral surface of the rotor 6 may be a cylindrical surface, or both may be non-cylindrical processed surfaces.

第4図は、本発明をミリングマシンにおけるスピンドル
駆動装置に適用した実施例の概略構成を説明する。31
はスピンドルで、その一端部にエンドミル32が嵌着さ
れる。スピンドル31はその中間部に配設されたモータ
33にて駆動可能に構成され、かつそのモータ33のロ
ータ34とステータ35の間に超音波気体軸受36が構
成されている。37は、超音速気体軸受36に気体を供
給する気体供給通路である。また、スピンドル31の他
端部にはスラスト磁気軸受38が配設されている。39
は軸受作用が不安定な状態のときにスピンドル11を支
持する保護ころがり軸受である。
FIG. 4 explains the schematic configuration of an embodiment in which the present invention is applied to a spindle drive device in a milling machine. 31
is a spindle, and an end mill 32 is fitted to one end thereof. The spindle 31 is configured to be driven by a motor 33 disposed at its intermediate portion, and an ultrasonic gas bearing 36 is configured between a rotor 34 and a stator 35 of the motor 33. 37 is a gas supply passage that supplies gas to the supersonic gas bearing 36. Further, a thrust magnetic bearing 38 is disposed at the other end of the spindle 31. 39
is a protective rolling bearing that supports the spindle 11 when the bearing action is unstable.

この実施例では、モータ33内に超音速気体軸受から成
るラジアル軸受を備えているので、第6図に示した従来
のスピンドル駆動装置におけるモータ両側のラジアル磁
気軸受を省略でき、格段にコンパクトな構成となってい
る。
In this embodiment, since the motor 33 is equipped with a radial bearing made of a supersonic gas bearing, the radial magnetic bearings on both sides of the motor in the conventional spindle drive device shown in FIG. 6 can be omitted, resulting in a much more compact configuration. It becomes.

上記実施例では、ブラシレスDCモータを例示したが、
トランジスタモータ、ハーメチックモータ、ACモータ
、電子ガバナモータ、コアレスモータ等、任意の種類の
モータに適用できる。
In the above embodiment, a brushless DC motor was used as an example, but
It can be applied to any type of motor such as a transistor motor, hermetic motor, AC motor, electronic governor motor, coreless motor, etc.

さらに、上記実施例では、本発明をモータに適用した例
を示したが、高速化に対応するために用いられているモ
ータと同様の構成の磁気軸受にも適用することができ、
その場合軸受の負荷能力を補強することができる。
Further, in the above embodiment, the present invention was applied to a motor, but it can also be applied to a magnetic bearing having the same configuration as a motor used to cope with higher speeds.
The load capacity of the bearing can then be reinforced.

発明の効果 本発明の回転装置によれば、以上のように粘性の小さい
気体を軸受流体としているので摩擦が小さく高速回転に
対応することができ、かつ気体流の慣性力を利用した超
音速気体軸受を用いているため軸受出口端の圧力を周囲
圧力と無関係に大きくでき、そのため軸受隙間を大きく
しても十分な剛性と負荷能力が得られる。その結果、軸
受隙間を大きくすることによってステータやロータに熱
膨張があってもロックされる恐れがなく、しかも軸受隙
間が大きいため、大流量の気体を流すことによって十分
に冷却でき、冷却効果が大きいことにより、うず電流損
失による発熱が大きくても熱膨張を小さくでき、高速化
を図ることができる。
Effects of the Invention According to the rotating device of the present invention, since the bearing fluid is a gas with low viscosity as described above, it is possible to cope with high-speed rotation with low friction. Since a bearing is used, the pressure at the bearing outlet end can be increased regardless of the surrounding pressure, and therefore sufficient rigidity and load capacity can be obtained even if the bearing gap is increased. As a result, by increasing the bearing clearance, there is no risk of the stator or rotor becoming locked even if there is thermal expansion.Furthermore, since the bearing clearance is large, sufficient cooling can be achieved by flowing a large amount of gas, and the cooling effect is improved. By making it large, thermal expansion can be reduced even if heat generation due to eddy current loss is large, and high speeds can be achieved.

従って、高速回転モータのステータとロータ間に超音速
気体軸受を設けることが可能であり、その結果モータの
両側に軸受が不要となって回転装置全体のコンパクト化
を図ることができる。また回転軸固有振動数が太き(と
れるため、危険速度通過時のロックの恐れもなく、加工
機の高速化が図れる。加工機の高速化によって加工精度
の向上、加工時間の短縮化が図れる。又、軸受隙間が大
きくて良いので、ステータ及びロータの加工精度が高く
なくても良く、かつ気体供給の管理も通常の静圧軸受に
比しても精緻でなくても良く、コストダウンを図ること
ができる等の効果を発揮する
Therefore, it is possible to provide a supersonic gas bearing between the stator and rotor of a high-speed rotating motor, and as a result, bearings are not required on both sides of the motor, making it possible to make the entire rotating device more compact. In addition, the natural frequency of the rotating shaft is large, so there is no fear of locking when passing through critical speeds, and the processing machine can be run at high speed.By increasing the speed of the processing machine, processing accuracy can be improved and processing time can be shortened. In addition, since the bearing clearance can be large, the machining precision of the stator and rotor does not need to be high, and the gas supply management does not have to be as precise as that of ordinary hydrostatic bearings, reducing costs. Demonstrate effects such as being able to achieve

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるモータの構成を示す
縦断側面図、第2図は超音速気体軸受の圧力分布特性図
、第3図は同実施例の具体構成例の縦断側面図、第4図
は本発明をミリングマシンに適用した実施例の縦断正面
図、第5図は本出願人が先に提案したモータの縦断側面
図、第6図は従来のミリングマシンの縦断正面図である
。 6.34・・・・・・ロータ、7.35・・・・・・ス
テータ、15.36・・・・・・超音速気体軸受。
FIG. 1 is a vertical side view showing the configuration of a motor in an embodiment of the present invention, FIG. 2 is a pressure distribution characteristic diagram of a supersonic gas bearing, and FIG. 3 is a vertical side view of a specific configuration example of the same embodiment. Fig. 4 is a longitudinal sectional front view of an embodiment in which the present invention is applied to a milling machine, Fig. 5 is a longitudinal sectional side view of a motor previously proposed by the applicant, and Fig. 6 is a longitudinal sectional front view of a conventional milling machine. be. 6.34...Rotor, 7.35...Stator, 15.36...Supersonic gas bearing.

Claims (1)

【特許請求の範囲】[Claims] ロータを、ステータとロータの間に介装した超音速気体
軸受にて回転自在に支持したことを特徴とする回転装置
A rotating device characterized in that a rotor is rotatably supported by a supersonic gas bearing interposed between a stator and a rotor.
JP1136402A 1989-05-30 1989-05-30 Rotating device Expired - Fee Related JP3056495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1136402A JP3056495B2 (en) 1989-05-30 1989-05-30 Rotating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1136402A JP3056495B2 (en) 1989-05-30 1989-05-30 Rotating device

Publications (2)

Publication Number Publication Date
JPH033629A true JPH033629A (en) 1991-01-09
JP3056495B2 JP3056495B2 (en) 2000-06-26

Family

ID=15174327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1136402A Expired - Fee Related JP3056495B2 (en) 1989-05-30 1989-05-30 Rotating device

Country Status (1)

Country Link
JP (1) JP3056495B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605924A (en) * 2011-01-21 2012-07-25 上海劲嘉建材科技有限公司 Production jig for self-adhering floor tiles and production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605924A (en) * 2011-01-21 2012-07-25 上海劲嘉建材科技有限公司 Production jig for self-adhering floor tiles and production method

Also Published As

Publication number Publication date
JP3056495B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
US6373156B2 (en) Combined externally pressurized gas-magnetic bearing assembly and spindle device utilizing the same
US7388308B2 (en) Spindle device
JP2009517994A (en) Linear / rotary drive
CN111051716B (en) Device provided with bearing in bearing
EP3089332B1 (en) Rotary machine
JP3636746B2 (en) Magnetic bearing device
JP4124977B2 (en) Rotating device
JPH04107319A (en) Rotating device
JPH033629A (en) Rotating device
EP0794344B1 (en) High speed rotor assembly
WO2022059573A1 (en) Bearing device
JP3862326B2 (en) Hydrostatic air bearing spindle
JP2001218425A (en) Electric motor having rotor cooling function
JP2001268859A (en) High-speed rotation spindle
KR100538310B1 (en) spindle
JPH076541B2 (en) Magnetic bearing device
JPH1113762A (en) Hydrostatic magnetic composite bearing and spindle device
JP2517557Y2 (en) Hydrostatic bearing for spindle device
JPH0965607A (en) Inner-rotor type motor
JPH0911001A (en) Spindle device
JPH05187441A (en) Overload detection device for noncontact bearing
JP2000304757A (en) Bearing device with rotating speed detecting function
JPH0429614A (en) Magnetic bearing device
JPH0610945A (en) Dynamic pressure bearing and rotating polygon mirror device using this
JPH0885005A (en) Variable air bearing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees