JPH0336178A - Inverter control device for elevator - Google Patents
Inverter control device for elevatorInfo
- Publication number
- JPH0336178A JPH0336178A JP1172759A JP17275989A JPH0336178A JP H0336178 A JPH0336178 A JP H0336178A JP 1172759 A JP1172759 A JP 1172759A JP 17275989 A JP17275989 A JP 17275989A JP H0336178 A JPH0336178 A JP H0336178A
- Authority
- JP
- Japan
- Prior art keywords
- torque
- current
- elevator
- speed
- current command
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007423 decrease Effects 0.000 claims 1
- 230000035939 shock Effects 0.000 abstract description 6
- 230000005284 excitation Effects 0.000 abstract description 5
- 239000002131 composite material Substances 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 4
- 230000003068 static effect Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000003079 width control Methods 0.000 description 1
Landscapes
- Elevator Control (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
Description
【発明の詳細な説明】
A、産業上の利用分野
本発明は、電流制御系を持つエレベータ用インバータの
制御装置に係り、特に電流制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a control device for an elevator inverter having a current control system, and particularly to a current control device.
B1発明の概要
本発明は、速度制御系のマイナループに電流制列系を持
ち、速度制御系からのトルク電流指令でインバータ出力
電流を制御するにおいて、エレベータの機械系の摩擦に
よるトルク不足分をトルクブースト電流としてトルク電
流指令に加算することにより、
エレベータのスタートショック及び減速停止時の速度不
安定を解消するものである。B1 Summary of the Invention The present invention has a current control system in the minor loop of the speed control system, and in controlling the inverter output current with a torque current command from the speed control system, the torque shortage due to friction in the mechanical system of the elevator is replaced by torque. By adding the boost current to the torque current command, it eliminates elevator start shock and speed instability during deceleration and stop.
C1従来の技術
電流制御系を持つインバータによるエレベータ駆動装置
は、例えば第5図に示す構成にされる。C1 Conventional technology An elevator driving device using an inverter having a current control system has the configuration shown in FIG. 5, for example.
整流器Iから直流電力を供給されるインバータ本体2(
よ電圧型インバータ主回路に投入され、エレベータ駆動
源にムる誘導電動機3を適度制御する。The inverter body 2 (which is supplied with DC power from the rectifier I)
A high voltage type inverter is input to the main circuit to moderately control the induction motor 3 which serves as the elevator drive source.
制御装置は、速度パターンに従った速度指令Nと電動機
3の速度検出用ピックアップ4と速度検出回路5からの
検出速度N5とを突合せて速度制御増幅器6による速度
制御演算を行い、この出力をトルク電流指令11とする
ベクトル制御演算部7によって励磁電流設定位’、r
oを直交さUる?II流指令I + (=J I o’
+ I T’)と正弦波サンプル値になる周波数指令S
I NU (=S I N (6J。](−φ))、
S I NV (−S I N (ωot+φ−2π/
3))を得、これら周波数指令を1) / A変換器8
によってアナログ信号に変換すると共に電流指令■1に
応じた振幅制御を行なった電流指令1u、rwを得、こ
の指令とインバータのU、W相出力電流検出信号とを夫
々突合U”てマイナループになる電流制御増怖器91.
’)2に2相分の7は圧制御信弓■。、Vいを得、さら
に両信号の加算と反転増幅2謹10を通してV相の電圧
制御信号を得、@電圧制御信号■1□VvVwをパルス
幅制御回路11によってPWM波形に変調し、さらにゲ
ートアンプ12による電力増幅によってインバータ主回
路2のゲート制御を行なう。The control device compares the speed command N according to the speed pattern with the detected speed N5 from the speed detection pickup 4 of the electric motor 3 and the speed detection circuit 5, performs a speed control calculation using the speed control amplifier 6, and converts this output into a torque The excitation current setting position', r is determined by the vector control calculation unit 7 as the current command 11.
Orthogonal to o? II style command I + (=J I o'
+ I T') and the frequency command S that becomes the sine wave sample value
I NU (=S I N (6J.] (-φ)),
S I NV (-S I N (ωot+φ-2π/
3)) and convert these frequency commands into 1) / A converter 8
Current commands 1u and rw are obtained by converting them into analog signals and performing amplitude control according to current command 1, and compare these commands with the U and W phase output current detection signals of the inverter, respectively, to form a minor loop. Current control intensifier 91.
') 7 for 2 phases is pressure control Shinyumi ■. , V is obtained, and the V-phase voltage control signal is obtained through addition and inversion amplification of both signals, and the @voltage control signal 1□VvVw is modulated into a PWM waveform by the pulse width control circuit 11, and then the gate Gate control of the inverter main circuit 2 is performed by power amplification by the amplifier 12.
D 発明が解決しようとする課題
従来のエレベータ駆動装置は、速度制御ループに電流制
御マイナループを持たせた構成になり、エレベータ特有
の始動−加速一定速一減速一停止という速度パターンの
繰り返し運転には低速運転時及び始動時の機械系の摩擦
によって生じるトルク分の補償がなされず、第6図に示
すように、実線で示す速度指令Nに対して破線で示す実
際の速度の立上り時の速度急変を伴うスタートショック
や、エレベータ減速完了直前での振動等の速度不安定を
起し、乗員に不快感や不安感を与える恐れがあった。D Problems to be Solved by the Invention Conventional elevator drive devices have a configuration in which the speed control loop has a current control minor loop, and it is difficult to operate the repeating speed pattern of start-acceleration constant speed-deceleration-stop that is unique to elevators. There is no compensation for the torque generated by friction in the mechanical system during low-speed operation and startup, and as shown in Figure 6, there is a sudden speed change at the start of the actual speed shown by the broken line with respect to the speed command N shown by the solid line. This may cause a start shock accompanied by a sudden drop in speed, and speed instability such as vibrations just before the elevator decelerates, which may cause discomfort and anxiety to the passengers.
本発明の目的は、スタートショック及び減速停止時の速
度不安定を解消するエレベータ用インバータの制御装置
を提供することにある。An object of the present invention is to provide an elevator inverter control device that eliminates start shock and speed instability during deceleration and stop.
81課題を解決するための手段と作用
本発明は上記目的を達成するため、速度制御系のマイナ
ループに電流制御系を持ち、速度制御系からのトルク電
流指令とインバータの出力電流とから該電流制御系によ
り電流制御を行なうエレベータ用インバータの制御装置
において、エレベータの機械系の摩擦によるトルク分に
相当するトルクブースト電流を前記トルク電流指令に加
算する加算手段を備え、トルクブースト電流分でエレベ
ータ機械系の摩擦によるトルク不足を補償する。81 Means and Function for Solving the Problems In order to achieve the above object, the present invention has a current control system in the minor loop of the speed control system, and controls the current based on the torque current command from the speed control system and the output current of the inverter. A control device for an elevator inverter that performs current control by a system includes an adding means for adding a torque boost current corresponding to a torque due to friction in the elevator mechanical system to the torque current command, and the control device controls the elevator mechanical system by the torque boost current. Compensates for the lack of torque due to friction.
また、本発明はエレベータの機械系の摩擦に上るトルク
分に相当するトルクブースト電流をエレベータ速度指令
が高速になるほど小さくする利得調整手段と、この利得
調整手段により調整したトルクブースト電流を前記トル
ク電流指令に加算する加算手段とを備え、トルク補償を
エレベータの始動時及び減速停止時はど大きくして中速
及び高速時の過剰補償を無くしながらトルク不足補償を
行なう。The present invention also provides a gain adjustment means for reducing the torque boost current corresponding to the torque added to the friction of the mechanical system of the elevator as the elevator speed command increases, and a gain adjustment means for reducing the torque boost current corresponding to the torque added to the friction of the mechanical system of the elevator. The present invention includes an addition means for adding to the command, and increases torque compensation when the elevator starts, decelerates and stops, and performs insufficient torque compensation while eliminating excessive compensation at medium and high speeds.
F、実施例
第1図は本発明の一実施例を示す要部回路図である。ベ
クトル制御演算部7は第5図のそれと同様に構成され、
ベクトル電流指令■1と励磁電流指令1゜とが直交する
ときの合成ベクトルの大きさを演算部7Iで演算して電
流指令IIを得る。また、演算部72では両指令の逆正
接演算によって位相角φを求め、さらに演算部73で微
分して位相変化分△φを求める。また、演算部74は両
指令to、ITと電動機の二次時定数r、(=r、、t
/Rt)からすべり周波数ω8を求め、これに速度検出
器5からの検出速度ω、を加算部75で加算して運転周
波数ω。を求める。そして、正弦波発生部7゜では位相
変化分△φと運転周波数ω。から正弦波のザンブル値を
持つROMデータのアクセス周期及びアドレス調整によ
って所期の正弦波サンプル列データを順次出力する。こ
の出力は
S rNU=s IN (r、+。l:+φ)STNW
=STN(ωot+φ−2yr / 3 )の→ノ゛ン
ブル4n’iデータ列になる。F. Embodiment FIG. 1 is a main circuit diagram showing an embodiment of the present invention. The vector control calculation section 7 is configured similarly to that shown in FIG.
A calculation unit 7I calculates the magnitude of the composite vector when the vector current command ■1 and the excitation current command 1° are orthogonal to each other to obtain a current command II. Further, the calculation unit 72 calculates the phase angle φ by calculating the arctangent of both commands, and further, the calculation unit 73 performs differentiation to determine the phase change amount Δφ. In addition, the calculation unit 74 outputs both commands to, IT and the motor's secondary time constant r, (=r,,t
/Rt) to find the slip frequency ω8, and add the detected speed ω from the speed detector 5 to this in the adder 75 to obtain the operating frequency ω. seek. Then, in the sine wave generating section 7°, the phase change △φ and the operating frequency ω. By adjusting the access cycle and address of ROM data having a sine wave sample value, the desired sine wave sample string data is sequentially output. This output is S rNU=s IN (r, +.l:+φ)STNW
=STN(ωot+φ-2yr/3)→Noble 4n'i data string.
次に、D/A変換器8はベクトル演算部7から7
の出力1NU、5INVをアナログ信号に変換して電流
指令■υ、I、1を得るのに、演算部71からの電流指
令T+を係数乗算して電流指令T u、 I wの振幅
を所期のものにする。Next, the D/A converter 8 converts the outputs 1NU and 5INV of the vector calculation units 7 to 7 into analog signals to obtain the current commands υ, I, 1, and the current command T+ from the calculation unit 71. The amplitudes of current commands T u and I w are set to desired values by multiplying by coefficients.
ここで、徂流指令I、は加算器21においてトルクブー
ス)14を流IBと加算され、この加算結果T、+1.
がD/A変換器8の変換係数にされる。Here, the current command I is added to the torque boost (torque boost) 14 and the flow IB in the adder 21, and the addition result T, +1.
is used as a conversion coefficient of the D/A converter 8.
このトルクブースト電流Inは低速域から高速域の全域
に渡って又はエレベータの始動時及び減速停止時のみバ
イアス電流値として与えられる。This torque boost current In is given as a bias current value over the entire range from a low speed range to a high speed range, or only when the elevator starts and decelerates and stops.
従って、エレベータの始動時及び減速停止時には、トル
ク電流指令I7と励磁電流指令■。から求める電流指令
■1にトルクブースト電流TB分が加算された電流で電
動機3が駆動され、始動時の機械系の摩擦によって生じ
るトルク不足分をトルク8
ブースト電流18分として補償し、また減速停止のため
の低速運転に入ったときの振動をトルクブースト電流I
Bによって抑制する。Therefore, when the elevator starts and decelerates and stops, the torque current command I7 and the excitation current command ■. The electric motor 3 is driven by the current obtained by adding the torque boost current TB to the current command ■1 obtained from the current command, and compensates for the torque shortage caused by friction in the mechanical system at startup with torque 8 and boost current 18, and also decelerates and stops. Torque boost current I reduces vibration when entering low speed operation for
Suppressed by B.
なお、エレベータ機械系のトルク特性は、第2図に示す
ように、速度零から速度V。までの静庁擦トルク領域と
速度V。から最高速VMAXでの風損トルク領域とに大
きく分けられ、トルクブースト電流Inによるトルク補
償は主に静摩擦トルクによるトルク不足、トルク過剰に
対して行なわれ、中高速域での風損に対する補償は速度
制御系にJ:って十分に補償できるものである。また、
エレベータの下降時にはトルク電流指令rTの極性が上
昇時は逆になるが、このときにもトルクブース)・電流
■8の極性は切換えることなく、下降時のトルク指令I
7の過剰分(静摩擦トルク分)を補償できる。The torque characteristics of the elevator mechanical system vary from speed zero to speed V, as shown in FIG. Static friction torque area and speed V up to. It is broadly divided into the windage torque range at maximum speed VMAX and the windage torque range at maximum speed VMAX. Torque compensation by the torque boost current In is mainly performed for torque shortage and torque excess due to static friction torque, and windage damage compensation in the medium and high speed range is performed. J: can be sufficiently compensated for in the speed control system. Also,
When the elevator is going down, the polarity of the torque current command rT is reversed when it is going up, but even at this time, the polarity of the torque booth) and current ■8 is not changed, and the torque command I when going down is the same.
7 (static friction torque) can be compensated for.
第3図は本発明の他の実施例を示す要部回路図である。FIG. 3 is a main circuit diagram showing another embodiment of the present invention.
同図が第1図と異なる部分は、トルクブースト電流■8
を利得制御増幅器22で速度指令Nによる利得調整を行
ない、この出力TB’を加算器21の加算トルクブース
ト電流として与える点にある。利得制御増幅器22によ
るトルクブースト電流Inの調整は、第4図に示すよう
に、速度指令Nが正転又は逆転の最高速度で零となるよ
うにされ、速度指令Nが零(停止)では最大トルクブー
スト電流I。8.8になるようにされ、その特性は実線
で示すような一定比率になるもの、あるいは破線で示す
ように指数関数的に変化させるものにされる。The difference between this diagram and Figure 1 is that the torque boost current ■8
The gain control amplifier 22 performs gain adjustment based on the speed command N, and this output TB' is provided as the addition torque boost current of the adder 21. The torque boost current In is adjusted by the gain control amplifier 22, as shown in FIG. Torque boost current I. 8.8, and its characteristics are set to be a constant ratio as shown by the solid line, or to be changed exponentially as shown by the broken line.
本実施例においては、エレベータの中速、高速運転にな
るほどトルクブースト電流指令■8を低くする。これに
より、エレベータの中高速運転時のトルクブースト電流
Inによるトルクブースト補償分が少なくなり、該運転
領域でのトルクブースト補償が過励磁となって振動や騒
音発生原因になるのを防止し、またインバータ出力電圧
が電源電圧付近まで上昇して制御不安定になったりそれ
?こよる振動発生を防止しながら始動時及び減速停止時
に十分なトルク補償を得る。In this embodiment, the torque boost current command (8) is made lower as the elevator operates at medium and high speeds. As a result, the amount of torque boost compensation due to the torque boost current In during medium-to-high speed operation of the elevator is reduced, and the torque boost compensation in this operating range is prevented from becoming overexcited and causing vibration and noise generation. Is the inverter output voltage rising to near the power supply voltage and causing control instability? To obtain sufficient torque compensation at the time of starting and deceleration/stop while preventing the occurrence of such vibration.
なお、実施例はベクトル制御による場合を示したが、本
発明はすべり周波数制御装置等に適用して同等の作用効
果を得ることができる。Although the embodiment shows a case using vector control, the present invention can be applied to a slip frequency control device or the like to obtain the same effect.
G1発明の効果
以上のとおり、本発明に上れば、エレベータの機械系の
摩擦によるl・ルク分に相当するトルク電流指令
−スト電流をトルク電流指令に加算するようにしたため
、始動時のスタートショックや減速停止時の振動を防止
したトルク補償を行なうことができる。また、トルクブ
ースト電流はエレベータの速度指令によって高速になる
ほど小さくするようにしたため、高速や中速域でのトル
ク補償の過剰を無くしながらスタートショックや振動を
防止できる効果がある。G1 Effects of the Invention As described above, according to the present invention, since the torque current command minus the strike current corresponding to the l-lux due to friction in the elevator mechanical system is added to the torque current command, the start It is possible to perform torque compensation that prevents shocks and vibrations during deceleration and stop. Furthermore, since the torque boost current is made smaller as the speed increases according to the elevator speed command, it is possible to prevent start shock and vibration while eliminating excessive torque compensation in high speed and medium speed ranges.
第1図は本発明の一実施例を示す要部回路図、第2図は
エレベータの速度−機械系トルク特性図、第3図は本発
明の他の実施例を示す要部回路図、第4図は第3図にお
けるトルクブースト電流特性図、第5図はエレベータ駆
動装置の構成図、第6図はエレベータの速度波形図であ
る。
2
・・速度検出回路、
7・・・ベク
トル制御演算部、
・D/A変換器、
・・加算器、
22・・・利得調
整回路。
外2名Fig. 1 is a circuit diagram of a main part showing one embodiment of the present invention, Fig. 2 is a speed-mechanical torque characteristic diagram of an elevator, and Fig. 3 is a circuit diagram of a main part showing another embodiment of the invention. 4 is a torque boost current characteristic diagram in FIG. 3, FIG. 5 is a configuration diagram of the elevator drive device, and FIG. 6 is a speed waveform diagram of the elevator. 2...Speed detection circuit, 7...Vector control calculation unit, -D/A converter,...Adder, 22...Gain adjustment circuit. 2 people outside
Claims (2)
速度制御系からのトルク電流指令とインバータの出力電
流とから該電流制御系により電流制御を行なうエレベー
タ用インバータの制御装置において、エレベータの機械
系の摩擦によるトルク分に相当するトルクブースト電流
を前記トルク電流指令に加算する加算手段を備えたこと
を特徴とするエレベータ用インバータの制御装置。(1) Has a current control system in the minor loop of the speed control system,
In an elevator inverter control device that performs current control using a current control system based on a torque current command from a speed control system and an output current of an inverter, a torque boost current corresponding to the torque due to friction in the elevator mechanical system is applied to the torque. 1. A control device for an elevator inverter, comprising an addition means for adding to a current command.
速度制御系からのトルク電流指令とインバータの出力電
流とから該電流制御系により電流制御を行なうエレベー
タ用インバータの制御装置において、エレベータの機械
系の摩擦によるトルク分に相当するトルクブースト電流
をエレベータ速度指令が高速になるほど小さくする利得
調整手段と、この利得調整手段により調整したトルクブ
ースト電流を前記トルク電流指令に加算する加算手段と
を備えたことを特徴とするエレベータ用インバータの制
御装置。(2) Has a current control system in the minor loop of the speed control system,
In an elevator inverter control device that performs current control by a current control system based on a torque current command from a speed control system and an output current of an inverter, a torque boost current corresponding to the torque due to friction in the elevator mechanical system is applied to the elevator speed. 1. A control device for an elevator inverter, comprising: gain adjustment means that decreases the command as the speed increases; and addition means that adds the torque boost current adjusted by the gain adjustment means to the torque current command.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1172759A JPH0780648B2 (en) | 1989-07-04 | 1989-07-04 | Control device for elevator inverter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1172759A JPH0780648B2 (en) | 1989-07-04 | 1989-07-04 | Control device for elevator inverter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0336178A true JPH0336178A (en) | 1991-02-15 |
JPH0780648B2 JPH0780648B2 (en) | 1995-08-30 |
Family
ID=15947806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1172759A Expired - Lifetime JPH0780648B2 (en) | 1989-07-04 | 1989-07-04 | Control device for elevator inverter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0780648B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59133182A (en) * | 1982-10-12 | 1984-07-31 | オ−チス・エレベ−タ・コムパニ− | Elevator |
-
1989
- 1989-07-04 JP JP1172759A patent/JPH0780648B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59133182A (en) * | 1982-10-12 | 1984-07-31 | オ−チス・エレベ−タ・コムパニ− | Elevator |
Also Published As
Publication number | Publication date |
---|---|
JPH0780648B2 (en) | 1995-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4019105A (en) | Controlled current induction motor drive | |
US5686807A (en) | Torque control system for AC motor | |
US4437051A (en) | Method and apparatus for controlling induction motor | |
JPH0746855A (en) | Two phase pwm controller for inverter | |
JP3233005B2 (en) | PWM controller | |
US4683412A (en) | Current source inverter motor drive adapted for full current regenerative mode operation | |
EP0121792A2 (en) | Vector control method and system for an induction motor | |
JP4698312B2 (en) | Power converter | |
JPH0336178A (en) | Inverter control device for elevator | |
JP2760981B2 (en) | Current control method of voltage type PWM inverter | |
JPS6387195A (en) | Controller for synchronous motor | |
JP3255839B2 (en) | AC elevator control device | |
JP3124019B2 (en) | Induction motor control device | |
JPH0585470B2 (en) | ||
WO2024057633A1 (en) | Power regeneration converter | |
JPS6186631A (en) | Testing apparatus of power transmitting mechanism | |
JPH03265485A (en) | Controller for servo motor | |
JP2000003204A (en) | Control method and device | |
JP3193037B2 (en) | Control device for linear synchronous motor | |
JPS626878Y2 (en) | ||
JP2023022557A (en) | Drive control device and drive control method for ac motor | |
KR100226056B1 (en) | Elevator velocity control apparatus | |
JPS583586A (en) | Torque controller for thyristor motor | |
JPH02276494A (en) | Controller for synchronous motor | |
JPS6013490A (en) | Speed controller of elevator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070830 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080830 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080830 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090830 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term |