JPH0335970B2 - - Google Patents

Info

Publication number
JPH0335970B2
JPH0335970B2 JP15409384A JP15409384A JPH0335970B2 JP H0335970 B2 JPH0335970 B2 JP H0335970B2 JP 15409384 A JP15409384 A JP 15409384A JP 15409384 A JP15409384 A JP 15409384A JP H0335970 B2 JPH0335970 B2 JP H0335970B2
Authority
JP
Japan
Prior art keywords
layer
porous
particles
slurry
dense layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15409384A
Other languages
Japanese (ja)
Other versions
JPS6135808A (en
Inventor
Kunihiko Yokota
Ataru Wakabayashi
Takao Kameda
Junji Fujitani
Ikuo Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP15409384A priority Critical patent/JPS6135808A/en
Publication of JPS6135808A publication Critical patent/JPS6135808A/en
Publication of JPH0335970B2 publication Critical patent/JPH0335970B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はガス拡散法によるガスの分離乃至濃縮
の為に使用するガス拡散分離用多孔質膜の製造方
法に関する。 〔従来の技術〕 多孔質膜を用いてガスの分離乃至濃縮を行なう
場合において、例えばH2とCO、又はH2とN2
どの分離に際してはクヌツセン拡散支配となるよ
うに多孔質膜の細孔径を数十Å〜数百Å程度に調
整したものを使用する必要がある。具体的な従来
のガス分離膜としては約40Åの細孔径を有する無
機多孔質バイコールガラスが知られている。この
バイコールガラスは高ケイ酸塩であることから耐
熱性及び耐触性に優れているという特徴を有して
いるが、強度上その膜厚を0.5mm以下にすること
が困難であるため、単位膜面積当りのガスの透過
速度が小さいという欠点があつた。従つてガスの
透過速度が大きい分離膜を作製するにはクヌツセ
ン拡散支配となるよう多孔質膜の細孔径を数十Å
〜数百Åに調整し、膜厚を出来るだけ薄くするの
が望ましいが、膜厚を極端に薄くすると機械的強
度が保てず実用性に乏しいものとなるため、膜厚
の薄いガス分離層を膜厚が1mm程度の比較的に細
孔径の大きな多孔質支持体上にコーテイングして
補強するいわゆる多層構造の採用が各方面で試み
られている。 このような多孔質膜は取扱い上、或は強度上か
ら通常は管状で使用されることが多い。従つてそ
の製造法はまず一般に使用されている粉末冶金
法、焼結法などによつて厚さ1mm程度の多孔質支
持管を製作し、これに種々の方法で微細孔を有す
る薄膜をコーテイングしている。 薄膜のコーテイング法としては1μ前後の極薄
膜を形成させる真空蒸着法、スパツタリング法が
あるが、均一な孔径の制御が困難であること、装
置容積に制限があることから実用的でなく、通常
は微粉末を数十μの厚さに付着させる方法が用い
られている。この微粉末層形成法には乾式法と湿
式法があるが乾式法は粒子の流動性が悪く、均一
な厚みの層を形成させるのが極めて困難であるた
め、湿式法が主流となつている。この湿式法には
多孔質支持管を回転させ、支持管内部に微粉末ス
ラリーを供給し、遠心力によつて粉末を付着させ
る遠心成形法、スラリーの表面電位を利用して電
気泳動によつて多孔質支持管にスラリーを付着さ
せる電気泳動法、一般に良く使用されている塗布
法などがあり、微粉末は水又はアルコール、アセ
トン等の有機溶媒を加えてスラリーとして用いて
いるので流動性が良く、均一な厚みの層を容易に
形成することが出来る。 このように湿式法では均一な薄膜を形成させる
ことが可能であるが、容易に形成できる細孔径は
数千Å以上であり、数十Å〜数百Åの細孔径を得
るため千Å以下の超微粉を用いる場合にはスラリ
ーの付着層を形成後、液体を蒸発させて乾燥する
際、ひび割れを生ずる欠点がある。このひび割れ
を防止するため、スラリーに粘結剤を加える方法
もあるが、後で粘結剤を除去し、微小細孔を得る
ことは困難である。 また微小細孔を得る方法の1つとして、粗孔性
基質に浸漬により微粒子を充填することによる多
孔性物質の製造方法が提案されている(特開昭57
−182964号公報)。しかしながらこの方法では粗
孔性基質全体に微粒子が充填されるという欠点が
ある。 〔発明が解決しようとする問題点〕 本発明者らは先に上記の従来技術の欠点を解消
する方法として、ち密層と該ち密層の粒子より大
きな粒子で構成された支持体層とからなる多層構
造の多孔質物質を、上記ち密層の粒子より小さい
活性層用粒子を分散媒に分離したスラリーに浸漬
し、これを引上げた後に分散媒を除去することに
よるガス拡散分離用多孔質物質の製造方法を見出
した(特願昭和58−203630号) この方法によるときは、透過係数比が良く且つ
透過係数が大きいガス拡散分離用多孔質物質を得
ることができるが、活性層用粒子の歩留りが余り
良くなく、スラリー濃度を大にするか、スラリー
濃度が低い場合には処理回数を増加させなければ
ならないと言う問題があつた。 〔問題点を解決すべき手段〕 本発明者ら、上記の方法についてさらに検討を
行い、多孔質物質をスラリーに浸濃し、これを引
上げた後に分散媒を除去するのにち密層側から除
去することにより上記の問題を解決できることを
見出し本発明を達成した。 すなわち、細孔径の異なる多層構造の多孔質物
質を微粒子の分散したスラリーに減圧下で浸漬
後、分散媒を該多孔質物質の緻密層側より乾燥等
の手段によつて除去すると、まず緻密層内の小さ
な細孔中の液量が減少し、これによつて生ずる毛
細管現象で大きな細孔中のスラリーが小さい細孔
中へ移動して液が除去される。この結果、多層構
造多孔質中の微粒子は再分布を起こし、大きな細
孔内では低密度で、緻密層内の小さな細孔中には
高密度で充填される。加えて多孔質物質が多層構
造のため、大きな細孔内に残存する微粒子の影響
はほとんどない。本発明は上記現象に着目してな
されたものであり、目的とする数十Å〜数百Åの
細孔径の均一薄膜を有する多層構造の多孔質ガス
分離膜が極めて簡単に且つ効果的に製造できる。 又、この発明によればスラリーへの浸漬とそれ
に続く分散媒の除去によつて多層構造の多孔質物
質の緻密層細孔中に微粒子が埋め込まれた形とな
るため、粘結剤の添加なしに強固に保持され、充
分な強度を有するものができる。 次に本発明の製造方法について詳細に説明す
る。Fe、Ni、Al等の金属、Al2O3、SiO2
TiO2、Fe2O3、ZrO2等の金属酸化物等よりなる
活性層形成用の数十Å〜数百Åの微粒子を水又は
アルコール、アセトン等の有機液体に分散させた
スラリーに多層構造の多孔質物質を減圧下で浸漬
する。ここでいう「活性層」なる語はH2とCOや
H2とN2の如き混合ガスの分離又は濃縮に有効な
拡散分離層のことでガスの流れがクヌツセン拡散
支配となる数十Å〜数百Åの細孔径を有する多孔
質層を意味する。ここで使用する多層構造の多孔
質物質としては、Fe、Ni、Al等の金属、Al2O3
SiO2、TiO2、Fe2O3、ZrO2等の金属酸化物、金
属炭化物等から成り、最外或は最内層に細孔径数
百Å〜数μの緻密層と少くとも1層の支持体層を
有するものである。 また、本発明における支持体層は、前記緻密層
を構成する微細粒子の粒径の5〜100倍の粒子か
ら構成される厚さが0.2mm乃至5mm程度の層であ
る。 支持体層が、二層またはそれ以上の層からなつ
ている場合には、各層をそれぞれ異なる粒径の粒
子で構成し、緻密層に近い方の層の粒子を小さな
粒径の粒子で構成する。 また、支持体層の粒子に用いられる材料は、前
記緻密層及び活性層に用いた微細粒子や活性層用
粒子と同様Ni、Al、Fe等の金属や種々の金属化
合物が用いられる。 このような単層または複数層の多孔質支持体は
焼結法等により容易に作ることができる。特に支
持体層を複数層とするときは、外層または内層
(緻密層から最も離れた層)を比較的大きな粒子
で形成することができ、ガス透過性を犠性にする
ことなく層厚を厚くすることができるので支持体
の強度を向上させることができる。 また、緻密層をこのような支持体層に設けるに
は、例えば、前記のようにして作つた多孔質支持
管の内面に緻密層用の微細粒子を供給し、(必要
により、管体を回転しつつ乾燥した該微細粒子を
供給してもよく、管体に該微細粒子のスラリーを
供給してもよい)、管内部に可撓性チユーブを挿
入し、これに流体を圧力して微細粒子を内方から
支持体内面に圧着させ、必要に応じて焼結する等
の手段で設けることができる。 なお、本発明におけるガス拡散分離用多孔質膜
は管状であることが好ましいが、板状その他の形
状であつてもよく、従つて本発明で最外または最
内層なる表現は主として管状体についてのもので
あるが、板状等においては1側面と他側面をも指
すものである。 スラリー中の微粒子の濃度としては粒子が十分
に分散している濃度が使用され、粒子の種類、粒
径、分散媒の種類によつて決められる。又、粒子
が分散しにくいような場合には分散助剤、例えば
酢酸や界面活性剤等を加えても良い。先に示した
ように、本発明では分散媒除去時、緻密層内に微
粒子が高密度で充填されるため、希薄濃度でも十
分有効である。 浸漬法としては多孔質細孔内のガスをスラリー
と完全に置換させることが均一な細孔径を有する
膜を作製する上で好ましいので、浸漬中は真空ポ
ンプ等を使用して適度な減圧下に保持するか、超
音波等を印加することが好ましい。このようにし
てスラリー中に多孔質物質を浸漬した後、多孔質
物質をスラリーより引き上げ、分散媒を緻密層側
外表面より除去する。分散媒の除去法としては緻
密層側外表面を加熱乾燥、真空乾燥などすること
によつて行なわれる。又、分散媒に除去した後、
必要に応じ焼成することもできる。焼成した場
合、粒子と多孔質物質間及び粒子と粒子間に相互
作用が生じ、より一層強度が増大する。 なお、数十Å〜数百Åの間の調整方法として
は、充填粒子径、スラリー濃度及び浸漬、分散媒
の除去の繰返し処理回数を変化させることによつ
て行なうことができる。又、多孔質物質の緻密層
の細孔径と充填粒子径に著しい差があるようなと
き、例えば緻密層の細孔径数μ、充填粒子径数十
Åのような場合には、あらかじめ数百Å〜数千Å
の充填粒子径を使用して浸漬、分散媒の除去によ
る処理を行なつた後、数十Åの充填粒子径で同様
の処理を行なうこともできる。 〔実施例〕 以下、本発明を実施例によつて示す。 実施例 1 平均孔径2000Å、厚さ20μの緻密層を内側にも
ち、平均孔径1.5μ及び10μの支持体から成る内径
7mm、外径10mm、長さ750mmの3層構造Al2O3
多孔質管を平均粒子径80ÅのSiO2超微粒子の1wt
%、スラリー溶液に真空ポンプで減圧下に保ちな
がら30分間浸漬した。その後、スラリー溶液から
取り出し、多孔質管の内側に約80℃の空気を30分
間流通して乾燥させ、更に500℃の電気炉中で3
時間焼成した。 この浸漬、乾燥、焼成の操作を1回行なつたも
の、2回、3回と繰り返し行なつたものの緻密層
内の平均孔径はそれぞれ120Å、80Å、66Åであ
つた。また25℃で測定したH2、N2ガスの透過係
数及び透過係数比は表−1に示す通りであつた。 実施例 2 実施例1と同じAl2O3製多孔質管を平均粒子径
80ÅのSiO2超微粒子の種々濃度のスラリーに真
空ポンプで減圧下に保ちながら30分間浸漬した。
その後スラリー溶液から取り出し、多孔質管の内
側に約80℃の空気を30分間流して乾燥させ、更に
500℃の電気炉中で3時間焼成した。この浸漬、
乾燥、焼成の操作を繰り返し3回行なつたものに
ついてスラリー濃度と緻密層内の平均孔径及び25
℃で測定したH2、N2ガスの透過係数、透過係数
比の関係は表−2に示す通りであつた。 実施例 3 実施例1と同じAl2O3製多孔質管を平均粒子径
150ÅのSiO2超微粒子の1wt%スラリー溶液に真
空ポンプで減圧に保ちながら30分間浸漬した。そ
の後、スラリー溶液から取り出し、多孔質管の内
側に約80℃の空気を30分間流して乾燥させ、更に
500℃の電気炉中で3時間焼成した。この浸漬、
乾燥、焼成の操作を1回行なつたもの、2回、3
回と繰り返し行なつたものの緻密層内の平均孔径
はそれぞれ115Å、90Å、75Åであつた。また25
℃で測定したH2、N2ガスの透過係数及び透過係
数比は表−3に示す通りであつた。 実施例 4 実施例1で浸漬、乾燥、焼成の操作を3回繰り
返し行なつて作製した多孔質膜について25℃で
H2、He、CH4、N2、CO、CO2の各ガスの透過
係数を測定した。結果は第1図に示す通りであ
り、各ガスの分子量のルートの逆数に対し透過係
数がきれいな直接関係にあり、クヌツセン拡散支
配でガスの透過が起つているのがわかる。 実施例 5 実施例1と同じAl2O3製多孔質管を平均粒子径
200ÅのAl2O3超微粒子を酢酸を分散助剤として
水に懸濁させた1wt%スラリー溶液に真空ポンプ
で減圧に保ちながら30分間浸漬した。その後スラ
リー溶液から取り出し、多孔質管の内側に約80℃
の空気を30分間流して乾燥させ更に500℃の電気
炉中で3時間焼成した。 この浸漬、乾燥、焼成の操作を3回繰り返して
行なつて得られた多孔質膜の緻密層内の平均孔径
は75Åであり、25℃で測定したH2の透過係数は
77NCC/cm2 min atm、N2の透過係数は
22NCC/cm2 min atmが得られH2、N2の透過係
数比は3.5であつた。 内径8mm外径10mm平均細孔径40Åのバイコール
ガラス管を用いて25℃で測定した透過係数及び透
過係数比は表−4の通りであつた。上記実施例の
結果からも明らかなように本発明のガス拡散分離
用多孔質膜の製造方法によれば高い透過係数比
(分離性)を持ちつつ非常に大きな透過係数(ガ
ス透過量)を持つガス分離膜が極めて簡単に製造
できることがわかる。 以上、本発明の製造方法を管状の多層構造多孔
質ガス分離膜を製造する場合を例にとつて説明し
たが、本発明はこのような場合に限られるもので
はなく板状等他の形状の多孔質ガス分離膜の製造
にも適用することができる。
[Industrial Application Field] The present invention relates to a method for manufacturing a porous membrane for gas diffusion separation used for gas separation or concentration by a gas diffusion method. [Prior art] When separating or concentrating gases using a porous membrane, for example, when separating H 2 and CO or H 2 and N 2 , the fine particles of the porous membrane are separated so that Knutsen diffusion dominates. It is necessary to use a material whose pore diameter is adjusted to about several tens of angstroms to several hundreds of angstroms. As a specific conventional gas separation membrane, inorganic porous Vycor glass having a pore diameter of about 40 Å is known. This Vycor glass has excellent heat resistance and contact resistance due to its high silicate content, but due to its strength, it is difficult to reduce the film thickness to 0.5 mm or less, so The drawback was that the gas permeation rate per membrane area was low. Therefore, in order to create a separation membrane with a high gas permeation rate, the pore diameter of the porous membrane should be set to several tens of angstroms so that Knutsen diffusion is dominant.
It is desirable to adjust the film thickness to ~ several hundred Å and make the film thickness as thin as possible, but if the film thickness is extremely thin, it will not be able to maintain mechanical strength and will be impractical. Attempts have been made in various fields to adopt a so-called multilayer structure in which the membrane is reinforced by coating it on a porous support with a relatively large pore diameter of about 1 mm. Such porous membranes are usually used in a tubular shape for ease of handling or strength. Therefore, the manufacturing method is to first manufacture a porous support tube with a thickness of about 1 mm using commonly used powder metallurgy methods, sintering methods, etc., and then coat this with a thin film having micropores using various methods. ing. Thin film coating methods include vacuum evaporation and sputtering to form an ultra-thin film of around 1 μm, but these methods are impractical because it is difficult to control uniform pore diameters and there is a limit to the equipment capacity. A method is used in which fine powder is deposited to a thickness of several tens of microns. There are two methods for forming this fine powder layer: a dry method and a wet method, but the dry method has poor particle fluidity and is extremely difficult to form a layer of uniform thickness, so the wet method is the mainstream. . This wet method includes a centrifugal molding method in which a porous support tube is rotated, a fine powder slurry is supplied inside the support tube, and the powder is adhered by centrifugal force, and a centrifugal molding method in which a porous support tube is rotated, and the powder is adhered by centrifugal force. There are electrophoresis methods in which a slurry is deposited on a porous support tube, and commonly used coating methods.The fine powder has good fluidity because it is used as a slurry by adding water, alcohol, or an organic solvent such as acetone. , a layer of uniform thickness can be easily formed. In this way, it is possible to form a uniform thin film using the wet method, but the pore diameter that can be easily formed is several thousand Å or more, and in order to obtain a pore diameter of several tens of Å to several hundred Å, it is possible to form a uniform thin film. When using ultrafine powder, there is a drawback that cracks occur when the slurry layer is formed and then dried by evaporating the liquid. In order to prevent this cracking, there is a method of adding a binder to the slurry, but it is difficult to remove the binder afterwards and obtain micropores. In addition, as one method for obtaining micropores, a method for manufacturing porous materials has been proposed in which fine particles are filled in a coarse porous substrate by immersion (Japanese Patent Laid-Open No. 57
−182964). However, this method has the disadvantage that the entire coarsely porous matrix is filled with fine particles. [Problems to be Solved by the Invention] The present inventors previously proposed a method for solving the above-mentioned drawbacks of the prior art, which consists of a dense layer and a support layer composed of particles larger than the particles in the dense layer. A porous material for gas diffusion separation is prepared by immersing a porous material with a multilayer structure in a slurry in which particles for the active layer smaller than the particles in the dense layer are separated in a dispersion medium, and then removing the dispersion medium after pulling up the slurry. Found a manufacturing method (Japanese Patent Application No. 58-203630) When using this method, a porous material for gas diffusion separation with a good permeability coefficient ratio and a large permeability coefficient can be obtained, but the yield of particles for the active layer is low. There was a problem in that the slurry concentration was not very good and the slurry concentration had to be increased, or if the slurry concentration was low, the number of treatments had to be increased. [Means to Solve the Problems] The present inventors further investigated the above method, and found that the porous material was concentrated in the slurry, and after the slurry was pulled up, the dispersion medium was removed and then removed from the dense layer side. The present invention has been achieved by discovering that the above problems can be solved by doing the following. That is, when a porous material with a multilayer structure with different pore diameters is immersed in a slurry in which fine particles are dispersed under reduced pressure, and the dispersion medium is removed from the dense layer side of the porous material by drying or other means, the dense layer first The amount of liquid in the small pores decreases, and the resulting capillary action causes the slurry in the large pores to move into the small pores and remove the liquid. As a result, the fine particles in the porous multilayer structure undergo redistribution, and the large pores are filled with low density, and the small pores in the dense layer are filled with high density. In addition, because the porous material has a multilayer structure, there is almost no effect of fine particles remaining in the large pores. The present invention was made with attention to the above phenomenon, and it is possible to extremely easily and effectively produce a porous gas separation membrane with a multilayer structure having a uniform thin film with a pore diameter of several tens of Å to several hundreds of Å. can. Furthermore, according to the present invention, fine particles are embedded in the pores of the dense layer of the porous material with a multilayer structure by immersion in the slurry and subsequent removal of the dispersion medium, so there is no need to add a binder. It can be firmly held and has sufficient strength. Next, the manufacturing method of the present invention will be explained in detail. Metals such as Fe, Ni, Al, Al 2 O 3 , SiO 2 ,
A multilayer structure is created by dispersing microparticles of several tens of Å to several hundred Å for forming an active layer made of metal oxides such as TiO 2 , Fe 2 O 3 , and ZrO 2 in water or an organic liquid such as alcohol or acetone. porous material is immersed under reduced pressure. The term “active layer” here refers to H 2 and CO.
A diffusion separation layer effective for separating or concentrating a mixed gas such as H 2 and N 2 refers to a porous layer having a pore diameter of several tens of angstroms to several hundreds of angstroms in which gas flow is dominated by Knutsen diffusion. The porous materials with a multilayer structure used here include metals such as Fe, Ni, and Al, Al 2 O 3 ,
It is made of metal oxides, metal carbides, etc. such as SiO 2 , TiO 2 , Fe 2 O 3 , ZrO 2 , etc., and has a dense layer with pore diameters of several hundred Å to several μ and at least one support layer in the outermost or innermost layer. It has body layers. Further, the support layer in the present invention is a layer having a thickness of about 0.2 mm to 5 mm and is composed of particles having a diameter 5 to 100 times larger than that of the fine particles constituting the dense layer. When the support layer consists of two or more layers, each layer is composed of particles with different particle sizes, and the particles in the layer closer to the dense layer are composed of particles with smaller particle sizes. . Further, as the material used for the particles of the support layer, metals such as Ni, Al, Fe, and various metal compounds are used, similar to the fine particles and active layer particles used for the dense layer and active layer. Such a single-layer or multi-layer porous support can be easily produced by a sintering method or the like. In particular, when the support layer is made up of multiple layers, the outer layer or inner layer (the layer farthest from the dense layer) can be formed of relatively large particles, allowing the layer thickness to be increased without sacrificing gas permeability. Therefore, the strength of the support can be improved. In addition, in order to provide a dense layer on such a support layer, for example, fine particles for the dense layer may be supplied to the inner surface of the porous support tube made as described above (if necessary, the tube body may be rotated). (The fine particles may be supplied while drying, or a slurry of the fine particles may be supplied to the tube.) A flexible tube is inserted into the tube, and a fluid is applied to the tube to pressure the fine particles. It can be provided by pressing the support member from the inside onto the inner surface of the support member and, if necessary, sintering the support member. The porous membrane for gas diffusion separation in the present invention preferably has a tubular shape, but may have a plate shape or other shapes. Therefore, in the present invention, the expression "outermost layer" or "innermost layer" mainly refers to a tubular body. However, in the case of a plate, etc., it also refers to one side and the other side. The concentration of fine particles in the slurry is a concentration at which the particles are sufficiently dispersed, and is determined by the type of particles, particle size, and type of dispersion medium. Furthermore, if the particles are difficult to disperse, a dispersion aid such as acetic acid or a surfactant may be added. As shown above, in the present invention, when the dispersion medium is removed, the fine particles are packed in the dense layer at a high density, so even a dilute concentration is sufficiently effective. In the immersion method, it is preferable to completely replace the gas in the porous pores with the slurry in order to produce a membrane with uniform pore diameters, so during the immersion, use a vacuum pump etc. under moderately reduced pressure. It is preferable to hold it or apply ultrasonic waves or the like. After the porous material is immersed in the slurry in this manner, the porous material is pulled up from the slurry and the dispersion medium is removed from the outer surface of the dense layer. The dispersion medium can be removed by heating or vacuum drying the outer surface of the dense layer. In addition, after removing it to a dispersion medium,
It can also be fired if necessary. When fired, interactions occur between the particles and the porous material and between the particles, further increasing the strength. In addition, the adjustment method between several tens of angstroms and several hundreds of angstroms can be carried out by changing the packed particle diameter, slurry concentration, and the number of repetitions of immersion and removal of the dispersion medium. In addition, when there is a significant difference between the pore diameter of the dense layer of the porous material and the packed particle diameter, for example, when the pore diameter of the dense layer is several microns and the packed particle diameter is several tens of angstroms, it is necessary to ~several thousand Å
It is also possible to carry out the treatment by immersion and removal of the dispersion medium using a packed particle size of several tens of angstroms, and then perform the same treatment using a packed particle size of several tens of angstroms. [Example] Hereinafter, the present invention will be illustrated by examples. Example 1 Three-layer Al 2 O 3 porous material with an inner diameter of 7 mm, an outer diameter of 10 mm, and a length of 750 mm, which has a dense layer with an average pore diameter of 2000 Å and a thickness of 20 μ on the inside, and is composed of supports with average pore diameters of 1.5 μ and 10 μ. Tube 1wt of SiO2 ultrafine particles with average particle size 80Å
%, and immersed in the slurry solution for 30 minutes while keeping it under reduced pressure with a vacuum pump. After that, the slurry was removed from the solution, dried by circulating air at about 80℃ for 30 minutes inside the porous tube, and then placed in an electric furnace at 500℃ for 3 hours.
Baked for an hour. The average pore diameters in the dense layer were 120 Å, 80 Å, and 66 Å when the dipping, drying, and firing operations were repeated once, twice, and three times, respectively. In addition, the permeability coefficients and permeability coefficient ratios of H 2 and N 2 gases measured at 25°C were as shown in Table-1. Example 2 The same Al 2 O 3 porous tube as in Example 1 was prepared with an average particle diameter of
The samples were immersed in slurries of 80 Å SiO 2 ultrafine particles at various concentrations for 30 minutes while being kept under reduced pressure using a vacuum pump.
After that, it is removed from the slurry solution, dried by flowing air at about 80℃ for 30 minutes inside the porous tube, and then
It was fired for 3 hours in an electric furnace at 500°C. This immersion,
The slurry concentration, average pore diameter in the dense layer, and 25
The relationship between the permeability coefficients and permeability coefficient ratios of H 2 and N 2 gases measured at °C was as shown in Table 2. Example 3 The same Al 2 O 3 porous tube as in Example 1 was prepared with an average particle diameter of
It was immersed in a 1 wt% slurry solution of 150 Å SiO 2 ultrafine particles for 30 minutes while maintaining reduced pressure with a vacuum pump. After that, it is removed from the slurry solution, dried by flowing air at about 80℃ for 30 minutes inside the porous tube, and then
It was fired for 3 hours in an electric furnace at 500°C. This immersion,
Drying and firing operations were performed once, twice, and three times.
The average pore diameters in the dense layer were 115 Å, 90 Å, and 75 Å, respectively, after repeated experiments. 25 again
The permeability coefficients and permeability coefficient ratios of H 2 and N 2 gases measured at °C were as shown in Table 3. Example 4 A porous membrane prepared by repeating the dipping, drying, and baking operations three times in Example 1 was heated at 25°C.
The permeability coefficients of H 2 , He, CH 4 , N 2 , CO, and CO 2 gases were measured. The results are shown in Figure 1, and it can be seen that the permeability coefficient has a clear direct relationship with the reciprocal of the root of the molecular weight of each gas, indicating that gas permeation is dominated by Knutsen diffusion. Example 5 The same Al 2 O 3 porous tube as in Example 1 was prepared with an average particle diameter of
Ultrafine Al 2 O 3 particles with a diameter of 200 Å were immersed in a 1 wt % slurry solution prepared by suspending the slurry in water using acetic acid as a dispersing agent for 30 minutes while maintaining the reduced pressure using a vacuum pump. Then take it out of the slurry solution and store it inside a porous tube at about 80℃.
It was dried by passing air through it for 30 minutes, and then fired in an electric furnace at 500°C for 3 hours. The average pore diameter in the dense layer of the porous membrane obtained by repeating this dipping, drying, and baking operation three times was 75 Å, and the permeability coefficient of H 2 measured at 25°C was
77NCC/cm 2 min atm, the permeability coefficient of N 2 is
22 NCC/cm 2 min atm was obtained, and the permeability coefficient ratio of H 2 and N 2 was 3.5. The permeability coefficient and permeability coefficient ratio measured at 25°C using a Vycor glass tube with an inner diameter of 8 mm, an outer diameter of 10 mm, and an average pore diameter of 40 Å are shown in Table 4. As is clear from the results of the above examples, the method for producing a porous membrane for gas diffusion separation according to the present invention has a high permeability coefficient ratio (separability) and a very large permeation coefficient (gas permeation amount). It can be seen that the gas separation membrane can be manufactured extremely easily. The manufacturing method of the present invention has been explained above using the case of manufacturing a tubular multilayered porous gas separation membrane as an example, but the present invention is not limited to this case, and can be applied to other shapes such as a plate shape. It can also be applied to the production of porous gas separation membranes.

【表】【table】

【表】【table】

【表】【table】

【表】 比較例 2 実施例1と同じAl2O3製多孔質管を特願昭58−
203630に従つて80ÅのSiO2超微粒子の30%スラ
リー溶液に真空ポンプで減圧下に保ちながら30分
間浸漬した。 その後スラリーから取り出し、100℃の乾燥器
中で1時間乾燥させ、500℃の電気炉中で3時間
焼成した。 この浸漬、乾燥、焼成の操作を繰り返し2回行
なつたものについて25℃で測定したH2、N2ガス
の透過係数及び透過係数比は表−5に示す通りで
あつた。尚、表−5には実施例1に示した繰り返
し処理回数2回の結果も併せて示した。
[Table] Comparative Example 2 The same porous pipe made of Al 2 O 3 as in Example 1 was manufactured in a patent application filed in 1983.
203630, it was immersed in a 30% slurry solution of 80 Å SiO 2 ultrafine particles for 30 minutes while being kept under reduced pressure with a vacuum pump. Thereafter, it was taken out from the slurry, dried in a dryer at 100°C for 1 hour, and fired in an electric furnace at 500°C for 3 hours. The permeability coefficients and permeability coefficient ratios of H 2 and N 2 gases measured at 25° C. after repeating the immersion, drying, and firing operations twice were as shown in Table 5. Additionally, Table 5 also shows the results of the repeated treatment two times as shown in Example 1.

【表】 この結果からわかるように分数媒の除去を緻密
層側外表面から行なうことによつてほぼ同様の透
過係数及び透過係数比をもつものを大幅に低いス
ラリー濃度で製造できることがわかる。 比較例 2 実施例1と同じAl2O3製多孔質管を80ÅSiO2
微粒子の1wt%スラリー溶液に真空ポンプで減圧
下に保ちながら30分間浸漬した。そのスラリーか
ら取り出し100℃の乾燥器中で分散媒除去の方向
性を持たせることなく(特願昭58−203630)1時
間乾燥させ、500℃の電気炉中で3時間焼成した。
この浸漬、乾燥、焼成の操作を繰り返し2回行な
つたもの及び、同様の操作を30wt%、スラリー
溶液で行なつたものについての平均孔径と25℃で
測定したH2、N2ガスの透過係数及び透過係数比
は表−5に示す通りであつた。尚、表−5には実
施例1に示した繰り返し処理回数2回の結果を併
せて示した。
[Table] As can be seen from this result, by removing the fractional medium from the outer surface of the dense layer side, it is possible to produce a slurry having substantially the same permeability coefficient and permeation coefficient ratio at a significantly lower concentration. Comparative Example 2 The same porous tube made of Al 2 O 3 as in Example 1 was immersed in a 1 wt % slurry solution of 80 Å SiO 2 ultrafine particles for 30 minutes while maintaining the tube under reduced pressure using a vacuum pump. The slurry was taken out and dried in a dryer at 100°C for 1 hour without removing the dispersion medium (Japanese Patent Application No. 58-203630), and then calcined in an electric furnace at 500°C for 3 hours.
The average pore diameter and permeation of H 2 and N 2 gases measured at 25°C were obtained by repeating the immersion, drying, and firing operations twice, and by performing the same operation with a 30wt% slurry solution. The coefficients and permeability coefficient ratios were as shown in Table-5. In addition, Table 5 also shows the results of the two repeated treatments shown in Example 1.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明によるときは、数十Å〜数百Åの微細孔
の均一な薄膜の活性層を有する高強度の多孔質構
造の多孔質ガス分離膜を活性層用粒子の歩留りが
よく極めて簡単で且つ効果的に製造することがで
き、また活性層を設けるのに活性層用粒子の濃度
が比較的低いスラリーを用いることができる等の
効果を有する。
According to the present invention, a porous gas separation membrane having a high-strength porous structure having a uniform thin active layer with micropores of several tens of Å to several hundreds of angstroms is extremely simple and has a good yield of particles for the active layer. It has the advantage that it can be manufactured effectively and that a slurry with a relatively low concentration of particles for the active layer can be used to provide the active layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1で得られた多孔質膜について
25℃で各種のガスの透過係数を測定した結果を示
すグラフである。
Figure 1 shows the porous membrane obtained in Example 1.
It is a graph showing the results of measuring the permeability coefficients of various gases at 25°C.

Claims (1)

【特許請求の範囲】 1 微細な粒子で構成されたち密層を最外或いは
最内層に有し、該ち密層の粒子より大きな粒子で
構成された少くとも1つの支持体層とからなる多
層構造の多孔質物質を上記ち密層の粒子より小さ
な活性層用粒子を分散媒に分散したスラリーに浸
漬し、これを引き上げた後、分散媒をち密層側外
表面より除去することを特徴とするガス拡散分離
用多孔質膜の製造方法。 2 特許請求範囲第1項記載の方法を複数回繰返
すことから成るガス拡散分離用多孔質膜の製造方
法。
[Claims] 1. A multilayer structure comprising a dense layer made of fine particles as the outermost or innermost layer, and at least one support layer made of particles larger than the particles in the dense layer. A gas characterized in that the porous material is immersed in a slurry in which active layer particles smaller than the particles of the dense layer are dispersed in a dispersion medium, the slurry is pulled up, and the dispersion medium is removed from the outer surface on the side of the dense layer. A method for manufacturing a porous membrane for diffusion separation. 2. A method for producing a porous membrane for gas diffusion separation, which comprises repeating the method described in claim 1 a plurality of times.
JP15409384A 1984-07-26 1984-07-26 Production of porous membrane for gas diffusion separation Granted JPS6135808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15409384A JPS6135808A (en) 1984-07-26 1984-07-26 Production of porous membrane for gas diffusion separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15409384A JPS6135808A (en) 1984-07-26 1984-07-26 Production of porous membrane for gas diffusion separation

Publications (2)

Publication Number Publication Date
JPS6135808A JPS6135808A (en) 1986-02-20
JPH0335970B2 true JPH0335970B2 (en) 1991-05-30

Family

ID=15576750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15409384A Granted JPS6135808A (en) 1984-07-26 1984-07-26 Production of porous membrane for gas diffusion separation

Country Status (1)

Country Link
JP (1) JPS6135808A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2533863B2 (en) * 1986-10-08 1996-09-11 日立金属株式会社 Dies for powder press molding
FR2625690B1 (en) * 1988-01-11 1993-04-23 Inst Francais Du Petrole PROCESS FOR SEPARATING THE CONSTITUENTS OF A GAS PHASE MIXTURE USING A COMPOSITE MEMBRANE
US8394181B2 (en) 2006-12-28 2013-03-12 Shin-Etsu Polymer Co., Ltd. Selectively permeable material, method for producing selectively permeable membrane structure, selectively permeable membrane structure, and air conditioning system

Also Published As

Publication number Publication date
JPS6135808A (en) 1986-02-20

Similar Documents

Publication Publication Date Title
JP6723265B2 (en) Carbon-containing membranes for water and gas separation
JP5897458B2 (en) Pervaporation separation method
CN108097064B (en) Method for preparing mesoporous ceramic membrane based on two-dimensional material
JPS60156510A (en) Manufacture of inorganic semipermeable film in which crack is not generated
TW200920472A (en) Method for preparing a porous inorganic coating on a porous support using certain pore formers
AU1414492A (en) Catalyst or membrane precursor systems, catalyst or membrane systems, and method of preparing such systems
WO2008050814A1 (en) Method of manufacturing ceramic porous membrane and method of manufacturing ceramic filter
WO2009001970A1 (en) Separation membrane complex, and method for production of separation membrane complex
JPH04219128A (en) Membrane device for effecting filtration, separation and catalytic reaction
JPS61500221A (en) Porous material and tubular filter made of the material
EP1156868A1 (en) Method for manufacturing a membrane
WO2013042262A1 (en) Method for producing carbon film
JPH0335970B2 (en)
JP2002066280A (en) Gas separation filter and method for manufacturing the same
JP4427545B2 (en) Titania composite membrane for water / alcohol separation and method for producing the same
JPS61209005A (en) Separation membrane and its preparation
JP2007268463A (en) Method for manufacturing filter material
JPS6097023A (en) Gas diffusing porous substance and its preparation
JP2004168615A (en) Porous silica membrane and method for manufacturing the same
JP2009241054A (en) Method for manufacturing of ceramic filter
JP2003527958A (en) Ion conductive ceramic membrane and surface treatment
JP2003220319A (en) Separation membrane module and manufacturing method thereof
RU2040371C1 (en) Method of making filtering material
JPS6268510A (en) Method for preparing ceramics filter material
RU2424083C1 (en) Method of producing filtration material